KVM: Fix fs/gs reload oops with invalid ldt
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affilates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
73         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
74 #define KVM_GUEST_CR0_MASK                                              \
75         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
76 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
77         (X86_CR0_WP | X86_CR0_NE)
78 #define KVM_VM_CR0_ALWAYS_ON                                            \
79         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
80 #define KVM_CR4_GUEST_OWNED_BITS                                      \
81         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
82          | X86_CR4_OSXMMEXCPT)
83
84 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
85 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
86
87 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
88
89 /*
90  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
91  * ple_gap:    upper bound on the amount of time between two successive
92  *             executions of PAUSE in a loop. Also indicate if ple enabled.
93  *             According to test, this time is usually small than 41 cycles.
94  * ple_window: upper bound on the amount of time a guest is allowed to execute
95  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
96  *             less than 2^12 cycles
97  * Time is measured based on a counter that runs at the same rate as the TSC,
98  * refer SDM volume 3b section 21.6.13 & 22.1.3.
99  */
100 #define KVM_VMX_DEFAULT_PLE_GAP    41
101 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
102 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
103 module_param(ple_gap, int, S_IRUGO);
104
105 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
106 module_param(ple_window, int, S_IRUGO);
107
108 #define NR_AUTOLOAD_MSRS 1
109
110 struct vmcs {
111         u32 revision_id;
112         u32 abort;
113         char data[0];
114 };
115
116 struct shared_msr_entry {
117         unsigned index;
118         u64 data;
119         u64 mask;
120 };
121
122 struct vcpu_vmx {
123         struct kvm_vcpu       vcpu;
124         struct list_head      local_vcpus_link;
125         unsigned long         host_rsp;
126         int                   launched;
127         u8                    fail;
128         u32                   idt_vectoring_info;
129         struct shared_msr_entry *guest_msrs;
130         int                   nmsrs;
131         int                   save_nmsrs;
132 #ifdef CONFIG_X86_64
133         u64                   msr_host_kernel_gs_base;
134         u64                   msr_guest_kernel_gs_base;
135 #endif
136         struct vmcs          *vmcs;
137         struct msr_autoload {
138                 unsigned nr;
139                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
140                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
141         } msr_autoload;
142         struct {
143                 int           loaded;
144                 u16           fs_sel, gs_sel, ldt_sel;
145                 int           gs_ldt_reload_needed;
146                 int           fs_reload_needed;
147         } host_state;
148         struct {
149                 int vm86_active;
150                 ulong save_rflags;
151                 struct kvm_save_segment {
152                         u16 selector;
153                         unsigned long base;
154                         u32 limit;
155                         u32 ar;
156                 } tr, es, ds, fs, gs;
157                 struct {
158                         bool pending;
159                         u8 vector;
160                         unsigned rip;
161                 } irq;
162         } rmode;
163         int vpid;
164         bool emulation_required;
165
166         /* Support for vnmi-less CPUs */
167         int soft_vnmi_blocked;
168         ktime_t entry_time;
169         s64 vnmi_blocked_time;
170         u32 exit_reason;
171
172         bool rdtscp_enabled;
173 };
174
175 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
176 {
177         return container_of(vcpu, struct vcpu_vmx, vcpu);
178 }
179
180 static int init_rmode(struct kvm *kvm);
181 static u64 construct_eptp(unsigned long root_hpa);
182 static void kvm_cpu_vmxon(u64 addr);
183 static void kvm_cpu_vmxoff(void);
184
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
189
190 static unsigned long *vmx_io_bitmap_a;
191 static unsigned long *vmx_io_bitmap_b;
192 static unsigned long *vmx_msr_bitmap_legacy;
193 static unsigned long *vmx_msr_bitmap_longmode;
194
195 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
196 static DEFINE_SPINLOCK(vmx_vpid_lock);
197
198 static struct vmcs_config {
199         int size;
200         int order;
201         u32 revision_id;
202         u32 pin_based_exec_ctrl;
203         u32 cpu_based_exec_ctrl;
204         u32 cpu_based_2nd_exec_ctrl;
205         u32 vmexit_ctrl;
206         u32 vmentry_ctrl;
207 } vmcs_config;
208
209 static struct vmx_capability {
210         u32 ept;
211         u32 vpid;
212 } vmx_capability;
213
214 #define VMX_SEGMENT_FIELD(seg)                                  \
215         [VCPU_SREG_##seg] = {                                   \
216                 .selector = GUEST_##seg##_SELECTOR,             \
217                 .base = GUEST_##seg##_BASE,                     \
218                 .limit = GUEST_##seg##_LIMIT,                   \
219                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
220         }
221
222 static struct kvm_vmx_segment_field {
223         unsigned selector;
224         unsigned base;
225         unsigned limit;
226         unsigned ar_bytes;
227 } kvm_vmx_segment_fields[] = {
228         VMX_SEGMENT_FIELD(CS),
229         VMX_SEGMENT_FIELD(DS),
230         VMX_SEGMENT_FIELD(ES),
231         VMX_SEGMENT_FIELD(FS),
232         VMX_SEGMENT_FIELD(GS),
233         VMX_SEGMENT_FIELD(SS),
234         VMX_SEGMENT_FIELD(TR),
235         VMX_SEGMENT_FIELD(LDTR),
236 };
237
238 static u64 host_efer;
239
240 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
241
242 /*
243  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
244  * away by decrementing the array size.
245  */
246 static const u32 vmx_msr_index[] = {
247 #ifdef CONFIG_X86_64
248         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
249 #endif
250         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
251 };
252 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
253
254 static inline bool is_page_fault(u32 intr_info)
255 {
256         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
257                              INTR_INFO_VALID_MASK)) ==
258                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
259 }
260
261 static inline bool is_no_device(u32 intr_info)
262 {
263         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
264                              INTR_INFO_VALID_MASK)) ==
265                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
266 }
267
268 static inline bool is_invalid_opcode(u32 intr_info)
269 {
270         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
271                              INTR_INFO_VALID_MASK)) ==
272                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
273 }
274
275 static inline bool is_external_interrupt(u32 intr_info)
276 {
277         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
278                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
279 }
280
281 static inline bool is_machine_check(u32 intr_info)
282 {
283         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
284                              INTR_INFO_VALID_MASK)) ==
285                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
286 }
287
288 static inline bool cpu_has_vmx_msr_bitmap(void)
289 {
290         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
291 }
292
293 static inline bool cpu_has_vmx_tpr_shadow(void)
294 {
295         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
296 }
297
298 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
299 {
300         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
301 }
302
303 static inline bool cpu_has_secondary_exec_ctrls(void)
304 {
305         return vmcs_config.cpu_based_exec_ctrl &
306                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
307 }
308
309 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
310 {
311         return vmcs_config.cpu_based_2nd_exec_ctrl &
312                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
313 }
314
315 static inline bool cpu_has_vmx_flexpriority(void)
316 {
317         return cpu_has_vmx_tpr_shadow() &&
318                 cpu_has_vmx_virtualize_apic_accesses();
319 }
320
321 static inline bool cpu_has_vmx_ept_execute_only(void)
322 {
323         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
324 }
325
326 static inline bool cpu_has_vmx_eptp_uncacheable(void)
327 {
328         return vmx_capability.ept & VMX_EPTP_UC_BIT;
329 }
330
331 static inline bool cpu_has_vmx_eptp_writeback(void)
332 {
333         return vmx_capability.ept & VMX_EPTP_WB_BIT;
334 }
335
336 static inline bool cpu_has_vmx_ept_2m_page(void)
337 {
338         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
339 }
340
341 static inline bool cpu_has_vmx_ept_1g_page(void)
342 {
343         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
344 }
345
346 static inline bool cpu_has_vmx_ept_4levels(void)
347 {
348         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
349 }
350
351 static inline bool cpu_has_vmx_invept_individual_addr(void)
352 {
353         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
354 }
355
356 static inline bool cpu_has_vmx_invept_context(void)
357 {
358         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
359 }
360
361 static inline bool cpu_has_vmx_invept_global(void)
362 {
363         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
364 }
365
366 static inline bool cpu_has_vmx_invvpid_single(void)
367 {
368         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
369 }
370
371 static inline bool cpu_has_vmx_invvpid_global(void)
372 {
373         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
374 }
375
376 static inline bool cpu_has_vmx_ept(void)
377 {
378         return vmcs_config.cpu_based_2nd_exec_ctrl &
379                 SECONDARY_EXEC_ENABLE_EPT;
380 }
381
382 static inline bool cpu_has_vmx_unrestricted_guest(void)
383 {
384         return vmcs_config.cpu_based_2nd_exec_ctrl &
385                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
386 }
387
388 static inline bool cpu_has_vmx_ple(void)
389 {
390         return vmcs_config.cpu_based_2nd_exec_ctrl &
391                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
392 }
393
394 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
395 {
396         return flexpriority_enabled && irqchip_in_kernel(kvm);
397 }
398
399 static inline bool cpu_has_vmx_vpid(void)
400 {
401         return vmcs_config.cpu_based_2nd_exec_ctrl &
402                 SECONDARY_EXEC_ENABLE_VPID;
403 }
404
405 static inline bool cpu_has_vmx_rdtscp(void)
406 {
407         return vmcs_config.cpu_based_2nd_exec_ctrl &
408                 SECONDARY_EXEC_RDTSCP;
409 }
410
411 static inline bool cpu_has_virtual_nmis(void)
412 {
413         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
414 }
415
416 static inline bool cpu_has_vmx_wbinvd_exit(void)
417 {
418         return vmcs_config.cpu_based_2nd_exec_ctrl &
419                 SECONDARY_EXEC_WBINVD_EXITING;
420 }
421
422 static inline bool report_flexpriority(void)
423 {
424         return flexpriority_enabled;
425 }
426
427 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
428 {
429         int i;
430
431         for (i = 0; i < vmx->nmsrs; ++i)
432                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
433                         return i;
434         return -1;
435 }
436
437 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
438 {
439     struct {
440         u64 vpid : 16;
441         u64 rsvd : 48;
442         u64 gva;
443     } operand = { vpid, 0, gva };
444
445     asm volatile (__ex(ASM_VMX_INVVPID)
446                   /* CF==1 or ZF==1 --> rc = -1 */
447                   "; ja 1f ; ud2 ; 1:"
448                   : : "a"(&operand), "c"(ext) : "cc", "memory");
449 }
450
451 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
452 {
453         struct {
454                 u64 eptp, gpa;
455         } operand = {eptp, gpa};
456
457         asm volatile (__ex(ASM_VMX_INVEPT)
458                         /* CF==1 or ZF==1 --> rc = -1 */
459                         "; ja 1f ; ud2 ; 1:\n"
460                         : : "a" (&operand), "c" (ext) : "cc", "memory");
461 }
462
463 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
464 {
465         int i;
466
467         i = __find_msr_index(vmx, msr);
468         if (i >= 0)
469                 return &vmx->guest_msrs[i];
470         return NULL;
471 }
472
473 static void vmcs_clear(struct vmcs *vmcs)
474 {
475         u64 phys_addr = __pa(vmcs);
476         u8 error;
477
478         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
479                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
480                       : "cc", "memory");
481         if (error)
482                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
483                        vmcs, phys_addr);
484 }
485
486 static void vmcs_load(struct vmcs *vmcs)
487 {
488         u64 phys_addr = __pa(vmcs);
489         u8 error;
490
491         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
492                         : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
493                         : "cc", "memory");
494         if (error)
495                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
496                        vmcs, phys_addr);
497 }
498
499 static void __vcpu_clear(void *arg)
500 {
501         struct vcpu_vmx *vmx = arg;
502         int cpu = raw_smp_processor_id();
503
504         if (vmx->vcpu.cpu == cpu)
505                 vmcs_clear(vmx->vmcs);
506         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
507                 per_cpu(current_vmcs, cpu) = NULL;
508         rdtscll(vmx->vcpu.arch.host_tsc);
509         list_del(&vmx->local_vcpus_link);
510         vmx->vcpu.cpu = -1;
511         vmx->launched = 0;
512 }
513
514 static void vcpu_clear(struct vcpu_vmx *vmx)
515 {
516         if (vmx->vcpu.cpu == -1)
517                 return;
518         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
519 }
520
521 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
522 {
523         if (vmx->vpid == 0)
524                 return;
525
526         if (cpu_has_vmx_invvpid_single())
527                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
528 }
529
530 static inline void vpid_sync_vcpu_global(void)
531 {
532         if (cpu_has_vmx_invvpid_global())
533                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
534 }
535
536 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
537 {
538         if (cpu_has_vmx_invvpid_single())
539                 vpid_sync_vcpu_single(vmx);
540         else
541                 vpid_sync_vcpu_global();
542 }
543
544 static inline void ept_sync_global(void)
545 {
546         if (cpu_has_vmx_invept_global())
547                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
548 }
549
550 static inline void ept_sync_context(u64 eptp)
551 {
552         if (enable_ept) {
553                 if (cpu_has_vmx_invept_context())
554                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
555                 else
556                         ept_sync_global();
557         }
558 }
559
560 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
561 {
562         if (enable_ept) {
563                 if (cpu_has_vmx_invept_individual_addr())
564                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
565                                         eptp, gpa);
566                 else
567                         ept_sync_context(eptp);
568         }
569 }
570
571 static unsigned long vmcs_readl(unsigned long field)
572 {
573         unsigned long value;
574
575         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
576                       : "=a"(value) : "d"(field) : "cc");
577         return value;
578 }
579
580 static u16 vmcs_read16(unsigned long field)
581 {
582         return vmcs_readl(field);
583 }
584
585 static u32 vmcs_read32(unsigned long field)
586 {
587         return vmcs_readl(field);
588 }
589
590 static u64 vmcs_read64(unsigned long field)
591 {
592 #ifdef CONFIG_X86_64
593         return vmcs_readl(field);
594 #else
595         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
596 #endif
597 }
598
599 static noinline void vmwrite_error(unsigned long field, unsigned long value)
600 {
601         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
602                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
603         dump_stack();
604 }
605
606 static void vmcs_writel(unsigned long field, unsigned long value)
607 {
608         u8 error;
609
610         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
611                        : "=q"(error) : "a"(value), "d"(field) : "cc");
612         if (unlikely(error))
613                 vmwrite_error(field, value);
614 }
615
616 static void vmcs_write16(unsigned long field, u16 value)
617 {
618         vmcs_writel(field, value);
619 }
620
621 static void vmcs_write32(unsigned long field, u32 value)
622 {
623         vmcs_writel(field, value);
624 }
625
626 static void vmcs_write64(unsigned long field, u64 value)
627 {
628         vmcs_writel(field, value);
629 #ifndef CONFIG_X86_64
630         asm volatile ("");
631         vmcs_writel(field+1, value >> 32);
632 #endif
633 }
634
635 static void vmcs_clear_bits(unsigned long field, u32 mask)
636 {
637         vmcs_writel(field, vmcs_readl(field) & ~mask);
638 }
639
640 static void vmcs_set_bits(unsigned long field, u32 mask)
641 {
642         vmcs_writel(field, vmcs_readl(field) | mask);
643 }
644
645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
646 {
647         u32 eb;
648
649         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
650              (1u << NM_VECTOR) | (1u << DB_VECTOR);
651         if ((vcpu->guest_debug &
652              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
653             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
654                 eb |= 1u << BP_VECTOR;
655         if (to_vmx(vcpu)->rmode.vm86_active)
656                 eb = ~0;
657         if (enable_ept)
658                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
659         if (vcpu->fpu_active)
660                 eb &= ~(1u << NM_VECTOR);
661         vmcs_write32(EXCEPTION_BITMAP, eb);
662 }
663
664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
665 {
666         unsigned i;
667         struct msr_autoload *m = &vmx->msr_autoload;
668
669         for (i = 0; i < m->nr; ++i)
670                 if (m->guest[i].index == msr)
671                         break;
672
673         if (i == m->nr)
674                 return;
675         --m->nr;
676         m->guest[i] = m->guest[m->nr];
677         m->host[i] = m->host[m->nr];
678         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
679         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
680 }
681
682 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
683                                   u64 guest_val, u64 host_val)
684 {
685         unsigned i;
686         struct msr_autoload *m = &vmx->msr_autoload;
687
688         for (i = 0; i < m->nr; ++i)
689                 if (m->guest[i].index == msr)
690                         break;
691
692         if (i == m->nr) {
693                 ++m->nr;
694                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
695                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
696         }
697
698         m->guest[i].index = msr;
699         m->guest[i].value = guest_val;
700         m->host[i].index = msr;
701         m->host[i].value = host_val;
702 }
703
704 static void reload_tss(void)
705 {
706         /*
707          * VT restores TR but not its size.  Useless.
708          */
709         struct desc_ptr gdt;
710         struct desc_struct *descs;
711
712         native_store_gdt(&gdt);
713         descs = (void *)gdt.address;
714         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
715         load_TR_desc();
716 }
717
718 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
719 {
720         u64 guest_efer;
721         u64 ignore_bits;
722
723         guest_efer = vmx->vcpu.arch.efer;
724
725         /*
726          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
727          * outside long mode
728          */
729         ignore_bits = EFER_NX | EFER_SCE;
730 #ifdef CONFIG_X86_64
731         ignore_bits |= EFER_LMA | EFER_LME;
732         /* SCE is meaningful only in long mode on Intel */
733         if (guest_efer & EFER_LMA)
734                 ignore_bits &= ~(u64)EFER_SCE;
735 #endif
736         guest_efer &= ~ignore_bits;
737         guest_efer |= host_efer & ignore_bits;
738         vmx->guest_msrs[efer_offset].data = guest_efer;
739         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
740
741         clear_atomic_switch_msr(vmx, MSR_EFER);
742         /* On ept, can't emulate nx, and must switch nx atomically */
743         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
744                 guest_efer = vmx->vcpu.arch.efer;
745                 if (!(guest_efer & EFER_LMA))
746                         guest_efer &= ~EFER_LME;
747                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
748                 return false;
749         }
750
751         return true;
752 }
753
754 static unsigned long segment_base(u16 selector)
755 {
756         struct desc_ptr gdt;
757         struct desc_struct *d;
758         unsigned long table_base;
759         unsigned long v;
760
761         if (!(selector & ~3))
762                 return 0;
763
764         native_store_gdt(&gdt);
765         table_base = gdt.address;
766
767         if (selector & 4) {           /* from ldt */
768                 u16 ldt_selector = kvm_read_ldt();
769
770                 if (!(ldt_selector & ~3))
771                         return 0;
772
773                 table_base = segment_base(ldt_selector);
774         }
775         d = (struct desc_struct *)(table_base + (selector & ~7));
776         v = get_desc_base(d);
777 #ifdef CONFIG_X86_64
778        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
779                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
780 #endif
781         return v;
782 }
783
784 static inline unsigned long kvm_read_tr_base(void)
785 {
786         u16 tr;
787         asm("str %0" : "=g"(tr));
788         return segment_base(tr);
789 }
790
791 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
792 {
793         struct vcpu_vmx *vmx = to_vmx(vcpu);
794         int i;
795
796         if (vmx->host_state.loaded)
797                 return;
798
799         vmx->host_state.loaded = 1;
800         /*
801          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
802          * allow segment selectors with cpl > 0 or ti == 1.
803          */
804         vmx->host_state.ldt_sel = kvm_read_ldt();
805         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
806         savesegment(fs, vmx->host_state.fs_sel);
807         if (!(vmx->host_state.fs_sel & 7)) {
808                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
809                 vmx->host_state.fs_reload_needed = 0;
810         } else {
811                 vmcs_write16(HOST_FS_SELECTOR, 0);
812                 vmx->host_state.fs_reload_needed = 1;
813         }
814         savesegment(gs, vmx->host_state.gs_sel);
815         if (!(vmx->host_state.gs_sel & 7))
816                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
817         else {
818                 vmcs_write16(HOST_GS_SELECTOR, 0);
819                 vmx->host_state.gs_ldt_reload_needed = 1;
820         }
821
822 #ifdef CONFIG_X86_64
823         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
824         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
825 #else
826         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
827         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
828 #endif
829
830 #ifdef CONFIG_X86_64
831         if (is_long_mode(&vmx->vcpu)) {
832                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
833                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
834         }
835 #endif
836         for (i = 0; i < vmx->save_nmsrs; ++i)
837                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
838                                    vmx->guest_msrs[i].data,
839                                    vmx->guest_msrs[i].mask);
840 }
841
842 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
843 {
844         if (!vmx->host_state.loaded)
845                 return;
846
847         ++vmx->vcpu.stat.host_state_reload;
848         vmx->host_state.loaded = 0;
849         if (vmx->host_state.fs_reload_needed)
850                 loadsegment(fs, vmx->host_state.fs_sel);
851         if (vmx->host_state.gs_ldt_reload_needed) {
852                 kvm_load_ldt(vmx->host_state.ldt_sel);
853 #ifdef CONFIG_X86_64
854                 load_gs_index(vmx->host_state.gs_sel);
855                 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
856 #else
857                 loadsegment(gs, vmx->host_state.gs_sel);
858 #endif
859         }
860         reload_tss();
861 #ifdef CONFIG_X86_64
862         if (is_long_mode(&vmx->vcpu)) {
863                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
864                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
865         }
866 #endif
867         if (current_thread_info()->status & TS_USEDFPU)
868                 clts();
869         load_gdt(&__get_cpu_var(host_gdt));
870 }
871
872 static void vmx_load_host_state(struct vcpu_vmx *vmx)
873 {
874         preempt_disable();
875         __vmx_load_host_state(vmx);
876         preempt_enable();
877 }
878
879 /*
880  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
881  * vcpu mutex is already taken.
882  */
883 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
884 {
885         struct vcpu_vmx *vmx = to_vmx(vcpu);
886         u64 tsc_this, delta, new_offset;
887         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
888
889         if (!vmm_exclusive)
890                 kvm_cpu_vmxon(phys_addr);
891         else if (vcpu->cpu != cpu)
892                 vcpu_clear(vmx);
893
894         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
895                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
896                 vmcs_load(vmx->vmcs);
897         }
898
899         if (vcpu->cpu != cpu) {
900                 struct desc_ptr dt;
901                 unsigned long sysenter_esp;
902
903                 kvm_migrate_timers(vcpu);
904                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
905                 local_irq_disable();
906                 list_add(&vmx->local_vcpus_link,
907                          &per_cpu(vcpus_on_cpu, cpu));
908                 local_irq_enable();
909
910                 vcpu->cpu = cpu;
911                 /*
912                  * Linux uses per-cpu TSS and GDT, so set these when switching
913                  * processors.
914                  */
915                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
916                 native_store_gdt(&dt);
917                 vmcs_writel(HOST_GDTR_BASE, dt.address);   /* 22.2.4 */
918
919                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
920                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
921
922                 /*
923                  * Make sure the time stamp counter is monotonous.
924                  */
925                 rdtscll(tsc_this);
926                 if (tsc_this < vcpu->arch.host_tsc) {
927                         delta = vcpu->arch.host_tsc - tsc_this;
928                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
929                         vmcs_write64(TSC_OFFSET, new_offset);
930                 }
931         }
932 }
933
934 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
935 {
936         __vmx_load_host_state(to_vmx(vcpu));
937         if (!vmm_exclusive) {
938                 __vcpu_clear(to_vmx(vcpu));
939                 kvm_cpu_vmxoff();
940         }
941 }
942
943 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
944 {
945         ulong cr0;
946
947         if (vcpu->fpu_active)
948                 return;
949         vcpu->fpu_active = 1;
950         cr0 = vmcs_readl(GUEST_CR0);
951         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
952         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
953         vmcs_writel(GUEST_CR0, cr0);
954         update_exception_bitmap(vcpu);
955         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
956         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
957 }
958
959 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
960
961 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
962 {
963         vmx_decache_cr0_guest_bits(vcpu);
964         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
965         update_exception_bitmap(vcpu);
966         vcpu->arch.cr0_guest_owned_bits = 0;
967         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
968         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
969 }
970
971 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
972 {
973         unsigned long rflags, save_rflags;
974
975         rflags = vmcs_readl(GUEST_RFLAGS);
976         if (to_vmx(vcpu)->rmode.vm86_active) {
977                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
978                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
979                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
980         }
981         return rflags;
982 }
983
984 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
985 {
986         if (to_vmx(vcpu)->rmode.vm86_active) {
987                 to_vmx(vcpu)->rmode.save_rflags = rflags;
988                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
989         }
990         vmcs_writel(GUEST_RFLAGS, rflags);
991 }
992
993 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
994 {
995         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
996         int ret = 0;
997
998         if (interruptibility & GUEST_INTR_STATE_STI)
999                 ret |= KVM_X86_SHADOW_INT_STI;
1000         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1001                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1002
1003         return ret & mask;
1004 }
1005
1006 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1007 {
1008         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1009         u32 interruptibility = interruptibility_old;
1010
1011         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1012
1013         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1014                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1015         else if (mask & KVM_X86_SHADOW_INT_STI)
1016                 interruptibility |= GUEST_INTR_STATE_STI;
1017
1018         if ((interruptibility != interruptibility_old))
1019                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1020 }
1021
1022 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1023 {
1024         unsigned long rip;
1025
1026         rip = kvm_rip_read(vcpu);
1027         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1028         kvm_rip_write(vcpu, rip);
1029
1030         /* skipping an emulated instruction also counts */
1031         vmx_set_interrupt_shadow(vcpu, 0);
1032 }
1033
1034 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1035                                 bool has_error_code, u32 error_code,
1036                                 bool reinject)
1037 {
1038         struct vcpu_vmx *vmx = to_vmx(vcpu);
1039         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1040
1041         if (has_error_code) {
1042                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1043                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1044         }
1045
1046         if (vmx->rmode.vm86_active) {
1047                 vmx->rmode.irq.pending = true;
1048                 vmx->rmode.irq.vector = nr;
1049                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
1050                 if (kvm_exception_is_soft(nr))
1051                         vmx->rmode.irq.rip +=
1052                                 vmx->vcpu.arch.event_exit_inst_len;
1053                 intr_info |= INTR_TYPE_SOFT_INTR;
1054                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1055                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1056                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
1057                 return;
1058         }
1059
1060         if (kvm_exception_is_soft(nr)) {
1061                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1062                              vmx->vcpu.arch.event_exit_inst_len);
1063                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1064         } else
1065                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1066
1067         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1068 }
1069
1070 static bool vmx_rdtscp_supported(void)
1071 {
1072         return cpu_has_vmx_rdtscp();
1073 }
1074
1075 /*
1076  * Swap MSR entry in host/guest MSR entry array.
1077  */
1078 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1079 {
1080         struct shared_msr_entry tmp;
1081
1082         tmp = vmx->guest_msrs[to];
1083         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1084         vmx->guest_msrs[from] = tmp;
1085 }
1086
1087 /*
1088  * Set up the vmcs to automatically save and restore system
1089  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1090  * mode, as fiddling with msrs is very expensive.
1091  */
1092 static void setup_msrs(struct vcpu_vmx *vmx)
1093 {
1094         int save_nmsrs, index;
1095         unsigned long *msr_bitmap;
1096
1097         vmx_load_host_state(vmx);
1098         save_nmsrs = 0;
1099 #ifdef CONFIG_X86_64
1100         if (is_long_mode(&vmx->vcpu)) {
1101                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1102                 if (index >= 0)
1103                         move_msr_up(vmx, index, save_nmsrs++);
1104                 index = __find_msr_index(vmx, MSR_LSTAR);
1105                 if (index >= 0)
1106                         move_msr_up(vmx, index, save_nmsrs++);
1107                 index = __find_msr_index(vmx, MSR_CSTAR);
1108                 if (index >= 0)
1109                         move_msr_up(vmx, index, save_nmsrs++);
1110                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1111                 if (index >= 0 && vmx->rdtscp_enabled)
1112                         move_msr_up(vmx, index, save_nmsrs++);
1113                 /*
1114                  * MSR_STAR is only needed on long mode guests, and only
1115                  * if efer.sce is enabled.
1116                  */
1117                 index = __find_msr_index(vmx, MSR_STAR);
1118                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1119                         move_msr_up(vmx, index, save_nmsrs++);
1120         }
1121 #endif
1122         index = __find_msr_index(vmx, MSR_EFER);
1123         if (index >= 0 && update_transition_efer(vmx, index))
1124                 move_msr_up(vmx, index, save_nmsrs++);
1125
1126         vmx->save_nmsrs = save_nmsrs;
1127
1128         if (cpu_has_vmx_msr_bitmap()) {
1129                 if (is_long_mode(&vmx->vcpu))
1130                         msr_bitmap = vmx_msr_bitmap_longmode;
1131                 else
1132                         msr_bitmap = vmx_msr_bitmap_legacy;
1133
1134                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1135         }
1136 }
1137
1138 /*
1139  * reads and returns guest's timestamp counter "register"
1140  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1141  */
1142 static u64 guest_read_tsc(void)
1143 {
1144         u64 host_tsc, tsc_offset;
1145
1146         rdtscll(host_tsc);
1147         tsc_offset = vmcs_read64(TSC_OFFSET);
1148         return host_tsc + tsc_offset;
1149 }
1150
1151 /*
1152  * writes 'guest_tsc' into guest's timestamp counter "register"
1153  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
1154  */
1155 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
1156 {
1157         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
1158 }
1159
1160 /*
1161  * Reads an msr value (of 'msr_index') into 'pdata'.
1162  * Returns 0 on success, non-0 otherwise.
1163  * Assumes vcpu_load() was already called.
1164  */
1165 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1166 {
1167         u64 data;
1168         struct shared_msr_entry *msr;
1169
1170         if (!pdata) {
1171                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1172                 return -EINVAL;
1173         }
1174
1175         switch (msr_index) {
1176 #ifdef CONFIG_X86_64
1177         case MSR_FS_BASE:
1178                 data = vmcs_readl(GUEST_FS_BASE);
1179                 break;
1180         case MSR_GS_BASE:
1181                 data = vmcs_readl(GUEST_GS_BASE);
1182                 break;
1183         case MSR_KERNEL_GS_BASE:
1184                 vmx_load_host_state(to_vmx(vcpu));
1185                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1186                 break;
1187 #endif
1188         case MSR_EFER:
1189                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1190         case MSR_IA32_TSC:
1191                 data = guest_read_tsc();
1192                 break;
1193         case MSR_IA32_SYSENTER_CS:
1194                 data = vmcs_read32(GUEST_SYSENTER_CS);
1195                 break;
1196         case MSR_IA32_SYSENTER_EIP:
1197                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1198                 break;
1199         case MSR_IA32_SYSENTER_ESP:
1200                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1201                 break;
1202         case MSR_TSC_AUX:
1203                 if (!to_vmx(vcpu)->rdtscp_enabled)
1204                         return 1;
1205                 /* Otherwise falls through */
1206         default:
1207                 vmx_load_host_state(to_vmx(vcpu));
1208                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1209                 if (msr) {
1210                         vmx_load_host_state(to_vmx(vcpu));
1211                         data = msr->data;
1212                         break;
1213                 }
1214                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1215         }
1216
1217         *pdata = data;
1218         return 0;
1219 }
1220
1221 /*
1222  * Writes msr value into into the appropriate "register".
1223  * Returns 0 on success, non-0 otherwise.
1224  * Assumes vcpu_load() was already called.
1225  */
1226 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1227 {
1228         struct vcpu_vmx *vmx = to_vmx(vcpu);
1229         struct shared_msr_entry *msr;
1230         u64 host_tsc;
1231         int ret = 0;
1232
1233         switch (msr_index) {
1234         case MSR_EFER:
1235                 vmx_load_host_state(vmx);
1236                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1237                 break;
1238 #ifdef CONFIG_X86_64
1239         case MSR_FS_BASE:
1240                 vmcs_writel(GUEST_FS_BASE, data);
1241                 break;
1242         case MSR_GS_BASE:
1243                 vmcs_writel(GUEST_GS_BASE, data);
1244                 break;
1245         case MSR_KERNEL_GS_BASE:
1246                 vmx_load_host_state(vmx);
1247                 vmx->msr_guest_kernel_gs_base = data;
1248                 break;
1249 #endif
1250         case MSR_IA32_SYSENTER_CS:
1251                 vmcs_write32(GUEST_SYSENTER_CS, data);
1252                 break;
1253         case MSR_IA32_SYSENTER_EIP:
1254                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1255                 break;
1256         case MSR_IA32_SYSENTER_ESP:
1257                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1258                 break;
1259         case MSR_IA32_TSC:
1260                 rdtscll(host_tsc);
1261                 guest_write_tsc(data, host_tsc);
1262                 break;
1263         case MSR_IA32_CR_PAT:
1264                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1265                         vmcs_write64(GUEST_IA32_PAT, data);
1266                         vcpu->arch.pat = data;
1267                         break;
1268                 }
1269                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1270                 break;
1271         case MSR_TSC_AUX:
1272                 if (!vmx->rdtscp_enabled)
1273                         return 1;
1274                 /* Check reserved bit, higher 32 bits should be zero */
1275                 if ((data >> 32) != 0)
1276                         return 1;
1277                 /* Otherwise falls through */
1278         default:
1279                 msr = find_msr_entry(vmx, msr_index);
1280                 if (msr) {
1281                         vmx_load_host_state(vmx);
1282                         msr->data = data;
1283                         break;
1284                 }
1285                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1286         }
1287
1288         return ret;
1289 }
1290
1291 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1292 {
1293         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1294         switch (reg) {
1295         case VCPU_REGS_RSP:
1296                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1297                 break;
1298         case VCPU_REGS_RIP:
1299                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1300                 break;
1301         case VCPU_EXREG_PDPTR:
1302                 if (enable_ept)
1303                         ept_save_pdptrs(vcpu);
1304                 break;
1305         default:
1306                 break;
1307         }
1308 }
1309
1310 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1311 {
1312         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1313                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1314         else
1315                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1316
1317         update_exception_bitmap(vcpu);
1318 }
1319
1320 static __init int cpu_has_kvm_support(void)
1321 {
1322         return cpu_has_vmx();
1323 }
1324
1325 static __init int vmx_disabled_by_bios(void)
1326 {
1327         u64 msr;
1328
1329         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1330         if (msr & FEATURE_CONTROL_LOCKED) {
1331                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1332                         && tboot_enabled())
1333                         return 1;
1334                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1335                         && !tboot_enabled())
1336                         return 1;
1337         }
1338
1339         return 0;
1340         /* locked but not enabled */
1341 }
1342
1343 static void kvm_cpu_vmxon(u64 addr)
1344 {
1345         asm volatile (ASM_VMX_VMXON_RAX
1346                         : : "a"(&addr), "m"(addr)
1347                         : "memory", "cc");
1348 }
1349
1350 static int hardware_enable(void *garbage)
1351 {
1352         int cpu = raw_smp_processor_id();
1353         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1354         u64 old, test_bits;
1355
1356         if (read_cr4() & X86_CR4_VMXE)
1357                 return -EBUSY;
1358
1359         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1360         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1361
1362         test_bits = FEATURE_CONTROL_LOCKED;
1363         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1364         if (tboot_enabled())
1365                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1366
1367         if ((old & test_bits) != test_bits) {
1368                 /* enable and lock */
1369                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1370         }
1371         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1372
1373         if (vmm_exclusive) {
1374                 kvm_cpu_vmxon(phys_addr);
1375                 ept_sync_global();
1376         }
1377
1378         store_gdt(&__get_cpu_var(host_gdt));
1379
1380         return 0;
1381 }
1382
1383 static void vmclear_local_vcpus(void)
1384 {
1385         int cpu = raw_smp_processor_id();
1386         struct vcpu_vmx *vmx, *n;
1387
1388         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1389                                  local_vcpus_link)
1390                 __vcpu_clear(vmx);
1391 }
1392
1393
1394 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1395  * tricks.
1396  */
1397 static void kvm_cpu_vmxoff(void)
1398 {
1399         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1400 }
1401
1402 static void hardware_disable(void *garbage)
1403 {
1404         if (vmm_exclusive) {
1405                 vmclear_local_vcpus();
1406                 kvm_cpu_vmxoff();
1407         }
1408         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1409 }
1410
1411 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1412                                       u32 msr, u32 *result)
1413 {
1414         u32 vmx_msr_low, vmx_msr_high;
1415         u32 ctl = ctl_min | ctl_opt;
1416
1417         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1418
1419         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1420         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1421
1422         /* Ensure minimum (required) set of control bits are supported. */
1423         if (ctl_min & ~ctl)
1424                 return -EIO;
1425
1426         *result = ctl;
1427         return 0;
1428 }
1429
1430 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1431 {
1432         u32 vmx_msr_low, vmx_msr_high;
1433         u32 min, opt, min2, opt2;
1434         u32 _pin_based_exec_control = 0;
1435         u32 _cpu_based_exec_control = 0;
1436         u32 _cpu_based_2nd_exec_control = 0;
1437         u32 _vmexit_control = 0;
1438         u32 _vmentry_control = 0;
1439
1440         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1441         opt = PIN_BASED_VIRTUAL_NMIS;
1442         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1443                                 &_pin_based_exec_control) < 0)
1444                 return -EIO;
1445
1446         min = CPU_BASED_HLT_EXITING |
1447 #ifdef CONFIG_X86_64
1448               CPU_BASED_CR8_LOAD_EXITING |
1449               CPU_BASED_CR8_STORE_EXITING |
1450 #endif
1451               CPU_BASED_CR3_LOAD_EXITING |
1452               CPU_BASED_CR3_STORE_EXITING |
1453               CPU_BASED_USE_IO_BITMAPS |
1454               CPU_BASED_MOV_DR_EXITING |
1455               CPU_BASED_USE_TSC_OFFSETING |
1456               CPU_BASED_MWAIT_EXITING |
1457               CPU_BASED_MONITOR_EXITING |
1458               CPU_BASED_INVLPG_EXITING;
1459         opt = CPU_BASED_TPR_SHADOW |
1460               CPU_BASED_USE_MSR_BITMAPS |
1461               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1462         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1463                                 &_cpu_based_exec_control) < 0)
1464                 return -EIO;
1465 #ifdef CONFIG_X86_64
1466         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1467                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1468                                            ~CPU_BASED_CR8_STORE_EXITING;
1469 #endif
1470         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1471                 min2 = 0;
1472                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1473                         SECONDARY_EXEC_WBINVD_EXITING |
1474                         SECONDARY_EXEC_ENABLE_VPID |
1475                         SECONDARY_EXEC_ENABLE_EPT |
1476                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1477                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1478                         SECONDARY_EXEC_RDTSCP;
1479                 if (adjust_vmx_controls(min2, opt2,
1480                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1481                                         &_cpu_based_2nd_exec_control) < 0)
1482                         return -EIO;
1483         }
1484 #ifndef CONFIG_X86_64
1485         if (!(_cpu_based_2nd_exec_control &
1486                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1487                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1488 #endif
1489         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1490                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1491                    enabled */
1492                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1493                                              CPU_BASED_CR3_STORE_EXITING |
1494                                              CPU_BASED_INVLPG_EXITING);
1495                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1496                       vmx_capability.ept, vmx_capability.vpid);
1497         }
1498
1499         min = 0;
1500 #ifdef CONFIG_X86_64
1501         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1502 #endif
1503         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1504         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1505                                 &_vmexit_control) < 0)
1506                 return -EIO;
1507
1508         min = 0;
1509         opt = VM_ENTRY_LOAD_IA32_PAT;
1510         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1511                                 &_vmentry_control) < 0)
1512                 return -EIO;
1513
1514         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1515
1516         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1517         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1518                 return -EIO;
1519
1520 #ifdef CONFIG_X86_64
1521         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1522         if (vmx_msr_high & (1u<<16))
1523                 return -EIO;
1524 #endif
1525
1526         /* Require Write-Back (WB) memory type for VMCS accesses. */
1527         if (((vmx_msr_high >> 18) & 15) != 6)
1528                 return -EIO;
1529
1530         vmcs_conf->size = vmx_msr_high & 0x1fff;
1531         vmcs_conf->order = get_order(vmcs_config.size);
1532         vmcs_conf->revision_id = vmx_msr_low;
1533
1534         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1535         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1536         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1537         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1538         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1539
1540         return 0;
1541 }
1542
1543 static struct vmcs *alloc_vmcs_cpu(int cpu)
1544 {
1545         int node = cpu_to_node(cpu);
1546         struct page *pages;
1547         struct vmcs *vmcs;
1548
1549         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1550         if (!pages)
1551                 return NULL;
1552         vmcs = page_address(pages);
1553         memset(vmcs, 0, vmcs_config.size);
1554         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1555         return vmcs;
1556 }
1557
1558 static struct vmcs *alloc_vmcs(void)
1559 {
1560         return alloc_vmcs_cpu(raw_smp_processor_id());
1561 }
1562
1563 static void free_vmcs(struct vmcs *vmcs)
1564 {
1565         free_pages((unsigned long)vmcs, vmcs_config.order);
1566 }
1567
1568 static void free_kvm_area(void)
1569 {
1570         int cpu;
1571
1572         for_each_possible_cpu(cpu) {
1573                 free_vmcs(per_cpu(vmxarea, cpu));
1574                 per_cpu(vmxarea, cpu) = NULL;
1575         }
1576 }
1577
1578 static __init int alloc_kvm_area(void)
1579 {
1580         int cpu;
1581
1582         for_each_possible_cpu(cpu) {
1583                 struct vmcs *vmcs;
1584
1585                 vmcs = alloc_vmcs_cpu(cpu);
1586                 if (!vmcs) {
1587                         free_kvm_area();
1588                         return -ENOMEM;
1589                 }
1590
1591                 per_cpu(vmxarea, cpu) = vmcs;
1592         }
1593         return 0;
1594 }
1595
1596 static __init int hardware_setup(void)
1597 {
1598         if (setup_vmcs_config(&vmcs_config) < 0)
1599                 return -EIO;
1600
1601         if (boot_cpu_has(X86_FEATURE_NX))
1602                 kvm_enable_efer_bits(EFER_NX);
1603
1604         if (!cpu_has_vmx_vpid())
1605                 enable_vpid = 0;
1606
1607         if (!cpu_has_vmx_ept() ||
1608             !cpu_has_vmx_ept_4levels()) {
1609                 enable_ept = 0;
1610                 enable_unrestricted_guest = 0;
1611         }
1612
1613         if (!cpu_has_vmx_unrestricted_guest())
1614                 enable_unrestricted_guest = 0;
1615
1616         if (!cpu_has_vmx_flexpriority())
1617                 flexpriority_enabled = 0;
1618
1619         if (!cpu_has_vmx_tpr_shadow())
1620                 kvm_x86_ops->update_cr8_intercept = NULL;
1621
1622         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1623                 kvm_disable_largepages();
1624
1625         if (!cpu_has_vmx_ple())
1626                 ple_gap = 0;
1627
1628         return alloc_kvm_area();
1629 }
1630
1631 static __exit void hardware_unsetup(void)
1632 {
1633         free_kvm_area();
1634 }
1635
1636 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1637 {
1638         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1639
1640         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1641                 vmcs_write16(sf->selector, save->selector);
1642                 vmcs_writel(sf->base, save->base);
1643                 vmcs_write32(sf->limit, save->limit);
1644                 vmcs_write32(sf->ar_bytes, save->ar);
1645         } else {
1646                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1647                         << AR_DPL_SHIFT;
1648                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1649         }
1650 }
1651
1652 static void enter_pmode(struct kvm_vcpu *vcpu)
1653 {
1654         unsigned long flags;
1655         struct vcpu_vmx *vmx = to_vmx(vcpu);
1656
1657         vmx->emulation_required = 1;
1658         vmx->rmode.vm86_active = 0;
1659
1660         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1661         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1662         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1663
1664         flags = vmcs_readl(GUEST_RFLAGS);
1665         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1666         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1667         vmcs_writel(GUEST_RFLAGS, flags);
1668
1669         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1670                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1671
1672         update_exception_bitmap(vcpu);
1673
1674         if (emulate_invalid_guest_state)
1675                 return;
1676
1677         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1678         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1679         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1680         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1681
1682         vmcs_write16(GUEST_SS_SELECTOR, 0);
1683         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1684
1685         vmcs_write16(GUEST_CS_SELECTOR,
1686                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1687         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1688 }
1689
1690 static gva_t rmode_tss_base(struct kvm *kvm)
1691 {
1692         if (!kvm->arch.tss_addr) {
1693                 struct kvm_memslots *slots;
1694                 gfn_t base_gfn;
1695
1696                 slots = kvm_memslots(kvm);
1697                 base_gfn = slots->memslots[0].base_gfn +
1698                                  kvm->memslots->memslots[0].npages - 3;
1699                 return base_gfn << PAGE_SHIFT;
1700         }
1701         return kvm->arch.tss_addr;
1702 }
1703
1704 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1705 {
1706         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1707
1708         save->selector = vmcs_read16(sf->selector);
1709         save->base = vmcs_readl(sf->base);
1710         save->limit = vmcs_read32(sf->limit);
1711         save->ar = vmcs_read32(sf->ar_bytes);
1712         vmcs_write16(sf->selector, save->base >> 4);
1713         vmcs_write32(sf->base, save->base & 0xfffff);
1714         vmcs_write32(sf->limit, 0xffff);
1715         vmcs_write32(sf->ar_bytes, 0xf3);
1716 }
1717
1718 static void enter_rmode(struct kvm_vcpu *vcpu)
1719 {
1720         unsigned long flags;
1721         struct vcpu_vmx *vmx = to_vmx(vcpu);
1722
1723         if (enable_unrestricted_guest)
1724                 return;
1725
1726         vmx->emulation_required = 1;
1727         vmx->rmode.vm86_active = 1;
1728
1729         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1730         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1731
1732         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1733         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1734
1735         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1736         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1737
1738         flags = vmcs_readl(GUEST_RFLAGS);
1739         vmx->rmode.save_rflags = flags;
1740
1741         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1742
1743         vmcs_writel(GUEST_RFLAGS, flags);
1744         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1745         update_exception_bitmap(vcpu);
1746
1747         if (emulate_invalid_guest_state)
1748                 goto continue_rmode;
1749
1750         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1751         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1752         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1753
1754         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1755         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1756         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1757                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1758         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1759
1760         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1761         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1762         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1763         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1764
1765 continue_rmode:
1766         kvm_mmu_reset_context(vcpu);
1767         init_rmode(vcpu->kvm);
1768 }
1769
1770 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1771 {
1772         struct vcpu_vmx *vmx = to_vmx(vcpu);
1773         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1774
1775         if (!msr)
1776                 return;
1777
1778         /*
1779          * Force kernel_gs_base reloading before EFER changes, as control
1780          * of this msr depends on is_long_mode().
1781          */
1782         vmx_load_host_state(to_vmx(vcpu));
1783         vcpu->arch.efer = efer;
1784         if (efer & EFER_LMA) {
1785                 vmcs_write32(VM_ENTRY_CONTROLS,
1786                              vmcs_read32(VM_ENTRY_CONTROLS) |
1787                              VM_ENTRY_IA32E_MODE);
1788                 msr->data = efer;
1789         } else {
1790                 vmcs_write32(VM_ENTRY_CONTROLS,
1791                              vmcs_read32(VM_ENTRY_CONTROLS) &
1792                              ~VM_ENTRY_IA32E_MODE);
1793
1794                 msr->data = efer & ~EFER_LME;
1795         }
1796         setup_msrs(vmx);
1797 }
1798
1799 #ifdef CONFIG_X86_64
1800
1801 static void enter_lmode(struct kvm_vcpu *vcpu)
1802 {
1803         u32 guest_tr_ar;
1804
1805         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1806         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1807                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1808                        __func__);
1809                 vmcs_write32(GUEST_TR_AR_BYTES,
1810                              (guest_tr_ar & ~AR_TYPE_MASK)
1811                              | AR_TYPE_BUSY_64_TSS);
1812         }
1813         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1814 }
1815
1816 static void exit_lmode(struct kvm_vcpu *vcpu)
1817 {
1818         vmcs_write32(VM_ENTRY_CONTROLS,
1819                      vmcs_read32(VM_ENTRY_CONTROLS)
1820                      & ~VM_ENTRY_IA32E_MODE);
1821         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1822 }
1823
1824 #endif
1825
1826 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1827 {
1828         vpid_sync_context(to_vmx(vcpu));
1829         if (enable_ept) {
1830                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1831                         return;
1832                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1833         }
1834 }
1835
1836 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1837 {
1838         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1839
1840         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1841         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1842 }
1843
1844 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1845 {
1846         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1847
1848         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1849         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1850 }
1851
1852 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1853 {
1854         if (!test_bit(VCPU_EXREG_PDPTR,
1855                       (unsigned long *)&vcpu->arch.regs_dirty))
1856                 return;
1857
1858         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1859                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1860                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1861                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1862                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1863         }
1864 }
1865
1866 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1867 {
1868         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1869                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1870                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1871                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1872                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1873         }
1874
1875         __set_bit(VCPU_EXREG_PDPTR,
1876                   (unsigned long *)&vcpu->arch.regs_avail);
1877         __set_bit(VCPU_EXREG_PDPTR,
1878                   (unsigned long *)&vcpu->arch.regs_dirty);
1879 }
1880
1881 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1882
1883 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1884                                         unsigned long cr0,
1885                                         struct kvm_vcpu *vcpu)
1886 {
1887         if (!(cr0 & X86_CR0_PG)) {
1888                 /* From paging/starting to nonpaging */
1889                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1890                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1891                              (CPU_BASED_CR3_LOAD_EXITING |
1892                               CPU_BASED_CR3_STORE_EXITING));
1893                 vcpu->arch.cr0 = cr0;
1894                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1895         } else if (!is_paging(vcpu)) {
1896                 /* From nonpaging to paging */
1897                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1898                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1899                              ~(CPU_BASED_CR3_LOAD_EXITING |
1900                                CPU_BASED_CR3_STORE_EXITING));
1901                 vcpu->arch.cr0 = cr0;
1902                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1903         }
1904
1905         if (!(cr0 & X86_CR0_WP))
1906                 *hw_cr0 &= ~X86_CR0_WP;
1907 }
1908
1909 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1910 {
1911         struct vcpu_vmx *vmx = to_vmx(vcpu);
1912         unsigned long hw_cr0;
1913
1914         if (enable_unrestricted_guest)
1915                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1916                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1917         else
1918                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1919
1920         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1921                 enter_pmode(vcpu);
1922
1923         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1924                 enter_rmode(vcpu);
1925
1926 #ifdef CONFIG_X86_64
1927         if (vcpu->arch.efer & EFER_LME) {
1928                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1929                         enter_lmode(vcpu);
1930                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1931                         exit_lmode(vcpu);
1932         }
1933 #endif
1934
1935         if (enable_ept)
1936                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1937
1938         if (!vcpu->fpu_active)
1939                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1940
1941         vmcs_writel(CR0_READ_SHADOW, cr0);
1942         vmcs_writel(GUEST_CR0, hw_cr0);
1943         vcpu->arch.cr0 = cr0;
1944 }
1945
1946 static u64 construct_eptp(unsigned long root_hpa)
1947 {
1948         u64 eptp;
1949
1950         /* TODO write the value reading from MSR */
1951         eptp = VMX_EPT_DEFAULT_MT |
1952                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1953         eptp |= (root_hpa & PAGE_MASK);
1954
1955         return eptp;
1956 }
1957
1958 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1959 {
1960         unsigned long guest_cr3;
1961         u64 eptp;
1962
1963         guest_cr3 = cr3;
1964         if (enable_ept) {
1965                 eptp = construct_eptp(cr3);
1966                 vmcs_write64(EPT_POINTER, eptp);
1967                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1968                         vcpu->kvm->arch.ept_identity_map_addr;
1969                 ept_load_pdptrs(vcpu);
1970         }
1971
1972         vmx_flush_tlb(vcpu);
1973         vmcs_writel(GUEST_CR3, guest_cr3);
1974 }
1975
1976 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1977 {
1978         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1979                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1980
1981         vcpu->arch.cr4 = cr4;
1982         if (enable_ept) {
1983                 if (!is_paging(vcpu)) {
1984                         hw_cr4 &= ~X86_CR4_PAE;
1985                         hw_cr4 |= X86_CR4_PSE;
1986                 } else if (!(cr4 & X86_CR4_PAE)) {
1987                         hw_cr4 &= ~X86_CR4_PAE;
1988                 }
1989         }
1990
1991         vmcs_writel(CR4_READ_SHADOW, cr4);
1992         vmcs_writel(GUEST_CR4, hw_cr4);
1993 }
1994
1995 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1996 {
1997         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1998
1999         return vmcs_readl(sf->base);
2000 }
2001
2002 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2003                             struct kvm_segment *var, int seg)
2004 {
2005         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2006         u32 ar;
2007
2008         var->base = vmcs_readl(sf->base);
2009         var->limit = vmcs_read32(sf->limit);
2010         var->selector = vmcs_read16(sf->selector);
2011         ar = vmcs_read32(sf->ar_bytes);
2012         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2013                 ar = 0;
2014         var->type = ar & 15;
2015         var->s = (ar >> 4) & 1;
2016         var->dpl = (ar >> 5) & 3;
2017         var->present = (ar >> 7) & 1;
2018         var->avl = (ar >> 12) & 1;
2019         var->l = (ar >> 13) & 1;
2020         var->db = (ar >> 14) & 1;
2021         var->g = (ar >> 15) & 1;
2022         var->unusable = (ar >> 16) & 1;
2023 }
2024
2025 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2026 {
2027         if (!is_protmode(vcpu))
2028                 return 0;
2029
2030         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2031                 return 3;
2032
2033         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2034 }
2035
2036 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2037 {
2038         u32 ar;
2039
2040         if (var->unusable)
2041                 ar = 1 << 16;
2042         else {
2043                 ar = var->type & 15;
2044                 ar |= (var->s & 1) << 4;
2045                 ar |= (var->dpl & 3) << 5;
2046                 ar |= (var->present & 1) << 7;
2047                 ar |= (var->avl & 1) << 12;
2048                 ar |= (var->l & 1) << 13;
2049                 ar |= (var->db & 1) << 14;
2050                 ar |= (var->g & 1) << 15;
2051         }
2052         if (ar == 0) /* a 0 value means unusable */
2053                 ar = AR_UNUSABLE_MASK;
2054
2055         return ar;
2056 }
2057
2058 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2059                             struct kvm_segment *var, int seg)
2060 {
2061         struct vcpu_vmx *vmx = to_vmx(vcpu);
2062         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2063         u32 ar;
2064
2065         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2066                 vmx->rmode.tr.selector = var->selector;
2067                 vmx->rmode.tr.base = var->base;
2068                 vmx->rmode.tr.limit = var->limit;
2069                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2070                 return;
2071         }
2072         vmcs_writel(sf->base, var->base);
2073         vmcs_write32(sf->limit, var->limit);
2074         vmcs_write16(sf->selector, var->selector);
2075         if (vmx->rmode.vm86_active && var->s) {
2076                 /*
2077                  * Hack real-mode segments into vm86 compatibility.
2078                  */
2079                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2080                         vmcs_writel(sf->base, 0xf0000);
2081                 ar = 0xf3;
2082         } else
2083                 ar = vmx_segment_access_rights(var);
2084
2085         /*
2086          *   Fix the "Accessed" bit in AR field of segment registers for older
2087          * qemu binaries.
2088          *   IA32 arch specifies that at the time of processor reset the
2089          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2090          * is setting it to 0 in the usedland code. This causes invalid guest
2091          * state vmexit when "unrestricted guest" mode is turned on.
2092          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2093          * tree. Newer qemu binaries with that qemu fix would not need this
2094          * kvm hack.
2095          */
2096         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2097                 ar |= 0x1; /* Accessed */
2098
2099         vmcs_write32(sf->ar_bytes, ar);
2100 }
2101
2102 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2103 {
2104         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2105
2106         *db = (ar >> 14) & 1;
2107         *l = (ar >> 13) & 1;
2108 }
2109
2110 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2111 {
2112         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2113         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2114 }
2115
2116 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2117 {
2118         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2119         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2120 }
2121
2122 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2123 {
2124         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2125         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2126 }
2127
2128 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2129 {
2130         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2131         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2132 }
2133
2134 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2135 {
2136         struct kvm_segment var;
2137         u32 ar;
2138
2139         vmx_get_segment(vcpu, &var, seg);
2140         ar = vmx_segment_access_rights(&var);
2141
2142         if (var.base != (var.selector << 4))
2143                 return false;
2144         if (var.limit != 0xffff)
2145                 return false;
2146         if (ar != 0xf3)
2147                 return false;
2148
2149         return true;
2150 }
2151
2152 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2153 {
2154         struct kvm_segment cs;
2155         unsigned int cs_rpl;
2156
2157         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2158         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2159
2160         if (cs.unusable)
2161                 return false;
2162         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2163                 return false;
2164         if (!cs.s)
2165                 return false;
2166         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2167                 if (cs.dpl > cs_rpl)
2168                         return false;
2169         } else {
2170                 if (cs.dpl != cs_rpl)
2171                         return false;
2172         }
2173         if (!cs.present)
2174                 return false;
2175
2176         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2177         return true;
2178 }
2179
2180 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2181 {
2182         struct kvm_segment ss;
2183         unsigned int ss_rpl;
2184
2185         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2186         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2187
2188         if (ss.unusable)
2189                 return true;
2190         if (ss.type != 3 && ss.type != 7)
2191                 return false;
2192         if (!ss.s)
2193                 return false;
2194         if (ss.dpl != ss_rpl) /* DPL != RPL */
2195                 return false;
2196         if (!ss.present)
2197                 return false;
2198
2199         return true;
2200 }
2201
2202 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2203 {
2204         struct kvm_segment var;
2205         unsigned int rpl;
2206
2207         vmx_get_segment(vcpu, &var, seg);
2208         rpl = var.selector & SELECTOR_RPL_MASK;
2209
2210         if (var.unusable)
2211                 return true;
2212         if (!var.s)
2213                 return false;
2214         if (!var.present)
2215                 return false;
2216         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2217                 if (var.dpl < rpl) /* DPL < RPL */
2218                         return false;
2219         }
2220
2221         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2222          * rights flags
2223          */
2224         return true;
2225 }
2226
2227 static bool tr_valid(struct kvm_vcpu *vcpu)
2228 {
2229         struct kvm_segment tr;
2230
2231         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2232
2233         if (tr.unusable)
2234                 return false;
2235         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2236                 return false;
2237         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2238                 return false;
2239         if (!tr.present)
2240                 return false;
2241
2242         return true;
2243 }
2244
2245 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2246 {
2247         struct kvm_segment ldtr;
2248
2249         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2250
2251         if (ldtr.unusable)
2252                 return true;
2253         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2254                 return false;
2255         if (ldtr.type != 2)
2256                 return false;
2257         if (!ldtr.present)
2258                 return false;
2259
2260         return true;
2261 }
2262
2263 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2264 {
2265         struct kvm_segment cs, ss;
2266
2267         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2268         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2269
2270         return ((cs.selector & SELECTOR_RPL_MASK) ==
2271                  (ss.selector & SELECTOR_RPL_MASK));
2272 }
2273
2274 /*
2275  * Check if guest state is valid. Returns true if valid, false if
2276  * not.
2277  * We assume that registers are always usable
2278  */
2279 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2280 {
2281         /* real mode guest state checks */
2282         if (!is_protmode(vcpu)) {
2283                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2284                         return false;
2285                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2286                         return false;
2287                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2288                         return false;
2289                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2290                         return false;
2291                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2292                         return false;
2293                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2294                         return false;
2295         } else {
2296         /* protected mode guest state checks */
2297                 if (!cs_ss_rpl_check(vcpu))
2298                         return false;
2299                 if (!code_segment_valid(vcpu))
2300                         return false;
2301                 if (!stack_segment_valid(vcpu))
2302                         return false;
2303                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2304                         return false;
2305                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2306                         return false;
2307                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2308                         return false;
2309                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2310                         return false;
2311                 if (!tr_valid(vcpu))
2312                         return false;
2313                 if (!ldtr_valid(vcpu))
2314                         return false;
2315         }
2316         /* TODO:
2317          * - Add checks on RIP
2318          * - Add checks on RFLAGS
2319          */
2320
2321         return true;
2322 }
2323
2324 static int init_rmode_tss(struct kvm *kvm)
2325 {
2326         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2327         u16 data = 0;
2328         int ret = 0;
2329         int r;
2330
2331         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2332         if (r < 0)
2333                 goto out;
2334         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2335         r = kvm_write_guest_page(kvm, fn++, &data,
2336                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2337         if (r < 0)
2338                 goto out;
2339         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2340         if (r < 0)
2341                 goto out;
2342         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2343         if (r < 0)
2344                 goto out;
2345         data = ~0;
2346         r = kvm_write_guest_page(kvm, fn, &data,
2347                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2348                                  sizeof(u8));
2349         if (r < 0)
2350                 goto out;
2351
2352         ret = 1;
2353 out:
2354         return ret;
2355 }
2356
2357 static int init_rmode_identity_map(struct kvm *kvm)
2358 {
2359         int i, r, ret;
2360         pfn_t identity_map_pfn;
2361         u32 tmp;
2362
2363         if (!enable_ept)
2364                 return 1;
2365         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2366                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2367                         "haven't been allocated!\n");
2368                 return 0;
2369         }
2370         if (likely(kvm->arch.ept_identity_pagetable_done))
2371                 return 1;
2372         ret = 0;
2373         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2374         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2375         if (r < 0)
2376                 goto out;
2377         /* Set up identity-mapping pagetable for EPT in real mode */
2378         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2379                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2380                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2381                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2382                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2383                 if (r < 0)
2384                         goto out;
2385         }
2386         kvm->arch.ept_identity_pagetable_done = true;
2387         ret = 1;
2388 out:
2389         return ret;
2390 }
2391
2392 static void seg_setup(int seg)
2393 {
2394         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2395         unsigned int ar;
2396
2397         vmcs_write16(sf->selector, 0);
2398         vmcs_writel(sf->base, 0);
2399         vmcs_write32(sf->limit, 0xffff);
2400         if (enable_unrestricted_guest) {
2401                 ar = 0x93;
2402                 if (seg == VCPU_SREG_CS)
2403                         ar |= 0x08; /* code segment */
2404         } else
2405                 ar = 0xf3;
2406
2407         vmcs_write32(sf->ar_bytes, ar);
2408 }
2409
2410 static int alloc_apic_access_page(struct kvm *kvm)
2411 {
2412         struct kvm_userspace_memory_region kvm_userspace_mem;
2413         int r = 0;
2414
2415         mutex_lock(&kvm->slots_lock);
2416         if (kvm->arch.apic_access_page)
2417                 goto out;
2418         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2419         kvm_userspace_mem.flags = 0;
2420         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2421         kvm_userspace_mem.memory_size = PAGE_SIZE;
2422         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2423         if (r)
2424                 goto out;
2425
2426         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2427 out:
2428         mutex_unlock(&kvm->slots_lock);
2429         return r;
2430 }
2431
2432 static int alloc_identity_pagetable(struct kvm *kvm)
2433 {
2434         struct kvm_userspace_memory_region kvm_userspace_mem;
2435         int r = 0;
2436
2437         mutex_lock(&kvm->slots_lock);
2438         if (kvm->arch.ept_identity_pagetable)
2439                 goto out;
2440         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2441         kvm_userspace_mem.flags = 0;
2442         kvm_userspace_mem.guest_phys_addr =
2443                 kvm->arch.ept_identity_map_addr;
2444         kvm_userspace_mem.memory_size = PAGE_SIZE;
2445         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2446         if (r)
2447                 goto out;
2448
2449         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2450                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2451 out:
2452         mutex_unlock(&kvm->slots_lock);
2453         return r;
2454 }
2455
2456 static void allocate_vpid(struct vcpu_vmx *vmx)
2457 {
2458         int vpid;
2459
2460         vmx->vpid = 0;
2461         if (!enable_vpid)
2462                 return;
2463         spin_lock(&vmx_vpid_lock);
2464         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2465         if (vpid < VMX_NR_VPIDS) {
2466                 vmx->vpid = vpid;
2467                 __set_bit(vpid, vmx_vpid_bitmap);
2468         }
2469         spin_unlock(&vmx_vpid_lock);
2470 }
2471
2472 static void free_vpid(struct vcpu_vmx *vmx)
2473 {
2474         if (!enable_vpid)
2475                 return;
2476         spin_lock(&vmx_vpid_lock);
2477         if (vmx->vpid != 0)
2478                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2479         spin_unlock(&vmx_vpid_lock);
2480 }
2481
2482 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2483 {
2484         int f = sizeof(unsigned long);
2485
2486         if (!cpu_has_vmx_msr_bitmap())
2487                 return;
2488
2489         /*
2490          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2491          * have the write-low and read-high bitmap offsets the wrong way round.
2492          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2493          */
2494         if (msr <= 0x1fff) {
2495                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2496                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2498                 msr &= 0x1fff;
2499                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2500                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2501         }
2502 }
2503
2504 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2505 {
2506         if (!longmode_only)
2507                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2508         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2509 }
2510
2511 /*
2512  * Sets up the vmcs for emulated real mode.
2513  */
2514 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2515 {
2516         u32 host_sysenter_cs, msr_low, msr_high;
2517         u32 junk;
2518         u64 host_pat, tsc_this, tsc_base;
2519         unsigned long a;
2520         struct desc_ptr dt;
2521         int i;
2522         unsigned long kvm_vmx_return;
2523         u32 exec_control;
2524
2525         /* I/O */
2526         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2527         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2528
2529         if (cpu_has_vmx_msr_bitmap())
2530                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2531
2532         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2533
2534         /* Control */
2535         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2536                 vmcs_config.pin_based_exec_ctrl);
2537
2538         exec_control = vmcs_config.cpu_based_exec_ctrl;
2539         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2540                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2541 #ifdef CONFIG_X86_64
2542                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2543                                 CPU_BASED_CR8_LOAD_EXITING;
2544 #endif
2545         }
2546         if (!enable_ept)
2547                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2548                                 CPU_BASED_CR3_LOAD_EXITING  |
2549                                 CPU_BASED_INVLPG_EXITING;
2550         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2551
2552         if (cpu_has_secondary_exec_ctrls()) {
2553                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2554                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2555                         exec_control &=
2556                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2557                 if (vmx->vpid == 0)
2558                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2559                 if (!enable_ept) {
2560                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2561                         enable_unrestricted_guest = 0;
2562                 }
2563                 if (!enable_unrestricted_guest)
2564                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2565                 if (!ple_gap)
2566                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2567                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2568         }
2569
2570         if (ple_gap) {
2571                 vmcs_write32(PLE_GAP, ple_gap);
2572                 vmcs_write32(PLE_WINDOW, ple_window);
2573         }
2574
2575         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2576         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2577         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2578
2579         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2580         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2581         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2582
2583         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2584         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2585         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2586         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2587         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2588         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2589 #ifdef CONFIG_X86_64
2590         rdmsrl(MSR_FS_BASE, a);
2591         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2592         rdmsrl(MSR_GS_BASE, a);
2593         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2594 #else
2595         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2596         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2597 #endif
2598
2599         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2600
2601         native_store_idt(&dt);
2602         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2603
2604         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2605         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2606         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2607         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2608         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2609         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2610         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2611
2612         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2613         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2614         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2615         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2616         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2617         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2618
2619         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2620                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2621                 host_pat = msr_low | ((u64) msr_high << 32);
2622                 vmcs_write64(HOST_IA32_PAT, host_pat);
2623         }
2624         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2625                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2626                 host_pat = msr_low | ((u64) msr_high << 32);
2627                 /* Write the default value follow host pat */
2628                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2629                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2630                 vmx->vcpu.arch.pat = host_pat;
2631         }
2632
2633         for (i = 0; i < NR_VMX_MSR; ++i) {
2634                 u32 index = vmx_msr_index[i];
2635                 u32 data_low, data_high;
2636                 int j = vmx->nmsrs;
2637
2638                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2639                         continue;
2640                 if (wrmsr_safe(index, data_low, data_high) < 0)
2641                         continue;
2642                 vmx->guest_msrs[j].index = i;
2643                 vmx->guest_msrs[j].data = 0;
2644                 vmx->guest_msrs[j].mask = -1ull;
2645                 ++vmx->nmsrs;
2646         }
2647
2648         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2649
2650         /* 22.2.1, 20.8.1 */
2651         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2652
2653         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2654         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2655         if (enable_ept)
2656                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2657         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2658
2659         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2660         rdtscll(tsc_this);
2661         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2662                 tsc_base = tsc_this;
2663
2664         guest_write_tsc(0, tsc_base);
2665
2666         return 0;
2667 }
2668
2669 static int init_rmode(struct kvm *kvm)
2670 {
2671         int idx, ret = 0;
2672
2673         idx = srcu_read_lock(&kvm->srcu);
2674         if (!init_rmode_tss(kvm))
2675                 goto exit;
2676         if (!init_rmode_identity_map(kvm))
2677                 goto exit;
2678
2679         ret = 1;
2680 exit:
2681         srcu_read_unlock(&kvm->srcu, idx);
2682         return ret;
2683 }
2684
2685 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2686 {
2687         struct vcpu_vmx *vmx = to_vmx(vcpu);
2688         u64 msr;
2689         int ret;
2690
2691         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2692         if (!init_rmode(vmx->vcpu.kvm)) {
2693                 ret = -ENOMEM;
2694                 goto out;
2695         }
2696
2697         vmx->rmode.vm86_active = 0;
2698
2699         vmx->soft_vnmi_blocked = 0;
2700
2701         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2702         kvm_set_cr8(&vmx->vcpu, 0);
2703         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2704         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2705                 msr |= MSR_IA32_APICBASE_BSP;
2706         kvm_set_apic_base(&vmx->vcpu, msr);
2707
2708         ret = fx_init(&vmx->vcpu);
2709         if (ret != 0)
2710                 goto out;
2711
2712         seg_setup(VCPU_SREG_CS);
2713         /*
2714          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2715          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2716          */
2717         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2718                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2719                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2720         } else {
2721                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2722                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2723         }
2724
2725         seg_setup(VCPU_SREG_DS);
2726         seg_setup(VCPU_SREG_ES);
2727         seg_setup(VCPU_SREG_FS);
2728         seg_setup(VCPU_SREG_GS);
2729         seg_setup(VCPU_SREG_SS);
2730
2731         vmcs_write16(GUEST_TR_SELECTOR, 0);
2732         vmcs_writel(GUEST_TR_BASE, 0);
2733         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2734         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2735
2736         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2737         vmcs_writel(GUEST_LDTR_BASE, 0);
2738         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2739         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2740
2741         vmcs_write32(GUEST_SYSENTER_CS, 0);
2742         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2743         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2744
2745         vmcs_writel(GUEST_RFLAGS, 0x02);
2746         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2747                 kvm_rip_write(vcpu, 0xfff0);
2748         else
2749                 kvm_rip_write(vcpu, 0);
2750         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2751
2752         vmcs_writel(GUEST_DR7, 0x400);
2753
2754         vmcs_writel(GUEST_GDTR_BASE, 0);
2755         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2756
2757         vmcs_writel(GUEST_IDTR_BASE, 0);
2758         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2759
2760         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2761         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2762         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2763
2764         /* Special registers */
2765         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2766
2767         setup_msrs(vmx);
2768
2769         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2770
2771         if (cpu_has_vmx_tpr_shadow()) {
2772                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2773                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2774                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2775                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2776                 vmcs_write32(TPR_THRESHOLD, 0);
2777         }
2778
2779         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2780                 vmcs_write64(APIC_ACCESS_ADDR,
2781                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2782
2783         if (vmx->vpid != 0)
2784                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2785
2786         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2787         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2788         vmx_set_cr4(&vmx->vcpu, 0);
2789         vmx_set_efer(&vmx->vcpu, 0);
2790         vmx_fpu_activate(&vmx->vcpu);
2791         update_exception_bitmap(&vmx->vcpu);
2792
2793         vpid_sync_context(vmx);
2794
2795         ret = 0;
2796
2797         /* HACK: Don't enable emulation on guest boot/reset */
2798         vmx->emulation_required = 0;
2799
2800 out:
2801         return ret;
2802 }
2803
2804 static void enable_irq_window(struct kvm_vcpu *vcpu)
2805 {
2806         u32 cpu_based_vm_exec_control;
2807
2808         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2809         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2810         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2811 }
2812
2813 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2814 {
2815         u32 cpu_based_vm_exec_control;
2816
2817         if (!cpu_has_virtual_nmis()) {
2818                 enable_irq_window(vcpu);
2819                 return;
2820         }
2821
2822         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2823         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2824         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2825 }
2826
2827 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2828 {
2829         struct vcpu_vmx *vmx = to_vmx(vcpu);
2830         uint32_t intr;
2831         int irq = vcpu->arch.interrupt.nr;
2832
2833         trace_kvm_inj_virq(irq);
2834
2835         ++vcpu->stat.irq_injections;
2836         if (vmx->rmode.vm86_active) {
2837                 vmx->rmode.irq.pending = true;
2838                 vmx->rmode.irq.vector = irq;
2839                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2840                 if (vcpu->arch.interrupt.soft)
2841                         vmx->rmode.irq.rip +=
2842                                 vmx->vcpu.arch.event_exit_inst_len;
2843                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2844                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2845                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2846                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2847                 return;
2848         }
2849         intr = irq | INTR_INFO_VALID_MASK;
2850         if (vcpu->arch.interrupt.soft) {
2851                 intr |= INTR_TYPE_SOFT_INTR;
2852                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2853                              vmx->vcpu.arch.event_exit_inst_len);
2854         } else
2855                 intr |= INTR_TYPE_EXT_INTR;
2856         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2857 }
2858
2859 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2860 {
2861         struct vcpu_vmx *vmx = to_vmx(vcpu);
2862
2863         if (!cpu_has_virtual_nmis()) {
2864                 /*
2865                  * Tracking the NMI-blocked state in software is built upon
2866                  * finding the next open IRQ window. This, in turn, depends on
2867                  * well-behaving guests: They have to keep IRQs disabled at
2868                  * least as long as the NMI handler runs. Otherwise we may
2869                  * cause NMI nesting, maybe breaking the guest. But as this is
2870                  * highly unlikely, we can live with the residual risk.
2871                  */
2872                 vmx->soft_vnmi_blocked = 1;
2873                 vmx->vnmi_blocked_time = 0;
2874         }
2875
2876         ++vcpu->stat.nmi_injections;
2877         if (vmx->rmode.vm86_active) {
2878                 vmx->rmode.irq.pending = true;
2879                 vmx->rmode.irq.vector = NMI_VECTOR;
2880                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2881                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2882                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2883                              INTR_INFO_VALID_MASK);
2884                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2885                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2886                 return;
2887         }
2888         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2889                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2890 }
2891
2892 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2893 {
2894         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2895                 return 0;
2896
2897         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2898                         (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
2899 }
2900
2901 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2902 {
2903         if (!cpu_has_virtual_nmis())
2904                 return to_vmx(vcpu)->soft_vnmi_blocked;
2905         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2906 }
2907
2908 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2909 {
2910         struct vcpu_vmx *vmx = to_vmx(vcpu);
2911
2912         if (!cpu_has_virtual_nmis()) {
2913                 if (vmx->soft_vnmi_blocked != masked) {
2914                         vmx->soft_vnmi_blocked = masked;
2915                         vmx->vnmi_blocked_time = 0;
2916                 }
2917         } else {
2918                 if (masked)
2919                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2920                                       GUEST_INTR_STATE_NMI);
2921                 else
2922                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2923                                         GUEST_INTR_STATE_NMI);
2924         }
2925 }
2926
2927 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2928 {
2929         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2930                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2931                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2932 }
2933
2934 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2935 {
2936         int ret;
2937         struct kvm_userspace_memory_region tss_mem = {
2938                 .slot = TSS_PRIVATE_MEMSLOT,
2939                 .guest_phys_addr = addr,
2940                 .memory_size = PAGE_SIZE * 3,
2941                 .flags = 0,
2942         };
2943
2944         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2945         if (ret)
2946                 return ret;
2947         kvm->arch.tss_addr = addr;
2948         return 0;
2949 }
2950
2951 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2952                                   int vec, u32 err_code)
2953 {
2954         /*
2955          * Instruction with address size override prefix opcode 0x67
2956          * Cause the #SS fault with 0 error code in VM86 mode.
2957          */
2958         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2959                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2960                         return 1;
2961         /*
2962          * Forward all other exceptions that are valid in real mode.
2963          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2964          *        the required debugging infrastructure rework.
2965          */
2966         switch (vec) {
2967         case DB_VECTOR:
2968                 if (vcpu->guest_debug &
2969                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2970                         return 0;
2971                 kvm_queue_exception(vcpu, vec);
2972                 return 1;
2973         case BP_VECTOR:
2974                 /*
2975                  * Update instruction length as we may reinject the exception
2976                  * from user space while in guest debugging mode.
2977                  */
2978                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2979                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2980                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2981                         return 0;
2982                 /* fall through */
2983         case DE_VECTOR:
2984         case OF_VECTOR:
2985         case BR_VECTOR:
2986         case UD_VECTOR:
2987         case DF_VECTOR:
2988         case SS_VECTOR:
2989         case GP_VECTOR:
2990         case MF_VECTOR:
2991                 kvm_queue_exception(vcpu, vec);
2992                 return 1;
2993         }
2994         return 0;
2995 }
2996
2997 /*
2998  * Trigger machine check on the host. We assume all the MSRs are already set up
2999  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3000  * We pass a fake environment to the machine check handler because we want
3001  * the guest to be always treated like user space, no matter what context
3002  * it used internally.
3003  */
3004 static void kvm_machine_check(void)
3005 {
3006 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3007         struct pt_regs regs = {
3008                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3009                 .flags = X86_EFLAGS_IF,
3010         };
3011
3012         do_machine_check(&regs, 0);
3013 #endif
3014 }
3015
3016 static int handle_machine_check(struct kvm_vcpu *vcpu)
3017 {
3018         /* already handled by vcpu_run */
3019         return 1;
3020 }
3021
3022 static int handle_exception(struct kvm_vcpu *vcpu)
3023 {
3024         struct vcpu_vmx *vmx = to_vmx(vcpu);
3025         struct kvm_run *kvm_run = vcpu->run;
3026         u32 intr_info, ex_no, error_code;
3027         unsigned long cr2, rip, dr6;
3028         u32 vect_info;
3029         enum emulation_result er;
3030
3031         vect_info = vmx->idt_vectoring_info;
3032         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3033
3034         if (is_machine_check(intr_info))
3035                 return handle_machine_check(vcpu);
3036
3037         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3038             !is_page_fault(intr_info)) {
3039                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3040                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3041                 vcpu->run->internal.ndata = 2;
3042                 vcpu->run->internal.data[0] = vect_info;
3043                 vcpu->run->internal.data[1] = intr_info;
3044                 return 0;
3045         }
3046
3047         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3048                 return 1;  /* already handled by vmx_vcpu_run() */
3049
3050         if (is_no_device(intr_info)) {
3051                 vmx_fpu_activate(vcpu);
3052                 return 1;
3053         }
3054
3055         if (is_invalid_opcode(intr_info)) {
3056                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
3057                 if (er != EMULATE_DONE)
3058                         kvm_queue_exception(vcpu, UD_VECTOR);
3059                 return 1;
3060         }
3061
3062         error_code = 0;
3063         rip = kvm_rip_read(vcpu);
3064         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3065                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3066         if (is_page_fault(intr_info)) {
3067                 /* EPT won't cause page fault directly */
3068                 if (enable_ept)
3069                         BUG();
3070                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3071                 trace_kvm_page_fault(cr2, error_code);
3072
3073                 if (kvm_event_needs_reinjection(vcpu))
3074                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3075                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
3076         }
3077
3078         if (vmx->rmode.vm86_active &&
3079             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3080                                                                 error_code)) {
3081                 if (vcpu->arch.halt_request) {
3082                         vcpu->arch.halt_request = 0;
3083                         return kvm_emulate_halt(vcpu);
3084                 }
3085                 return 1;
3086         }
3087
3088         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3089         switch (ex_no) {
3090         case DB_VECTOR:
3091                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3092                 if (!(vcpu->guest_debug &
3093                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3094                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3095                         kvm_queue_exception(vcpu, DB_VECTOR);
3096                         return 1;
3097                 }
3098                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3099                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3100                 /* fall through */
3101         case BP_VECTOR:
3102                 /*
3103                  * Update instruction length as we may reinject #BP from
3104                  * user space while in guest debugging mode. Reading it for
3105                  * #DB as well causes no harm, it is not used in that case.
3106                  */
3107                 vmx->vcpu.arch.event_exit_inst_len =
3108                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3109                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3110                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3111                 kvm_run->debug.arch.exception = ex_no;
3112                 break;
3113         default:
3114                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3115                 kvm_run->ex.exception = ex_no;
3116                 kvm_run->ex.error_code = error_code;
3117                 break;
3118         }
3119         return 0;
3120 }
3121
3122 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3123 {
3124         ++vcpu->stat.irq_exits;
3125         return 1;
3126 }
3127
3128 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3129 {
3130         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3131         return 0;
3132 }
3133
3134 static int handle_io(struct kvm_vcpu *vcpu)
3135 {
3136         unsigned long exit_qualification;
3137         int size, in, string;
3138         unsigned port;
3139
3140         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3141         string = (exit_qualification & 16) != 0;
3142         in = (exit_qualification & 8) != 0;
3143
3144         ++vcpu->stat.io_exits;
3145
3146         if (string || in)
3147                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3148
3149         port = exit_qualification >> 16;
3150         size = (exit_qualification & 7) + 1;
3151         skip_emulated_instruction(vcpu);
3152
3153         return kvm_fast_pio_out(vcpu, size, port);
3154 }
3155
3156 static void
3157 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3158 {
3159         /*
3160          * Patch in the VMCALL instruction:
3161          */
3162         hypercall[0] = 0x0f;
3163         hypercall[1] = 0x01;
3164         hypercall[2] = 0xc1;
3165 }
3166
3167 static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
3168 {
3169         if (err)
3170                 kvm_inject_gp(vcpu, 0);
3171         else
3172                 skip_emulated_instruction(vcpu);
3173 }
3174
3175 static int handle_cr(struct kvm_vcpu *vcpu)
3176 {
3177         unsigned long exit_qualification, val;
3178         int cr;
3179         int reg;
3180         int err;
3181
3182         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3183         cr = exit_qualification & 15;
3184         reg = (exit_qualification >> 8) & 15;
3185         switch ((exit_qualification >> 4) & 3) {
3186         case 0: /* mov to cr */
3187                 val = kvm_register_read(vcpu, reg);
3188                 trace_kvm_cr_write(cr, val);
3189                 switch (cr) {
3190                 case 0:
3191                         err = kvm_set_cr0(vcpu, val);
3192                         complete_insn_gp(vcpu, err);
3193                         return 1;
3194                 case 3:
3195                         err = kvm_set_cr3(vcpu, val);
3196                         complete_insn_gp(vcpu, err);
3197                         return 1;
3198                 case 4:
3199                         err = kvm_set_cr4(vcpu, val);
3200                         complete_insn_gp(vcpu, err);
3201                         return 1;
3202                 case 8: {
3203                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3204                                 u8 cr8 = kvm_register_read(vcpu, reg);
3205                                 kvm_set_cr8(vcpu, cr8);
3206                                 skip_emulated_instruction(vcpu);
3207                                 if (irqchip_in_kernel(vcpu->kvm))
3208                                         return 1;
3209                                 if (cr8_prev <= cr8)
3210                                         return 1;
3211                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3212                                 return 0;
3213                         }
3214                 };
3215                 break;
3216         case 2: /* clts */
3217                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3218                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3219                 skip_emulated_instruction(vcpu);
3220                 vmx_fpu_activate(vcpu);
3221                 return 1;
3222         case 1: /*mov from cr*/
3223                 switch (cr) {
3224                 case 3:
3225                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3226                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3227                         skip_emulated_instruction(vcpu);
3228                         return 1;
3229                 case 8:
3230                         val = kvm_get_cr8(vcpu);
3231                         kvm_register_write(vcpu, reg, val);
3232                         trace_kvm_cr_read(cr, val);
3233                         skip_emulated_instruction(vcpu);
3234                         return 1;
3235                 }
3236                 break;
3237         case 3: /* lmsw */
3238                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3239                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3240                 kvm_lmsw(vcpu, val);
3241
3242                 skip_emulated_instruction(vcpu);
3243                 return 1;
3244         default:
3245                 break;
3246         }
3247         vcpu->run->exit_reason = 0;
3248         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3249                (int)(exit_qualification >> 4) & 3, cr);
3250         return 0;
3251 }
3252
3253 static int handle_dr(struct kvm_vcpu *vcpu)
3254 {
3255         unsigned long exit_qualification;
3256         int dr, reg;
3257
3258         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3259         if (!kvm_require_cpl(vcpu, 0))
3260                 return 1;
3261         dr = vmcs_readl(GUEST_DR7);
3262         if (dr & DR7_GD) {
3263                 /*
3264                  * As the vm-exit takes precedence over the debug trap, we
3265                  * need to emulate the latter, either for the host or the
3266                  * guest debugging itself.
3267                  */
3268                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3269                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3270                         vcpu->run->debug.arch.dr7 = dr;
3271                         vcpu->run->debug.arch.pc =
3272                                 vmcs_readl(GUEST_CS_BASE) +
3273                                 vmcs_readl(GUEST_RIP);
3274                         vcpu->run->debug.arch.exception = DB_VECTOR;
3275                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3276                         return 0;
3277                 } else {
3278                         vcpu->arch.dr7 &= ~DR7_GD;
3279                         vcpu->arch.dr6 |= DR6_BD;
3280                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3281                         kvm_queue_exception(vcpu, DB_VECTOR);
3282                         return 1;
3283                 }
3284         }
3285
3286         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3287         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3288         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3289         if (exit_qualification & TYPE_MOV_FROM_DR) {
3290                 unsigned long val;
3291                 if (!kvm_get_dr(vcpu, dr, &val))
3292                         kvm_register_write(vcpu, reg, val);
3293         } else
3294                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3295         skip_emulated_instruction(vcpu);
3296         return 1;
3297 }
3298
3299 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3300 {
3301         vmcs_writel(GUEST_DR7, val);
3302 }
3303
3304 static int handle_cpuid(struct kvm_vcpu *vcpu)
3305 {
3306         kvm_emulate_cpuid(vcpu);
3307         return 1;
3308 }
3309
3310 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3311 {
3312         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3313         u64 data;
3314
3315         if (vmx_get_msr(vcpu, ecx, &data)) {
3316                 trace_kvm_msr_read_ex(ecx);
3317                 kvm_inject_gp(vcpu, 0);
3318                 return 1;
3319         }
3320
3321         trace_kvm_msr_read(ecx, data);
3322
3323         /* FIXME: handling of bits 32:63 of rax, rdx */
3324         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3325         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3326         skip_emulated_instruction(vcpu);
3327         return 1;
3328 }
3329
3330 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3331 {
3332         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3333         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3334                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3335
3336         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3337                 trace_kvm_msr_write_ex(ecx, data);
3338                 kvm_inject_gp(vcpu, 0);
3339                 return 1;
3340         }
3341
3342         trace_kvm_msr_write(ecx, data);
3343         skip_emulated_instruction(vcpu);
3344         return 1;
3345 }
3346
3347 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3348 {
3349         return 1;
3350 }
3351
3352 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3353 {
3354         u32 cpu_based_vm_exec_control;
3355
3356         /* clear pending irq */
3357         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3358         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3359         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3360
3361         ++vcpu->stat.irq_window_exits;
3362
3363         /*
3364          * If the user space waits to inject interrupts, exit as soon as
3365          * possible
3366          */
3367         if (!irqchip_in_kernel(vcpu->kvm) &&
3368             vcpu->run->request_interrupt_window &&
3369             !kvm_cpu_has_interrupt(vcpu)) {
3370                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3371                 return 0;
3372         }
3373         return 1;
3374 }
3375
3376 static int handle_halt(struct kvm_vcpu *vcpu)
3377 {
3378         skip_emulated_instruction(vcpu);
3379         return kvm_emulate_halt(vcpu);
3380 }
3381
3382 static int handle_vmcall(struct kvm_vcpu *vcpu)
3383 {
3384         skip_emulated_instruction(vcpu);
3385         kvm_emulate_hypercall(vcpu);
3386         return 1;
3387 }
3388
3389 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3390 {
3391         kvm_queue_exception(vcpu, UD_VECTOR);
3392         return 1;
3393 }
3394
3395 static int handle_invlpg(struct kvm_vcpu *vcpu)
3396 {
3397         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3398
3399         kvm_mmu_invlpg(vcpu, exit_qualification);
3400         skip_emulated_instruction(vcpu);
3401         return 1;
3402 }
3403
3404 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3405 {
3406         skip_emulated_instruction(vcpu);
3407         kvm_emulate_wbinvd(vcpu);
3408         return 1;
3409 }
3410
3411 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3412 {
3413         u64 new_bv = kvm_read_edx_eax(vcpu);
3414         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3415
3416         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3417                 skip_emulated_instruction(vcpu);
3418         return 1;
3419 }
3420
3421 static int handle_apic_access(struct kvm_vcpu *vcpu)
3422 {
3423         return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3424 }
3425
3426 static int handle_task_switch(struct kvm_vcpu *vcpu)
3427 {
3428         struct vcpu_vmx *vmx = to_vmx(vcpu);
3429         unsigned long exit_qualification;
3430         bool has_error_code = false;
3431         u32 error_code = 0;
3432         u16 tss_selector;
3433         int reason, type, idt_v;
3434
3435         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3436         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3437
3438         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3439
3440         reason = (u32)exit_qualification >> 30;
3441         if (reason == TASK_SWITCH_GATE && idt_v) {
3442                 switch (type) {
3443                 case INTR_TYPE_NMI_INTR:
3444                         vcpu->arch.nmi_injected = false;
3445                         if (cpu_has_virtual_nmis())
3446                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3447                                               GUEST_INTR_STATE_NMI);
3448                         break;
3449                 case INTR_TYPE_EXT_INTR:
3450                 case INTR_TYPE_SOFT_INTR:
3451                         kvm_clear_interrupt_queue(vcpu);
3452                         break;
3453                 case INTR_TYPE_HARD_EXCEPTION:
3454                         if (vmx->idt_vectoring_info &
3455                             VECTORING_INFO_DELIVER_CODE_MASK) {
3456                                 has_error_code = true;
3457                                 error_code =
3458                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3459                         }
3460                         /* fall through */
3461                 case INTR_TYPE_SOFT_EXCEPTION:
3462                         kvm_clear_exception_queue(vcpu);
3463                         break;
3464                 default:
3465                         break;
3466                 }
3467         }
3468         tss_selector = exit_qualification;
3469
3470         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3471                        type != INTR_TYPE_EXT_INTR &&
3472                        type != INTR_TYPE_NMI_INTR))
3473                 skip_emulated_instruction(vcpu);
3474
3475         if (kvm_task_switch(vcpu, tss_selector, reason,
3476                                 has_error_code, error_code) == EMULATE_FAIL) {
3477                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3478                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3479                 vcpu->run->internal.ndata = 0;
3480                 return 0;
3481         }
3482
3483         /* clear all local breakpoint enable flags */
3484         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3485
3486         /*
3487          * TODO: What about debug traps on tss switch?
3488          *       Are we supposed to inject them and update dr6?
3489          */
3490
3491         return 1;
3492 }
3493
3494 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3495 {
3496         unsigned long exit_qualification;
3497         gpa_t gpa;
3498         int gla_validity;
3499
3500         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3501
3502         if (exit_qualification & (1 << 6)) {
3503                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3504                 return -EINVAL;
3505         }
3506
3507         gla_validity = (exit_qualification >> 7) & 0x3;
3508         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3509                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3510                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3511                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3512                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3513                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3514                         (long unsigned int)exit_qualification);
3515                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3516                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3517                 return 0;
3518         }
3519
3520         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3521         trace_kvm_page_fault(gpa, exit_qualification);
3522         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3523 }
3524
3525 static u64 ept_rsvd_mask(u64 spte, int level)
3526 {
3527         int i;
3528         u64 mask = 0;
3529
3530         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3531                 mask |= (1ULL << i);
3532
3533         if (level > 2)
3534                 /* bits 7:3 reserved */
3535                 mask |= 0xf8;
3536         else if (level == 2) {
3537                 if (spte & (1ULL << 7))
3538                         /* 2MB ref, bits 20:12 reserved */
3539                         mask |= 0x1ff000;
3540                 else
3541                         /* bits 6:3 reserved */
3542                         mask |= 0x78;
3543         }
3544
3545         return mask;
3546 }
3547
3548 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3549                                        int level)
3550 {
3551         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3552
3553         /* 010b (write-only) */
3554         WARN_ON((spte & 0x7) == 0x2);
3555
3556         /* 110b (write/execute) */
3557         WARN_ON((spte & 0x7) == 0x6);
3558
3559         /* 100b (execute-only) and value not supported by logical processor */
3560         if (!cpu_has_vmx_ept_execute_only())
3561                 WARN_ON((spte & 0x7) == 0x4);
3562
3563         /* not 000b */
3564         if ((spte & 0x7)) {
3565                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3566
3567                 if (rsvd_bits != 0) {
3568                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3569                                          __func__, rsvd_bits);
3570                         WARN_ON(1);
3571                 }
3572
3573                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3574                         u64 ept_mem_type = (spte & 0x38) >> 3;
3575
3576                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3577                             ept_mem_type == 7) {
3578                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3579                                                 __func__, ept_mem_type);
3580                                 WARN_ON(1);
3581                         }
3582                 }
3583         }
3584 }
3585
3586 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3587 {
3588         u64 sptes[4];
3589         int nr_sptes, i;
3590         gpa_t gpa;
3591
3592         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3593
3594         printk(KERN_ERR "EPT: Misconfiguration.\n");
3595         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3596
3597         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3598
3599         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3600                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3601
3602         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3603         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3604
3605         return 0;
3606 }
3607
3608 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3609 {
3610         u32 cpu_based_vm_exec_control;
3611
3612         /* clear pending NMI */
3613         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3614         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3615         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3616         ++vcpu->stat.nmi_window_exits;
3617
3618         return 1;
3619 }
3620
3621 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3622 {
3623         struct vcpu_vmx *vmx = to_vmx(vcpu);
3624         enum emulation_result err = EMULATE_DONE;
3625         int ret = 1;
3626
3627         while (!guest_state_valid(vcpu)) {
3628                 err = emulate_instruction(vcpu, 0, 0, 0);
3629
3630                 if (err == EMULATE_DO_MMIO) {
3631                         ret = 0;
3632                         goto out;
3633                 }
3634
3635                 if (err != EMULATE_DONE)
3636                         return 0;
3637
3638                 if (signal_pending(current))
3639                         goto out;
3640                 if (need_resched())
3641                         schedule();
3642         }
3643
3644         vmx->emulation_required = 0;
3645 out:
3646         return ret;
3647 }
3648
3649 /*
3650  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3651  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3652  */
3653 static int handle_pause(struct kvm_vcpu *vcpu)
3654 {
3655         skip_emulated_instruction(vcpu);
3656         kvm_vcpu_on_spin(vcpu);
3657
3658         return 1;
3659 }
3660
3661 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3662 {
3663         kvm_queue_exception(vcpu, UD_VECTOR);
3664         return 1;
3665 }
3666
3667 /*
3668  * The exit handlers return 1 if the exit was handled fully and guest execution
3669  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3670  * to be done to userspace and return 0.
3671  */
3672 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3673         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3674         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3675         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3676         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3677         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3678         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3679         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3680         [EXIT_REASON_CPUID]                   = handle_cpuid,
3681         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3682         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3683         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3684         [EXIT_REASON_HLT]                     = handle_halt,
3685         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3686         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3687         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3688         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3689         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3690         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3691         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3692         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3693         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3694         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3695         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3696         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3697         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3698         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3699         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3700         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3701         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3702         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3703         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3704         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3705         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3706         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3707 };
3708
3709 static const int kvm_vmx_max_exit_handlers =
3710         ARRAY_SIZE(kvm_vmx_exit_handlers);
3711
3712 /*
3713  * The guest has exited.  See if we can fix it or if we need userspace
3714  * assistance.
3715  */
3716 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3717 {
3718         struct vcpu_vmx *vmx = to_vmx(vcpu);
3719         u32 exit_reason = vmx->exit_reason;
3720         u32 vectoring_info = vmx->idt_vectoring_info;
3721
3722         trace_kvm_exit(exit_reason, vcpu);
3723
3724         /* If guest state is invalid, start emulating */
3725         if (vmx->emulation_required && emulate_invalid_guest_state)
3726                 return handle_invalid_guest_state(vcpu);
3727
3728         /* Access CR3 don't cause VMExit in paging mode, so we need
3729          * to sync with guest real CR3. */
3730         if (enable_ept && is_paging(vcpu))
3731                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3732
3733         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3734                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3735                 vcpu->run->fail_entry.hardware_entry_failure_reason
3736                         = exit_reason;
3737                 return 0;
3738         }
3739
3740         if (unlikely(vmx->fail)) {
3741                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3742                 vcpu->run->fail_entry.hardware_entry_failure_reason
3743                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3744                 return 0;
3745         }
3746
3747         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3748                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3749                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3750                         exit_reason != EXIT_REASON_TASK_SWITCH))
3751                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3752                        "(0x%x) and exit reason is 0x%x\n",
3753                        __func__, vectoring_info, exit_reason);
3754
3755         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3756                 if (vmx_interrupt_allowed(vcpu)) {
3757                         vmx->soft_vnmi_blocked = 0;
3758                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3759                            vcpu->arch.nmi_pending) {
3760                         /*
3761                          * This CPU don't support us in finding the end of an
3762                          * NMI-blocked window if the guest runs with IRQs
3763                          * disabled. So we pull the trigger after 1 s of
3764                          * futile waiting, but inform the user about this.
3765                          */
3766                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3767                                "state on VCPU %d after 1 s timeout\n",
3768                                __func__, vcpu->vcpu_id);
3769                         vmx->soft_vnmi_blocked = 0;
3770                 }
3771         }
3772
3773         if (exit_reason < kvm_vmx_max_exit_handlers
3774             && kvm_vmx_exit_handlers[exit_reason])
3775                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3776         else {
3777                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3778                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3779         }
3780         return 0;
3781 }
3782
3783 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3784 {
3785         if (irr == -1 || tpr < irr) {
3786                 vmcs_write32(TPR_THRESHOLD, 0);
3787                 return;
3788         }
3789
3790         vmcs_write32(TPR_THRESHOLD, irr);
3791 }
3792
3793 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3794 {
3795         u32 exit_intr_info;
3796         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3797         bool unblock_nmi;
3798         u8 vector;
3799         int type;
3800         bool idtv_info_valid;
3801
3802         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3803
3804         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3805
3806         /* Handle machine checks before interrupts are enabled */
3807         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3808             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3809                 && is_machine_check(exit_intr_info)))
3810                 kvm_machine_check();
3811
3812         /* We need to handle NMIs before interrupts are enabled */
3813         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3814             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3815                 kvm_before_handle_nmi(&vmx->vcpu);
3816                 asm("int $2");
3817                 kvm_after_handle_nmi(&vmx->vcpu);
3818         }
3819
3820         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3821
3822         if (cpu_has_virtual_nmis()) {
3823                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3824                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3825                 /*
3826                  * SDM 3: 27.7.1.2 (September 2008)
3827                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3828                  * a guest IRET fault.
3829                  * SDM 3: 23.2.2 (September 2008)
3830                  * Bit 12 is undefined in any of the following cases:
3831                  *  If the VM exit sets the valid bit in the IDT-vectoring
3832                  *   information field.
3833                  *  If the VM exit is due to a double fault.
3834                  */
3835                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3836                     vector != DF_VECTOR && !idtv_info_valid)
3837                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3838                                       GUEST_INTR_STATE_NMI);
3839         } else if (unlikely(vmx->soft_vnmi_blocked))
3840                 vmx->vnmi_blocked_time +=
3841                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3842
3843         vmx->vcpu.arch.nmi_injected = false;
3844         kvm_clear_exception_queue(&vmx->vcpu);
3845         kvm_clear_interrupt_queue(&vmx->vcpu);
3846
3847         if (!idtv_info_valid)
3848                 return;
3849
3850         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3851         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3852
3853         switch (type) {
3854         case INTR_TYPE_NMI_INTR:
3855                 vmx->vcpu.arch.nmi_injected = true;
3856                 /*
3857                  * SDM 3: 27.7.1.2 (September 2008)
3858                  * Clear bit "block by NMI" before VM entry if a NMI
3859                  * delivery faulted.
3860                  */
3861                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3862                                 GUEST_INTR_STATE_NMI);
3863                 break;
3864         case INTR_TYPE_SOFT_EXCEPTION:
3865                 vmx->vcpu.arch.event_exit_inst_len =
3866                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3867                 /* fall through */
3868         case INTR_TYPE_HARD_EXCEPTION:
3869                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3870                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3871                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3872                 } else
3873                         kvm_queue_exception(&vmx->vcpu, vector);
3874                 break;
3875         case INTR_TYPE_SOFT_INTR:
3876                 vmx->vcpu.arch.event_exit_inst_len =
3877                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3878                 /* fall through */
3879         case INTR_TYPE_EXT_INTR:
3880                 kvm_queue_interrupt(&vmx->vcpu, vector,
3881                         type == INTR_TYPE_SOFT_INTR);
3882                 break;
3883         default:
3884                 break;
3885         }
3886 }
3887
3888 /*
3889  * Failure to inject an interrupt should give us the information
3890  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3891  * when fetching the interrupt redirection bitmap in the real-mode
3892  * tss, this doesn't happen.  So we do it ourselves.
3893  */
3894 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3895 {
3896         vmx->rmode.irq.pending = 0;
3897         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3898                 return;
3899         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3900         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3901                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3902                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3903                 return;
3904         }
3905         vmx->idt_vectoring_info =
3906                 VECTORING_INFO_VALID_MASK
3907                 | INTR_TYPE_EXT_INTR
3908                 | vmx->rmode.irq.vector;
3909 }
3910
3911 #ifdef CONFIG_X86_64
3912 #define R "r"
3913 #define Q "q"
3914 #else
3915 #define R "e"
3916 #define Q "l"
3917 #endif
3918
3919 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3920 {
3921         struct vcpu_vmx *vmx = to_vmx(vcpu);
3922
3923         /* Record the guest's net vcpu time for enforced NMI injections. */
3924         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3925                 vmx->entry_time = ktime_get();
3926
3927         /* Don't enter VMX if guest state is invalid, let the exit handler
3928            start emulation until we arrive back to a valid state */
3929         if (vmx->emulation_required && emulate_invalid_guest_state)
3930                 return;
3931
3932         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3933                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3934         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3935                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3936
3937         /* When single-stepping over STI and MOV SS, we must clear the
3938          * corresponding interruptibility bits in the guest state. Otherwise
3939          * vmentry fails as it then expects bit 14 (BS) in pending debug
3940          * exceptions being set, but that's not correct for the guest debugging
3941          * case. */
3942         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3943                 vmx_set_interrupt_shadow(vcpu, 0);
3944
3945         asm(
3946                 /* Store host registers */
3947                 "push %%"R"dx; push %%"R"bp;"
3948                 "push %%"R"cx \n\t"
3949                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3950                 "je 1f \n\t"
3951                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3952                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3953                 "1: \n\t"
3954                 /* Reload cr2 if changed */
3955                 "mov %c[cr2](%0), %%"R"ax \n\t"
3956                 "mov %%cr2, %%"R"dx \n\t"
3957                 "cmp %%"R"ax, %%"R"dx \n\t"
3958                 "je 2f \n\t"
3959                 "mov %%"R"ax, %%cr2 \n\t"
3960                 "2: \n\t"
3961                 /* Check if vmlaunch of vmresume is needed */
3962                 "cmpl $0, %c[launched](%0) \n\t"
3963                 /* Load guest registers.  Don't clobber flags. */
3964                 "mov %c[rax](%0), %%"R"ax \n\t"
3965                 "mov %c[rbx](%0), %%"R"bx \n\t"
3966                 "mov %c[rdx](%0), %%"R"dx \n\t"
3967                 "mov %c[rsi](%0), %%"R"si \n\t"
3968                 "mov %c[rdi](%0), %%"R"di \n\t"
3969                 "mov %c[rbp](%0), %%"R"bp \n\t"
3970 #ifdef CONFIG_X86_64
3971                 "mov %c[r8](%0),  %%r8  \n\t"
3972                 "mov %c[r9](%0),  %%r9  \n\t"
3973                 "mov %c[r10](%0), %%r10 \n\t"
3974                 "mov %c[r11](%0), %%r11 \n\t"
3975                 "mov %c[r12](%0), %%r12 \n\t"
3976                 "mov %c[r13](%0), %%r13 \n\t"
3977                 "mov %c[r14](%0), %%r14 \n\t"
3978                 "mov %c[r15](%0), %%r15 \n\t"
3979 #endif
3980                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3981
3982                 /* Enter guest mode */
3983                 "jne .Llaunched \n\t"
3984                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3985                 "jmp .Lkvm_vmx_return \n\t"
3986                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3987                 ".Lkvm_vmx_return: "
3988                 /* Save guest registers, load host registers, keep flags */
3989                 "xchg %0,     (%%"R"sp) \n\t"
3990                 "mov %%"R"ax, %c[rax](%0) \n\t"
3991                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3992                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3993                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3994                 "mov %%"R"si, %c[rsi](%0) \n\t"
3995                 "mov %%"R"di, %c[rdi](%0) \n\t"
3996                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3997 #ifdef CONFIG_X86_64
3998                 "mov %%r8,  %c[r8](%0) \n\t"
3999                 "mov %%r9,  %c[r9](%0) \n\t"
4000                 "mov %%r10, %c[r10](%0) \n\t"
4001                 "mov %%r11, %c[r11](%0) \n\t"
4002                 "mov %%r12, %c[r12](%0) \n\t"
4003                 "mov %%r13, %c[r13](%0) \n\t"
4004                 "mov %%r14, %c[r14](%0) \n\t"
4005                 "mov %%r15, %c[r15](%0) \n\t"
4006 #endif
4007                 "mov %%cr2, %%"R"ax   \n\t"
4008                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4009
4010                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
4011                 "setbe %c[fail](%0) \n\t"
4012               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4013                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4014                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4015                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4016                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4017                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4018                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4019                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4020                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4021                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4022                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4023 #ifdef CONFIG_X86_64
4024                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4025                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4026                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4027                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4028                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4029                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4030                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4031                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4032 #endif
4033                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
4034               : "cc", "memory"
4035                 , R"bx", R"di", R"si"
4036 #ifdef CONFIG_X86_64
4037                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4038 #endif
4039               );
4040
4041         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4042                                   | (1 << VCPU_EXREG_PDPTR));
4043         vcpu->arch.regs_dirty = 0;
4044
4045         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4046         if (vmx->rmode.irq.pending)
4047                 fixup_rmode_irq(vmx);
4048
4049         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4050         vmx->launched = 1;
4051
4052         vmx_complete_interrupts(vmx);
4053 }
4054
4055 #undef R
4056 #undef Q
4057
4058 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4059 {
4060         struct vcpu_vmx *vmx = to_vmx(vcpu);
4061
4062         if (vmx->vmcs) {
4063                 vcpu_clear(vmx);
4064                 free_vmcs(vmx->vmcs);
4065                 vmx->vmcs = NULL;
4066         }
4067 }
4068
4069 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4070 {
4071         struct vcpu_vmx *vmx = to_vmx(vcpu);
4072
4073         free_vpid(vmx);
4074         vmx_free_vmcs(vcpu);
4075         kfree(vmx->guest_msrs);
4076         kvm_vcpu_uninit(vcpu);
4077         kmem_cache_free(kvm_vcpu_cache, vmx);
4078 }
4079
4080 static inline void vmcs_init(struct vmcs *vmcs)
4081 {
4082         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4083
4084         if (!vmm_exclusive)
4085                 kvm_cpu_vmxon(phys_addr);
4086
4087         vmcs_clear(vmcs);
4088
4089         if (!vmm_exclusive)
4090                 kvm_cpu_vmxoff();
4091 }
4092
4093 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4094 {
4095         int err;
4096         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4097         int cpu;
4098
4099         if (!vmx)
4100                 return ERR_PTR(-ENOMEM);
4101
4102         allocate_vpid(vmx);
4103
4104         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4105         if (err)
4106                 goto free_vcpu;
4107
4108         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4109         if (!vmx->guest_msrs) {
4110                 err = -ENOMEM;
4111                 goto uninit_vcpu;
4112         }
4113
4114         vmx->vmcs = alloc_vmcs();
4115         if (!vmx->vmcs)
4116                 goto free_msrs;
4117
4118         vmcs_init(vmx->vmcs);
4119
4120         cpu = get_cpu();
4121         vmx_vcpu_load(&vmx->vcpu, cpu);
4122         err = vmx_vcpu_setup(vmx);
4123         vmx_vcpu_put(&vmx->vcpu);
4124         put_cpu();
4125         if (err)
4126                 goto free_vmcs;
4127         if (vm_need_virtualize_apic_accesses(kvm))
4128                 if (alloc_apic_access_page(kvm) != 0)
4129                         goto free_vmcs;
4130
4131         if (enable_ept) {
4132                 if (!kvm->arch.ept_identity_map_addr)
4133                         kvm->arch.ept_identity_map_addr =
4134                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4135                 if (alloc_identity_pagetable(kvm) != 0)
4136                         goto free_vmcs;
4137         }
4138
4139         return &vmx->vcpu;
4140
4141 free_vmcs:
4142         free_vmcs(vmx->vmcs);
4143 free_msrs:
4144         kfree(vmx->guest_msrs);
4145 uninit_vcpu:
4146         kvm_vcpu_uninit(&vmx->vcpu);
4147 free_vcpu:
4148         free_vpid(vmx);
4149         kmem_cache_free(kvm_vcpu_cache, vmx);
4150         return ERR_PTR(err);
4151 }
4152
4153 static void __init vmx_check_processor_compat(void *rtn)
4154 {
4155         struct vmcs_config vmcs_conf;
4156
4157         *(int *)rtn = 0;
4158         if (setup_vmcs_config(&vmcs_conf) < 0)
4159                 *(int *)rtn = -EIO;
4160         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4161                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4162                                 smp_processor_id());
4163                 *(int *)rtn = -EIO;
4164         }
4165 }
4166
4167 static int get_ept_level(void)
4168 {
4169         return VMX_EPT_DEFAULT_GAW + 1;
4170 }
4171
4172 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4173 {
4174         u64 ret;
4175
4176         /* For VT-d and EPT combination
4177          * 1. MMIO: always map as UC
4178          * 2. EPT with VT-d:
4179          *   a. VT-d without snooping control feature: can't guarantee the
4180          *      result, try to trust guest.
4181          *   b. VT-d with snooping control feature: snooping control feature of
4182          *      VT-d engine can guarantee the cache correctness. Just set it
4183          *      to WB to keep consistent with host. So the same as item 3.
4184          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4185          *    consistent with host MTRR
4186          */
4187         if (is_mmio)
4188                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4189         else if (vcpu->kvm->arch.iommu_domain &&
4190                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4191                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4192                       VMX_EPT_MT_EPTE_SHIFT;
4193         else
4194                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4195                         | VMX_EPT_IPAT_BIT;
4196
4197         return ret;
4198 }
4199
4200 #define _ER(x) { EXIT_REASON_##x, #x }
4201
4202 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4203         _ER(EXCEPTION_NMI),
4204         _ER(EXTERNAL_INTERRUPT),
4205         _ER(TRIPLE_FAULT),
4206         _ER(PENDING_INTERRUPT),
4207         _ER(NMI_WINDOW),
4208         _ER(TASK_SWITCH),
4209         _ER(CPUID),
4210         _ER(HLT),
4211         _ER(INVLPG),
4212         _ER(RDPMC),
4213         _ER(RDTSC),
4214         _ER(VMCALL),
4215         _ER(VMCLEAR),
4216         _ER(VMLAUNCH),
4217         _ER(VMPTRLD),
4218         _ER(VMPTRST),
4219         _ER(VMREAD),
4220         _ER(VMRESUME),
4221         _ER(VMWRITE),
4222         _ER(VMOFF),
4223         _ER(VMON),
4224         _ER(CR_ACCESS),
4225         _ER(DR_ACCESS),
4226         _ER(IO_INSTRUCTION),
4227         _ER(MSR_READ),
4228         _ER(MSR_WRITE),
4229         _ER(MWAIT_INSTRUCTION),
4230         _ER(MONITOR_INSTRUCTION),
4231         _ER(PAUSE_INSTRUCTION),
4232         _ER(MCE_DURING_VMENTRY),
4233         _ER(TPR_BELOW_THRESHOLD),
4234         _ER(APIC_ACCESS),
4235         _ER(EPT_VIOLATION),
4236         _ER(EPT_MISCONFIG),
4237         _ER(WBINVD),
4238         { -1, NULL }
4239 };
4240
4241 #undef _ER
4242
4243 static int vmx_get_lpage_level(void)
4244 {
4245         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4246                 return PT_DIRECTORY_LEVEL;
4247         else
4248                 /* For shadow and EPT supported 1GB page */
4249                 return PT_PDPE_LEVEL;
4250 }
4251
4252 static inline u32 bit(int bitno)
4253 {
4254         return 1 << (bitno & 31);
4255 }
4256
4257 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4258 {
4259         struct kvm_cpuid_entry2 *best;
4260         struct vcpu_vmx *vmx = to_vmx(vcpu);
4261         u32 exec_control;
4262
4263         vmx->rdtscp_enabled = false;
4264         if (vmx_rdtscp_supported()) {
4265                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4266                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4267                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4268                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4269                                 vmx->rdtscp_enabled = true;
4270                         else {
4271                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4272                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4273                                                 exec_control);
4274                         }
4275                 }
4276         }
4277 }
4278
4279 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4280 {
4281 }
4282
4283 static struct kvm_x86_ops vmx_x86_ops = {
4284         .cpu_has_kvm_support = cpu_has_kvm_support,
4285         .disabled_by_bios = vmx_disabled_by_bios,
4286         .hardware_setup = hardware_setup,
4287         .hardware_unsetup = hardware_unsetup,
4288         .check_processor_compatibility = vmx_check_processor_compat,
4289         .hardware_enable = hardware_enable,
4290         .hardware_disable = hardware_disable,
4291         .cpu_has_accelerated_tpr = report_flexpriority,
4292
4293         .vcpu_create = vmx_create_vcpu,
4294         .vcpu_free = vmx_free_vcpu,
4295         .vcpu_reset = vmx_vcpu_reset,
4296
4297         .prepare_guest_switch = vmx_save_host_state,
4298         .vcpu_load = vmx_vcpu_load,
4299         .vcpu_put = vmx_vcpu_put,
4300
4301         .set_guest_debug = set_guest_debug,
4302         .get_msr = vmx_get_msr,
4303         .set_msr = vmx_set_msr,
4304         .get_segment_base = vmx_get_segment_base,
4305         .get_segment = vmx_get_segment,
4306         .set_segment = vmx_set_segment,
4307         .get_cpl = vmx_get_cpl,
4308         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4309         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4310         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4311         .set_cr0 = vmx_set_cr0,
4312         .set_cr3 = vmx_set_cr3,
4313         .set_cr4 = vmx_set_cr4,
4314         .set_efer = vmx_set_efer,
4315         .get_idt = vmx_get_idt,
4316         .set_idt = vmx_set_idt,
4317         .get_gdt = vmx_get_gdt,
4318         .set_gdt = vmx_set_gdt,
4319         .set_dr7 = vmx_set_dr7,
4320         .cache_reg = vmx_cache_reg,
4321         .get_rflags = vmx_get_rflags,
4322         .set_rflags = vmx_set_rflags,
4323         .fpu_activate = vmx_fpu_activate,
4324         .fpu_deactivate = vmx_fpu_deactivate,
4325
4326         .tlb_flush = vmx_flush_tlb,
4327
4328         .run = vmx_vcpu_run,
4329         .handle_exit = vmx_handle_exit,
4330         .skip_emulated_instruction = skip_emulated_instruction,
4331         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4332         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4333         .patch_hypercall = vmx_patch_hypercall,
4334         .set_irq = vmx_inject_irq,
4335         .set_nmi = vmx_inject_nmi,
4336         .queue_exception = vmx_queue_exception,
4337         .interrupt_allowed = vmx_interrupt_allowed,
4338         .nmi_allowed = vmx_nmi_allowed,
4339         .get_nmi_mask = vmx_get_nmi_mask,
4340         .set_nmi_mask = vmx_set_nmi_mask,
4341         .enable_nmi_window = enable_nmi_window,
4342         .enable_irq_window = enable_irq_window,
4343         .update_cr8_intercept = update_cr8_intercept,
4344
4345         .set_tss_addr = vmx_set_tss_addr,
4346         .get_tdp_level = get_ept_level,
4347         .get_mt_mask = vmx_get_mt_mask,
4348
4349         .exit_reasons_str = vmx_exit_reasons_str,
4350         .get_lpage_level = vmx_get_lpage_level,
4351
4352         .cpuid_update = vmx_cpuid_update,
4353
4354         .rdtscp_supported = vmx_rdtscp_supported,
4355
4356         .set_supported_cpuid = vmx_set_supported_cpuid,
4357
4358         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4359 };
4360
4361 static int __init vmx_init(void)
4362 {
4363         int r, i;
4364
4365         rdmsrl_safe(MSR_EFER, &host_efer);
4366
4367         for (i = 0; i < NR_VMX_MSR; ++i)
4368                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4369
4370         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4371         if (!vmx_io_bitmap_a)
4372                 return -ENOMEM;
4373
4374         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4375         if (!vmx_io_bitmap_b) {
4376                 r = -ENOMEM;
4377                 goto out;
4378         }
4379
4380         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4381         if (!vmx_msr_bitmap_legacy) {
4382                 r = -ENOMEM;
4383                 goto out1;
4384         }
4385
4386         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4387         if (!vmx_msr_bitmap_longmode) {
4388                 r = -ENOMEM;
4389                 goto out2;
4390         }
4391
4392         /*
4393          * Allow direct access to the PC debug port (it is often used for I/O
4394          * delays, but the vmexits simply slow things down).
4395          */
4396         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4397         clear_bit(0x80, vmx_io_bitmap_a);
4398
4399         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4400
4401         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4402         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4403
4404         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4405
4406         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4407                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4408         if (r)
4409                 goto out3;
4410
4411         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4412         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4413         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4414         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4415         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4416         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4417
4418         if (enable_ept) {
4419                 bypass_guest_pf = 0;
4420                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4421                         VMX_EPT_WRITABLE_MASK);
4422                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4423                                 VMX_EPT_EXECUTABLE_MASK);
4424                 kvm_enable_tdp();
4425         } else
4426                 kvm_disable_tdp();
4427
4428         if (bypass_guest_pf)
4429                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4430
4431         return 0;
4432
4433 out3:
4434         free_page((unsigned long)vmx_msr_bitmap_longmode);
4435 out2:
4436         free_page((unsigned long)vmx_msr_bitmap_legacy);
4437 out1:
4438         free_page((unsigned long)vmx_io_bitmap_b);
4439 out:
4440         free_page((unsigned long)vmx_io_bitmap_a);
4441         return r;
4442 }
4443
4444 static void __exit vmx_exit(void)
4445 {
4446         free_page((unsigned long)vmx_msr_bitmap_legacy);
4447         free_page((unsigned long)vmx_msr_bitmap_longmode);
4448         free_page((unsigned long)vmx_io_bitmap_b);
4449         free_page((unsigned long)vmx_io_bitmap_a);
4450
4451         kvm_exit();
4452 }
4453
4454 module_init(vmx_init)
4455 module_exit(vmx_exit)