kvm: x86: fix stale mmio cache bug
[pandora-kernel.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40 #include "x86.h"
41
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56         union {
57                 u64 ll;
58                 struct {
59                         u32 low, high;
60                 } l;
61         } u, res;
62         u64 rl, rh;
63
64         u.ll = a;
65         rl = (u64)u.l.low * (u64)b;
66         rh = (u64)u.l.high * (u64)b;
67         rh += (rl >> 32);
68         res.l.high = div64_u64(rh, c);
69         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70         return res.ll;
71 }
72
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75         struct kvm_kpit_channel_state *c =
76                 &kvm->arch.vpit->pit_state.channels[channel];
77
78         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80         switch (c->mode) {
81         default:
82         case 0:
83         case 4:
84                 /* XXX: just disable/enable counting */
85                 break;
86         case 1:
87         case 2:
88         case 3:
89         case 5:
90                 /* Restart counting on rising edge. */
91                 if (c->gate < val)
92                         c->count_load_time = ktime_get();
93                 break;
94         }
95
96         c->gate = val;
97 }
98
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103         return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108         s64 elapsed;
109         ktime_t remaining;
110         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112         if (!ps->period)
113                 return 0;
114
115         /*
116          * The Counter does not stop when it reaches zero. In
117          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118          * the highest count, either FFFF hex for binary counting
119          * or 9999 for BCD counting, and continues counting.
120          * Modes 2 and 3 are periodic; the Counter reloads
121          * itself with the initial count and continues counting
122          * from there.
123          */
124         remaining = hrtimer_get_remaining(&ps->timer);
125         elapsed = ps->period - ktime_to_ns(remaining);
126
127         return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131                         int channel)
132 {
133         if (channel == 0)
134                 return __kpit_elapsed(kvm);
135
136         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141         struct kvm_kpit_channel_state *c =
142                 &kvm->arch.vpit->pit_state.channels[channel];
143         s64 d, t;
144         int counter;
145
146         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148         t = kpit_elapsed(kvm, c, channel);
149         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         case 0:
153         case 1:
154         case 4:
155         case 5:
156                 counter = (c->count - d) & 0xffff;
157                 break;
158         case 3:
159                 /* XXX: may be incorrect for odd counts */
160                 counter = c->count - (mod_64((2 * d), c->count));
161                 break;
162         default:
163                 counter = c->count - mod_64(d, c->count);
164                 break;
165         }
166         return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171         struct kvm_kpit_channel_state *c =
172                 &kvm->arch.vpit->pit_state.channels[channel];
173         s64 d, t;
174         int out;
175
176         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178         t = kpit_elapsed(kvm, c, channel);
179         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181         switch (c->mode) {
182         default:
183         case 0:
184                 out = (d >= c->count);
185                 break;
186         case 1:
187                 out = (d < c->count);
188                 break;
189         case 2:
190                 out = ((mod_64(d, c->count) == 0) && (d != 0));
191                 break;
192         case 3:
193                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194                 break;
195         case 4:
196         case 5:
197                 out = (d == c->count);
198                 break;
199         }
200
201         return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206         struct kvm_kpit_channel_state *c =
207                 &kvm->arch.vpit->pit_state.channels[channel];
208
209         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211         if (!c->count_latched) {
212                 c->latched_count = pit_get_count(kvm, channel);
213                 c->count_latched = c->rw_mode;
214         }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219         struct kvm_kpit_channel_state *c =
220                 &kvm->arch.vpit->pit_state.channels[channel];
221
222         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224         if (!c->status_latched) {
225                 /* TODO: Return NULL COUNT (bit 6). */
226                 c->status = ((pit_get_out(kvm, channel) << 7) |
227                                 (c->rw_mode << 4) |
228                                 (c->mode << 1) |
229                                 c->bcd);
230                 c->status_latched = 1;
231         }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237                                                  irq_ack_notifier);
238         int value;
239
240         spin_lock(&ps->inject_lock);
241         value = atomic_dec_return(&ps->pending);
242         if (value < 0)
243                 /* spurious acks can be generated if, for example, the
244                  * PIC is being reset.  Handle it gracefully here
245                  */
246                 atomic_inc(&ps->pending);
247         else if (value > 0)
248                 /* in this case, we had multiple outstanding pit interrupts
249                  * that we needed to inject.  Reinject
250                  */
251                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252         ps->irq_ack = 1;
253         spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259         struct hrtimer *timer;
260
261         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262                 return;
263
264         timer = &pit->pit_state.timer;
265         if (hrtimer_cancel(timer))
266                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
267 }
268
269 static void destroy_pit_timer(struct kvm_pit *pit)
270 {
271         hrtimer_cancel(&pit->pit_state.timer);
272         flush_kthread_work(&pit->expired);
273 }
274
275 static void pit_do_work(struct kthread_work *work)
276 {
277         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
278         struct kvm *kvm = pit->kvm;
279         struct kvm_vcpu *vcpu;
280         int i;
281         struct kvm_kpit_state *ps = &pit->pit_state;
282         int inject = 0;
283
284         /* Try to inject pending interrupts when
285          * last one has been acked.
286          */
287         spin_lock(&ps->inject_lock);
288         if (ps->irq_ack) {
289                 ps->irq_ack = 0;
290                 inject = 1;
291         }
292         spin_unlock(&ps->inject_lock);
293         if (inject) {
294                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
295                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
296
297                 /*
298                  * Provides NMI watchdog support via Virtual Wire mode.
299                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
300                  *
301                  * Note: Our Virtual Wire implementation is simplified, only
302                  * propagating PIT interrupts to all VCPUs when they have set
303                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
304                  * VCPU0, and only if its LVT0 is in EXTINT mode.
305                  */
306                 if (kvm->arch.vapics_in_nmi_mode > 0)
307                         kvm_for_each_vcpu(i, vcpu, kvm)
308                                 kvm_apic_nmi_wd_deliver(vcpu);
309         }
310 }
311
312 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
313 {
314         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
315         struct kvm_pit *pt = ps->kvm->arch.vpit;
316
317         if (ps->reinject || !atomic_read(&ps->pending)) {
318                 atomic_inc(&ps->pending);
319                 queue_kthread_work(&pt->worker, &pt->expired);
320         }
321
322         if (ps->is_periodic) {
323                 hrtimer_add_expires_ns(&ps->timer, ps->period);
324                 return HRTIMER_RESTART;
325         } else
326                 return HRTIMER_NORESTART;
327 }
328
329 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
330 {
331         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
332         s64 interval;
333
334         if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
335                 return;
336
337         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
338
339         pr_debug("create pit timer, interval is %llu nsec\n", interval);
340
341         /* TODO The new value only affected after the retriggered */
342         hrtimer_cancel(&ps->timer);
343         flush_kthread_work(&ps->pit->expired);
344         ps->period = interval;
345         ps->is_periodic = is_period;
346
347         ps->timer.function = pit_timer_fn;
348         ps->kvm = ps->pit->kvm;
349
350         atomic_set(&ps->pending, 0);
351         ps->irq_ack = 1;
352
353         /*
354          * Do not allow the guest to program periodic timers with small
355          * interval, since the hrtimers are not throttled by the host
356          * scheduler.
357          */
358         if (ps->is_periodic) {
359                 s64 min_period = min_timer_period_us * 1000LL;
360
361                 if (ps->period < min_period) {
362                         pr_info_ratelimited(
363                             "kvm: requested %lld ns "
364                             "i8254 timer period limited to %lld ns\n",
365                             ps->period, min_period);
366                         ps->period = min_period;
367                 }
368         }
369
370         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
371                       HRTIMER_MODE_ABS);
372 }
373
374 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
375 {
376         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
377
378         WARN_ON(!mutex_is_locked(&ps->lock));
379
380         pr_debug("load_count val is %d, channel is %d\n", val, channel);
381
382         /*
383          * The largest possible initial count is 0; this is equivalent
384          * to 216 for binary counting and 104 for BCD counting.
385          */
386         if (val == 0)
387                 val = 0x10000;
388
389         ps->channels[channel].count = val;
390
391         if (channel != 0) {
392                 ps->channels[channel].count_load_time = ktime_get();
393                 return;
394         }
395
396         /* Two types of timer
397          * mode 1 is one shot, mode 2 is period, otherwise del timer */
398         switch (ps->channels[0].mode) {
399         case 0:
400         case 1:
401         /* FIXME: enhance mode 4 precision */
402         case 4:
403                 create_pit_timer(kvm, val, 0);
404                 break;
405         case 2:
406         case 3:
407                 create_pit_timer(kvm, val, 1);
408                 break;
409         default:
410                 destroy_pit_timer(kvm->arch.vpit);
411         }
412 }
413
414 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
415 {
416         u8 saved_mode;
417         if (hpet_legacy_start) {
418                 /* save existing mode for later reenablement */
419                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
420                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
421                 pit_load_count(kvm, channel, val);
422                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
423         } else {
424                 pit_load_count(kvm, channel, val);
425         }
426 }
427
428 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
429 {
430         return container_of(dev, struct kvm_pit, dev);
431 }
432
433 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
434 {
435         return container_of(dev, struct kvm_pit, speaker_dev);
436 }
437
438 static inline int pit_in_range(gpa_t addr)
439 {
440         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
441                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
442 }
443
444 static int pit_ioport_write(struct kvm_io_device *this,
445                             gpa_t addr, int len, const void *data)
446 {
447         struct kvm_pit *pit = dev_to_pit(this);
448         struct kvm_kpit_state *pit_state = &pit->pit_state;
449         struct kvm *kvm = pit->kvm;
450         int channel, access;
451         struct kvm_kpit_channel_state *s;
452         u32 val = *(u32 *) data;
453         if (!pit_in_range(addr))
454                 return -EOPNOTSUPP;
455
456         val  &= 0xff;
457         addr &= KVM_PIT_CHANNEL_MASK;
458
459         mutex_lock(&pit_state->lock);
460
461         if (val != 0)
462                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
463                          (unsigned int)addr, len, val);
464
465         if (addr == 3) {
466                 channel = val >> 6;
467                 if (channel == 3) {
468                         /* Read-Back Command. */
469                         for (channel = 0; channel < 3; channel++) {
470                                 s = &pit_state->channels[channel];
471                                 if (val & (2 << channel)) {
472                                         if (!(val & 0x20))
473                                                 pit_latch_count(kvm, channel);
474                                         if (!(val & 0x10))
475                                                 pit_latch_status(kvm, channel);
476                                 }
477                         }
478                 } else {
479                         /* Select Counter <channel>. */
480                         s = &pit_state->channels[channel];
481                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
482                         if (access == 0) {
483                                 pit_latch_count(kvm, channel);
484                         } else {
485                                 s->rw_mode = access;
486                                 s->read_state = access;
487                                 s->write_state = access;
488                                 s->mode = (val >> 1) & 7;
489                                 if (s->mode > 5)
490                                         s->mode -= 4;
491                                 s->bcd = val & 1;
492                         }
493                 }
494         } else {
495                 /* Write Count. */
496                 s = &pit_state->channels[addr];
497                 switch (s->write_state) {
498                 default:
499                 case RW_STATE_LSB:
500                         pit_load_count(kvm, addr, val);
501                         break;
502                 case RW_STATE_MSB:
503                         pit_load_count(kvm, addr, val << 8);
504                         break;
505                 case RW_STATE_WORD0:
506                         s->write_latch = val;
507                         s->write_state = RW_STATE_WORD1;
508                         break;
509                 case RW_STATE_WORD1:
510                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
511                         s->write_state = RW_STATE_WORD0;
512                         break;
513                 }
514         }
515
516         mutex_unlock(&pit_state->lock);
517         return 0;
518 }
519
520 static int pit_ioport_read(struct kvm_io_device *this,
521                            gpa_t addr, int len, void *data)
522 {
523         struct kvm_pit *pit = dev_to_pit(this);
524         struct kvm_kpit_state *pit_state = &pit->pit_state;
525         struct kvm *kvm = pit->kvm;
526         int ret, count;
527         struct kvm_kpit_channel_state *s;
528         if (!pit_in_range(addr))
529                 return -EOPNOTSUPP;
530
531         addr &= KVM_PIT_CHANNEL_MASK;
532         if (addr == 3)
533                 return 0;
534
535         s = &pit_state->channels[addr];
536
537         mutex_lock(&pit_state->lock);
538
539         if (s->status_latched) {
540                 s->status_latched = 0;
541                 ret = s->status;
542         } else if (s->count_latched) {
543                 switch (s->count_latched) {
544                 default:
545                 case RW_STATE_LSB:
546                         ret = s->latched_count & 0xff;
547                         s->count_latched = 0;
548                         break;
549                 case RW_STATE_MSB:
550                         ret = s->latched_count >> 8;
551                         s->count_latched = 0;
552                         break;
553                 case RW_STATE_WORD0:
554                         ret = s->latched_count & 0xff;
555                         s->count_latched = RW_STATE_MSB;
556                         break;
557                 }
558         } else {
559                 switch (s->read_state) {
560                 default:
561                 case RW_STATE_LSB:
562                         count = pit_get_count(kvm, addr);
563                         ret = count & 0xff;
564                         break;
565                 case RW_STATE_MSB:
566                         count = pit_get_count(kvm, addr);
567                         ret = (count >> 8) & 0xff;
568                         break;
569                 case RW_STATE_WORD0:
570                         count = pit_get_count(kvm, addr);
571                         ret = count & 0xff;
572                         s->read_state = RW_STATE_WORD1;
573                         break;
574                 case RW_STATE_WORD1:
575                         count = pit_get_count(kvm, addr);
576                         ret = (count >> 8) & 0xff;
577                         s->read_state = RW_STATE_WORD0;
578                         break;
579                 }
580         }
581
582         if (len > sizeof(ret))
583                 len = sizeof(ret);
584         memcpy(data, (char *)&ret, len);
585
586         mutex_unlock(&pit_state->lock);
587         return 0;
588 }
589
590 static int speaker_ioport_write(struct kvm_io_device *this,
591                                 gpa_t addr, int len, const void *data)
592 {
593         struct kvm_pit *pit = speaker_to_pit(this);
594         struct kvm_kpit_state *pit_state = &pit->pit_state;
595         struct kvm *kvm = pit->kvm;
596         u32 val = *(u32 *) data;
597         if (addr != KVM_SPEAKER_BASE_ADDRESS)
598                 return -EOPNOTSUPP;
599
600         mutex_lock(&pit_state->lock);
601         pit_state->speaker_data_on = (val >> 1) & 1;
602         pit_set_gate(kvm, 2, val & 1);
603         mutex_unlock(&pit_state->lock);
604         return 0;
605 }
606
607 static int speaker_ioport_read(struct kvm_io_device *this,
608                                gpa_t addr, int len, void *data)
609 {
610         struct kvm_pit *pit = speaker_to_pit(this);
611         struct kvm_kpit_state *pit_state = &pit->pit_state;
612         struct kvm *kvm = pit->kvm;
613         unsigned int refresh_clock;
614         int ret;
615         if (addr != KVM_SPEAKER_BASE_ADDRESS)
616                 return -EOPNOTSUPP;
617
618         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
619         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
620
621         mutex_lock(&pit_state->lock);
622         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
623                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
624         if (len > sizeof(ret))
625                 len = sizeof(ret);
626         memcpy(data, (char *)&ret, len);
627         mutex_unlock(&pit_state->lock);
628         return 0;
629 }
630
631 void kvm_pit_reset(struct kvm_pit *pit)
632 {
633         int i;
634         struct kvm_kpit_channel_state *c;
635
636         mutex_lock(&pit->pit_state.lock);
637         pit->pit_state.flags = 0;
638         for (i = 0; i < 3; i++) {
639                 c = &pit->pit_state.channels[i];
640                 c->mode = 0xff;
641                 c->gate = (i != 2);
642                 pit_load_count(pit->kvm, i, 0);
643         }
644         mutex_unlock(&pit->pit_state.lock);
645
646         atomic_set(&pit->pit_state.pending, 0);
647         pit->pit_state.irq_ack = 1;
648 }
649
650 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
651 {
652         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
653
654         if (!mask) {
655                 atomic_set(&pit->pit_state.pending, 0);
656                 pit->pit_state.irq_ack = 1;
657         }
658 }
659
660 static const struct kvm_io_device_ops pit_dev_ops = {
661         .read     = pit_ioport_read,
662         .write    = pit_ioport_write,
663 };
664
665 static const struct kvm_io_device_ops speaker_dev_ops = {
666         .read     = speaker_ioport_read,
667         .write    = speaker_ioport_write,
668 };
669
670 /* Caller must hold slots_lock */
671 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
672 {
673         struct kvm_pit *pit;
674         struct kvm_kpit_state *pit_state;
675         struct pid *pid;
676         pid_t pid_nr;
677         int ret;
678
679         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
680         if (!pit)
681                 return NULL;
682
683         pit->irq_source_id = kvm_request_irq_source_id(kvm);
684         if (pit->irq_source_id < 0) {
685                 kfree(pit);
686                 return NULL;
687         }
688
689         mutex_init(&pit->pit_state.lock);
690         mutex_lock(&pit->pit_state.lock);
691         spin_lock_init(&pit->pit_state.inject_lock);
692
693         pid = get_pid(task_tgid(current));
694         pid_nr = pid_vnr(pid);
695         put_pid(pid);
696
697         init_kthread_worker(&pit->worker);
698         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
699                                        "kvm-pit/%d", pid_nr);
700         if (IS_ERR(pit->worker_task)) {
701                 mutex_unlock(&pit->pit_state.lock);
702                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
703                 kfree(pit);
704                 return NULL;
705         }
706         init_kthread_work(&pit->expired, pit_do_work);
707
708         kvm->arch.vpit = pit;
709         pit->kvm = kvm;
710
711         pit_state = &pit->pit_state;
712         pit_state->pit = pit;
713         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
714         pit_state->irq_ack_notifier.gsi = 0;
715         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
716         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
717         pit_state->reinject = true;
718         mutex_unlock(&pit->pit_state.lock);
719
720         kvm_pit_reset(pit);
721
722         pit->mask_notifier.func = pit_mask_notifer;
723         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
724
725         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
726         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
727                                       KVM_PIT_MEM_LENGTH, &pit->dev);
728         if (ret < 0)
729                 goto fail;
730
731         if (flags & KVM_PIT_SPEAKER_DUMMY) {
732                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
733                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
734                                               KVM_SPEAKER_BASE_ADDRESS, 4,
735                                               &pit->speaker_dev);
736                 if (ret < 0)
737                         goto fail_unregister;
738         }
739
740         return pit;
741
742 fail_unregister:
743         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
744
745 fail:
746         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
747         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
748         kvm_free_irq_source_id(kvm, pit->irq_source_id);
749         kthread_stop(pit->worker_task);
750         kfree(pit);
751         return NULL;
752 }
753
754 void kvm_free_pit(struct kvm *kvm)
755 {
756         struct hrtimer *timer;
757
758         if (kvm->arch.vpit) {
759                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
760                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
761                                               &kvm->arch.vpit->speaker_dev);
762                 kvm_unregister_irq_mask_notifier(kvm, 0,
763                                                &kvm->arch.vpit->mask_notifier);
764                 kvm_unregister_irq_ack_notifier(kvm,
765                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
766                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
767                 timer = &kvm->arch.vpit->pit_state.timer;
768                 hrtimer_cancel(timer);
769                 flush_kthread_work(&kvm->arch.vpit->expired);
770                 kthread_stop(kvm->arch.vpit->worker_task);
771                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
772                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
773                 kfree(kvm->arch.vpit);
774         }
775 }