Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[pandora-kernel.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affilates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 #include <linux/workqueue.h>
38
39 #include "irq.h"
40 #include "i8254.h"
41
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56         union {
57                 u64 ll;
58                 struct {
59                         u32 low, high;
60                 } l;
61         } u, res;
62         u64 rl, rh;
63
64         u.ll = a;
65         rl = (u64)u.l.low * (u64)b;
66         rh = (u64)u.l.high * (u64)b;
67         rh += (rl >> 32);
68         res.l.high = div64_u64(rh, c);
69         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70         return res.ll;
71 }
72
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75         struct kvm_kpit_channel_state *c =
76                 &kvm->arch.vpit->pit_state.channels[channel];
77
78         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80         switch (c->mode) {
81         default:
82         case 0:
83         case 4:
84                 /* XXX: just disable/enable counting */
85                 break;
86         case 1:
87         case 2:
88         case 3:
89         case 5:
90                 /* Restart counting on rising edge. */
91                 if (c->gate < val)
92                         c->count_load_time = ktime_get();
93                 break;
94         }
95
96         c->gate = val;
97 }
98
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103         return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108         s64 elapsed;
109         ktime_t remaining;
110         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112         if (!ps->pit_timer.period)
113                 return 0;
114
115         /*
116          * The Counter does not stop when it reaches zero. In
117          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118          * the highest count, either FFFF hex for binary counting
119          * or 9999 for BCD counting, and continues counting.
120          * Modes 2 and 3 are periodic; the Counter reloads
121          * itself with the initial count and continues counting
122          * from there.
123          */
124         remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
125         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
126         elapsed = mod_64(elapsed, ps->pit_timer.period);
127
128         return elapsed;
129 }
130
131 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132                         int channel)
133 {
134         if (channel == 0)
135                 return __kpit_elapsed(kvm);
136
137         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
138 }
139
140 static int pit_get_count(struct kvm *kvm, int channel)
141 {
142         struct kvm_kpit_channel_state *c =
143                 &kvm->arch.vpit->pit_state.channels[channel];
144         s64 d, t;
145         int counter;
146
147         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148
149         t = kpit_elapsed(kvm, c, channel);
150         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151
152         switch (c->mode) {
153         case 0:
154         case 1:
155         case 4:
156         case 5:
157                 counter = (c->count - d) & 0xffff;
158                 break;
159         case 3:
160                 /* XXX: may be incorrect for odd counts */
161                 counter = c->count - (mod_64((2 * d), c->count));
162                 break;
163         default:
164                 counter = c->count - mod_64(d, c->count);
165                 break;
166         }
167         return counter;
168 }
169
170 static int pit_get_out(struct kvm *kvm, int channel)
171 {
172         struct kvm_kpit_channel_state *c =
173                 &kvm->arch.vpit->pit_state.channels[channel];
174         s64 d, t;
175         int out;
176
177         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178
179         t = kpit_elapsed(kvm, c, channel);
180         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181
182         switch (c->mode) {
183         default:
184         case 0:
185                 out = (d >= c->count);
186                 break;
187         case 1:
188                 out = (d < c->count);
189                 break;
190         case 2:
191                 out = ((mod_64(d, c->count) == 0) && (d != 0));
192                 break;
193         case 3:
194                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195                 break;
196         case 4:
197         case 5:
198                 out = (d == c->count);
199                 break;
200         }
201
202         return out;
203 }
204
205 static void pit_latch_count(struct kvm *kvm, int channel)
206 {
207         struct kvm_kpit_channel_state *c =
208                 &kvm->arch.vpit->pit_state.channels[channel];
209
210         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212         if (!c->count_latched) {
213                 c->latched_count = pit_get_count(kvm, channel);
214                 c->count_latched = c->rw_mode;
215         }
216 }
217
218 static void pit_latch_status(struct kvm *kvm, int channel)
219 {
220         struct kvm_kpit_channel_state *c =
221                 &kvm->arch.vpit->pit_state.channels[channel];
222
223         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224
225         if (!c->status_latched) {
226                 /* TODO: Return NULL COUNT (bit 6). */
227                 c->status = ((pit_get_out(kvm, channel) << 7) |
228                                 (c->rw_mode << 4) |
229                                 (c->mode << 1) |
230                                 c->bcd);
231                 c->status_latched = 1;
232         }
233 }
234
235 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
236 {
237         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
238
239         if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
240                 return atomic_read(&pit->pit_state.pit_timer.pending);
241         return 0;
242 }
243
244 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
245 {
246         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
247                                                  irq_ack_notifier);
248         int value;
249
250         spin_lock(&ps->inject_lock);
251         value = atomic_dec_return(&ps->pit_timer.pending);
252         if (value < 0)
253                 /* spurious acks can be generated if, for example, the
254                  * PIC is being reset.  Handle it gracefully here
255                  */
256                 atomic_inc(&ps->pit_timer.pending);
257         else if (value > 0)
258                 /* in this case, we had multiple outstanding pit interrupts
259                  * that we needed to inject.  Reinject
260                  */
261                 queue_work(ps->pit->wq, &ps->pit->expired);
262         ps->irq_ack = 1;
263         spin_unlock(&ps->inject_lock);
264 }
265
266 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
267 {
268         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
269         struct hrtimer *timer;
270
271         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
272                 return;
273
274         timer = &pit->pit_state.pit_timer.timer;
275         if (hrtimer_cancel(timer))
276                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
277 }
278
279 static void destroy_pit_timer(struct kvm_pit *pit)
280 {
281         hrtimer_cancel(&pit->pit_state.pit_timer.timer);
282         cancel_work_sync(&pit->expired);
283 }
284
285 static bool kpit_is_periodic(struct kvm_timer *ktimer)
286 {
287         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
288                                                  pit_timer);
289         return ps->is_periodic;
290 }
291
292 static struct kvm_timer_ops kpit_ops = {
293         .is_periodic = kpit_is_periodic,
294 };
295
296 static void pit_do_work(struct work_struct *work)
297 {
298         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
299         struct kvm *kvm = pit->kvm;
300         struct kvm_vcpu *vcpu;
301         int i;
302         struct kvm_kpit_state *ps = &pit->pit_state;
303         int inject = 0;
304
305         /* Try to inject pending interrupts when
306          * last one has been acked.
307          */
308         spin_lock(&ps->inject_lock);
309         if (ps->irq_ack) {
310                 ps->irq_ack = 0;
311                 inject = 1;
312         }
313         spin_unlock(&ps->inject_lock);
314         if (inject) {
315                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
316                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
317
318                 /*
319                  * Provides NMI watchdog support via Virtual Wire mode.
320                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
321                  *
322                  * Note: Our Virtual Wire implementation is simplified, only
323                  * propagating PIT interrupts to all VCPUs when they have set
324                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
325                  * VCPU0, and only if its LVT0 is in EXTINT mode.
326                  */
327                 if (kvm->arch.vapics_in_nmi_mode > 0)
328                         kvm_for_each_vcpu(i, vcpu, kvm)
329                                 kvm_apic_nmi_wd_deliver(vcpu);
330         }
331 }
332
333 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
334 {
335         struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
336         struct kvm_pit *pt = ktimer->kvm->arch.vpit;
337
338         if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
339                 atomic_inc(&ktimer->pending);
340                 queue_work(pt->wq, &pt->expired);
341         }
342
343         if (ktimer->t_ops->is_periodic(ktimer)) {
344                 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
345                 return HRTIMER_RESTART;
346         } else
347                 return HRTIMER_NORESTART;
348 }
349
350 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
351 {
352         struct kvm_timer *pt = &ps->pit_timer;
353         s64 interval;
354
355         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
356
357         pr_debug("create pit timer, interval is %llu nsec\n", interval);
358
359         /* TODO The new value only affected after the retriggered */
360         hrtimer_cancel(&pt->timer);
361         cancel_work_sync(&ps->pit->expired);
362         pt->period = interval;
363         ps->is_periodic = is_period;
364
365         pt->timer.function = pit_timer_fn;
366         pt->t_ops = &kpit_ops;
367         pt->kvm = ps->pit->kvm;
368
369         atomic_set(&pt->pending, 0);
370         ps->irq_ack = 1;
371
372         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
373                       HRTIMER_MODE_ABS);
374 }
375
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
377 {
378         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
379
380         WARN_ON(!mutex_is_locked(&ps->lock));
381
382         pr_debug("load_count val is %d, channel is %d\n", val, channel);
383
384         /*
385          * The largest possible initial count is 0; this is equivalent
386          * to 216 for binary counting and 104 for BCD counting.
387          */
388         if (val == 0)
389                 val = 0x10000;
390
391         ps->channels[channel].count = val;
392
393         if (channel != 0) {
394                 ps->channels[channel].count_load_time = ktime_get();
395                 return;
396         }
397
398         /* Two types of timer
399          * mode 1 is one shot, mode 2 is period, otherwise del timer */
400         switch (ps->channels[0].mode) {
401         case 0:
402         case 1:
403         /* FIXME: enhance mode 4 precision */
404         case 4:
405                 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
406                         create_pit_timer(ps, val, 0);
407                 }
408                 break;
409         case 2:
410         case 3:
411                 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
412                         create_pit_timer(ps, val, 1);
413                 }
414                 break;
415         default:
416                 destroy_pit_timer(kvm->arch.vpit);
417         }
418 }
419
420 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
421 {
422         u8 saved_mode;
423         if (hpet_legacy_start) {
424                 /* save existing mode for later reenablement */
425                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
426                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
427                 pit_load_count(kvm, channel, val);
428                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
429         } else {
430                 pit_load_count(kvm, channel, val);
431         }
432 }
433
434 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
435 {
436         return container_of(dev, struct kvm_pit, dev);
437 }
438
439 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
440 {
441         return container_of(dev, struct kvm_pit, speaker_dev);
442 }
443
444 static inline int pit_in_range(gpa_t addr)
445 {
446         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
447                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
448 }
449
450 static int pit_ioport_write(struct kvm_io_device *this,
451                             gpa_t addr, int len, const void *data)
452 {
453         struct kvm_pit *pit = dev_to_pit(this);
454         struct kvm_kpit_state *pit_state = &pit->pit_state;
455         struct kvm *kvm = pit->kvm;
456         int channel, access;
457         struct kvm_kpit_channel_state *s;
458         u32 val = *(u32 *) data;
459         if (!pit_in_range(addr))
460                 return -EOPNOTSUPP;
461
462         val  &= 0xff;
463         addr &= KVM_PIT_CHANNEL_MASK;
464
465         mutex_lock(&pit_state->lock);
466
467         if (val != 0)
468                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469                          (unsigned int)addr, len, val);
470
471         if (addr == 3) {
472                 channel = val >> 6;
473                 if (channel == 3) {
474                         /* Read-Back Command. */
475                         for (channel = 0; channel < 3; channel++) {
476                                 s = &pit_state->channels[channel];
477                                 if (val & (2 << channel)) {
478                                         if (!(val & 0x20))
479                                                 pit_latch_count(kvm, channel);
480                                         if (!(val & 0x10))
481                                                 pit_latch_status(kvm, channel);
482                                 }
483                         }
484                 } else {
485                         /* Select Counter <channel>. */
486                         s = &pit_state->channels[channel];
487                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
488                         if (access == 0) {
489                                 pit_latch_count(kvm, channel);
490                         } else {
491                                 s->rw_mode = access;
492                                 s->read_state = access;
493                                 s->write_state = access;
494                                 s->mode = (val >> 1) & 7;
495                                 if (s->mode > 5)
496                                         s->mode -= 4;
497                                 s->bcd = val & 1;
498                         }
499                 }
500         } else {
501                 /* Write Count. */
502                 s = &pit_state->channels[addr];
503                 switch (s->write_state) {
504                 default:
505                 case RW_STATE_LSB:
506                         pit_load_count(kvm, addr, val);
507                         break;
508                 case RW_STATE_MSB:
509                         pit_load_count(kvm, addr, val << 8);
510                         break;
511                 case RW_STATE_WORD0:
512                         s->write_latch = val;
513                         s->write_state = RW_STATE_WORD1;
514                         break;
515                 case RW_STATE_WORD1:
516                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
517                         s->write_state = RW_STATE_WORD0;
518                         break;
519                 }
520         }
521
522         mutex_unlock(&pit_state->lock);
523         return 0;
524 }
525
526 static int pit_ioport_read(struct kvm_io_device *this,
527                            gpa_t addr, int len, void *data)
528 {
529         struct kvm_pit *pit = dev_to_pit(this);
530         struct kvm_kpit_state *pit_state = &pit->pit_state;
531         struct kvm *kvm = pit->kvm;
532         int ret, count;
533         struct kvm_kpit_channel_state *s;
534         if (!pit_in_range(addr))
535                 return -EOPNOTSUPP;
536
537         addr &= KVM_PIT_CHANNEL_MASK;
538         if (addr == 3)
539                 return 0;
540
541         s = &pit_state->channels[addr];
542
543         mutex_lock(&pit_state->lock);
544
545         if (s->status_latched) {
546                 s->status_latched = 0;
547                 ret = s->status;
548         } else if (s->count_latched) {
549                 switch (s->count_latched) {
550                 default:
551                 case RW_STATE_LSB:
552                         ret = s->latched_count & 0xff;
553                         s->count_latched = 0;
554                         break;
555                 case RW_STATE_MSB:
556                         ret = s->latched_count >> 8;
557                         s->count_latched = 0;
558                         break;
559                 case RW_STATE_WORD0:
560                         ret = s->latched_count & 0xff;
561                         s->count_latched = RW_STATE_MSB;
562                         break;
563                 }
564         } else {
565                 switch (s->read_state) {
566                 default:
567                 case RW_STATE_LSB:
568                         count = pit_get_count(kvm, addr);
569                         ret = count & 0xff;
570                         break;
571                 case RW_STATE_MSB:
572                         count = pit_get_count(kvm, addr);
573                         ret = (count >> 8) & 0xff;
574                         break;
575                 case RW_STATE_WORD0:
576                         count = pit_get_count(kvm, addr);
577                         ret = count & 0xff;
578                         s->read_state = RW_STATE_WORD1;
579                         break;
580                 case RW_STATE_WORD1:
581                         count = pit_get_count(kvm, addr);
582                         ret = (count >> 8) & 0xff;
583                         s->read_state = RW_STATE_WORD0;
584                         break;
585                 }
586         }
587
588         if (len > sizeof(ret))
589                 len = sizeof(ret);
590         memcpy(data, (char *)&ret, len);
591
592         mutex_unlock(&pit_state->lock);
593         return 0;
594 }
595
596 static int speaker_ioport_write(struct kvm_io_device *this,
597                                 gpa_t addr, int len, const void *data)
598 {
599         struct kvm_pit *pit = speaker_to_pit(this);
600         struct kvm_kpit_state *pit_state = &pit->pit_state;
601         struct kvm *kvm = pit->kvm;
602         u32 val = *(u32 *) data;
603         if (addr != KVM_SPEAKER_BASE_ADDRESS)
604                 return -EOPNOTSUPP;
605
606         mutex_lock(&pit_state->lock);
607         pit_state->speaker_data_on = (val >> 1) & 1;
608         pit_set_gate(kvm, 2, val & 1);
609         mutex_unlock(&pit_state->lock);
610         return 0;
611 }
612
613 static int speaker_ioport_read(struct kvm_io_device *this,
614                                gpa_t addr, int len, void *data)
615 {
616         struct kvm_pit *pit = speaker_to_pit(this);
617         struct kvm_kpit_state *pit_state = &pit->pit_state;
618         struct kvm *kvm = pit->kvm;
619         unsigned int refresh_clock;
620         int ret;
621         if (addr != KVM_SPEAKER_BASE_ADDRESS)
622                 return -EOPNOTSUPP;
623
624         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
625         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
626
627         mutex_lock(&pit_state->lock);
628         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
629                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
630         if (len > sizeof(ret))
631                 len = sizeof(ret);
632         memcpy(data, (char *)&ret, len);
633         mutex_unlock(&pit_state->lock);
634         return 0;
635 }
636
637 void kvm_pit_reset(struct kvm_pit *pit)
638 {
639         int i;
640         struct kvm_kpit_channel_state *c;
641
642         mutex_lock(&pit->pit_state.lock);
643         pit->pit_state.flags = 0;
644         for (i = 0; i < 3; i++) {
645                 c = &pit->pit_state.channels[i];
646                 c->mode = 0xff;
647                 c->gate = (i != 2);
648                 pit_load_count(pit->kvm, i, 0);
649         }
650         mutex_unlock(&pit->pit_state.lock);
651
652         atomic_set(&pit->pit_state.pit_timer.pending, 0);
653         pit->pit_state.irq_ack = 1;
654 }
655
656 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
657 {
658         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
659
660         if (!mask) {
661                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
662                 pit->pit_state.irq_ack = 1;
663         }
664 }
665
666 static const struct kvm_io_device_ops pit_dev_ops = {
667         .read     = pit_ioport_read,
668         .write    = pit_ioport_write,
669 };
670
671 static const struct kvm_io_device_ops speaker_dev_ops = {
672         .read     = speaker_ioport_read,
673         .write    = speaker_ioport_write,
674 };
675
676 /* Caller must hold slots_lock */
677 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
678 {
679         struct kvm_pit *pit;
680         struct kvm_kpit_state *pit_state;
681         int ret;
682
683         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
684         if (!pit)
685                 return NULL;
686
687         pit->irq_source_id = kvm_request_irq_source_id(kvm);
688         if (pit->irq_source_id < 0) {
689                 kfree(pit);
690                 return NULL;
691         }
692
693         mutex_init(&pit->pit_state.lock);
694         mutex_lock(&pit->pit_state.lock);
695         spin_lock_init(&pit->pit_state.inject_lock);
696
697         pit->wq = create_singlethread_workqueue("kvm-pit-wq");
698         if (!pit->wq) {
699                 mutex_unlock(&pit->pit_state.lock);
700                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
701                 kfree(pit);
702                 return NULL;
703         }
704         INIT_WORK(&pit->expired, pit_do_work);
705
706         kvm->arch.vpit = pit;
707         pit->kvm = kvm;
708
709         pit_state = &pit->pit_state;
710         pit_state->pit = pit;
711         hrtimer_init(&pit_state->pit_timer.timer,
712                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
713         pit_state->irq_ack_notifier.gsi = 0;
714         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
715         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
716         pit_state->pit_timer.reinject = true;
717         mutex_unlock(&pit->pit_state.lock);
718
719         kvm_pit_reset(pit);
720
721         pit->mask_notifier.func = pit_mask_notifer;
722         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
723
724         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
725         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
726         if (ret < 0)
727                 goto fail;
728
729         if (flags & KVM_PIT_SPEAKER_DUMMY) {
730                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
731                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
732                                                 &pit->speaker_dev);
733                 if (ret < 0)
734                         goto fail_unregister;
735         }
736
737         return pit;
738
739 fail_unregister:
740         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741
742 fail:
743         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
744         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
745         kvm_free_irq_source_id(kvm, pit->irq_source_id);
746         destroy_workqueue(pit->wq);
747         kfree(pit);
748         return NULL;
749 }
750
751 void kvm_free_pit(struct kvm *kvm)
752 {
753         struct hrtimer *timer;
754
755         if (kvm->arch.vpit) {
756                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
757                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
758                                               &kvm->arch.vpit->speaker_dev);
759                 kvm_unregister_irq_mask_notifier(kvm, 0,
760                                                &kvm->arch.vpit->mask_notifier);
761                 kvm_unregister_irq_ack_notifier(kvm,
762                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
763                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
764                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
765                 hrtimer_cancel(timer);
766                 cancel_work_sync(&kvm->arch.vpit->expired);
767                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
768                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
769                 destroy_workqueue(kvm->arch.vpit->wq);
770                 kfree(kvm->arch.vpit);
771         }
772 }