x86: set_cyc2ns_scale() remove prev scale
[pandora-kernel.git] / arch / x86 / kernel / tsc_64.c
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/interrupt.h>
4 #include <linux/init.h>
5 #include <linux/clocksource.h>
6 #include <linux/time.h>
7 #include <linux/acpi.h>
8 #include <linux/cpufreq.h>
9 #include <linux/acpi_pmtmr.h>
10
11 #include <asm/hpet.h>
12 #include <asm/timex.h>
13 #include <asm/timer.h>
14
15 static int notsc __initdata = 0;
16
17 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
18 EXPORT_SYMBOL(cpu_khz);
19 unsigned int tsc_khz;
20 EXPORT_SYMBOL(tsc_khz);
21
22 /* Accelerators for sched_clock()
23  * convert from cycles(64bits) => nanoseconds (64bits)
24  *  basic equation:
25  *              ns = cycles / (freq / ns_per_sec)
26  *              ns = cycles * (ns_per_sec / freq)
27  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
28  *              ns = cycles * (10^6 / cpu_khz)
29  *
30  *      Then we use scaling math (suggested by george@mvista.com) to get:
31  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
32  *              ns = cycles * cyc2ns_scale / SC
33  *
34  *      And since SC is a constant power of two, we can convert the div
35  *  into a shift.
36  *
37  *  We can use khz divisor instead of mhz to keep a better precision, since
38  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
39  *  (mathieu.desnoyers@polymtl.ca)
40  *
41  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
42  */
43 DEFINE_PER_CPU(unsigned long, cyc2ns);
44
45 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
46 {
47         unsigned long long tsc_now, ns_now;
48         unsigned long flags, *scale;
49
50         local_irq_save(flags);
51         sched_clock_idle_sleep_event();
52
53         scale = &per_cpu(cyc2ns, cpu);
54
55         rdtscll(tsc_now);
56         ns_now = __cycles_2_ns(tsc_now);
57
58         if (cpu_khz)
59                 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
60
61         sched_clock_idle_wakeup_event(0);
62         local_irq_restore(flags);
63 }
64
65 unsigned long long native_sched_clock(void)
66 {
67         unsigned long a = 0;
68
69         /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
70          * which means it is not completely exact and may not be monotonous
71          * between CPUs. But the errors should be too small to matter for
72          * scheduling purposes.
73          */
74
75         rdtscll(a);
76         return cycles_2_ns(a);
77 }
78
79 /* We need to define a real function for sched_clock, to override the
80    weak default version */
81 #ifdef CONFIG_PARAVIRT
82 unsigned long long sched_clock(void)
83 {
84         return paravirt_sched_clock();
85 }
86 #else
87 unsigned long long
88 sched_clock(void) __attribute__((alias("native_sched_clock")));
89 #endif
90
91
92 static int tsc_unstable;
93
94 int check_tsc_unstable(void)
95 {
96         return tsc_unstable;
97 }
98 EXPORT_SYMBOL_GPL(check_tsc_unstable);
99
100 #ifdef CONFIG_CPU_FREQ
101
102 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
103  * changes.
104  *
105  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
106  * not that important because current Opteron setups do not support
107  * scaling on SMP anyroads.
108  *
109  * Should fix up last_tsc too. Currently gettimeofday in the
110  * first tick after the change will be slightly wrong.
111  */
112
113 static unsigned int  ref_freq;
114 static unsigned long loops_per_jiffy_ref;
115 static unsigned long tsc_khz_ref;
116
117 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
118                                  void *data)
119 {
120         struct cpufreq_freqs *freq = data;
121         unsigned long *lpj, dummy;
122
123         if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
124                 return 0;
125
126         lpj = &dummy;
127         if (!(freq->flags & CPUFREQ_CONST_LOOPS))
128 #ifdef CONFIG_SMP
129                 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
130 #else
131                 lpj = &boot_cpu_data.loops_per_jiffy;
132 #endif
133
134         if (!ref_freq) {
135                 ref_freq = freq->old;
136                 loops_per_jiffy_ref = *lpj;
137                 tsc_khz_ref = tsc_khz;
138         }
139         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
140                 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
141                 (val == CPUFREQ_RESUMECHANGE)) {
142                 *lpj =
143                 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
144
145                 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
146                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
147                         mark_tsc_unstable("cpufreq changes");
148         }
149
150         set_cyc2ns_scale(tsc_khz_ref, freq->cpu);
151
152         return 0;
153 }
154
155 static struct notifier_block time_cpufreq_notifier_block = {
156         .notifier_call  = time_cpufreq_notifier
157 };
158
159 static int __init cpufreq_tsc(void)
160 {
161         cpufreq_register_notifier(&time_cpufreq_notifier_block,
162                                   CPUFREQ_TRANSITION_NOTIFIER);
163         return 0;
164 }
165
166 core_initcall(cpufreq_tsc);
167
168 #endif
169
170 #define MAX_RETRIES     5
171 #define SMI_TRESHOLD    50000
172
173 /*
174  * Read TSC and the reference counters. Take care of SMI disturbance
175  */
176 static unsigned long __init tsc_read_refs(unsigned long *pm,
177                                           unsigned long *hpet)
178 {
179         unsigned long t1, t2;
180         int i;
181
182         for (i = 0; i < MAX_RETRIES; i++) {
183                 t1 = get_cycles();
184                 if (hpet)
185                         *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
186                 else
187                         *pm = acpi_pm_read_early();
188                 t2 = get_cycles();
189                 if ((t2 - t1) < SMI_TRESHOLD)
190                         return t2;
191         }
192         return ULONG_MAX;
193 }
194
195 /**
196  * tsc_calibrate - calibrate the tsc on boot
197  */
198 void __init tsc_calibrate(void)
199 {
200         unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
201         int hpet = is_hpet_enabled(), cpu;
202
203         local_irq_save(flags);
204
205         tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
206
207         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
208
209         outb(0xb0, 0x43);
210         outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
211         outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
212         tr1 = get_cycles();
213         while ((inb(0x61) & 0x20) == 0);
214         tr2 = get_cycles();
215
216         tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
217
218         local_irq_restore(flags);
219
220         /*
221          * Preset the result with the raw and inaccurate PIT
222          * calibration value
223          */
224         tsc_khz = (tr2 - tr1) / 50;
225
226         /* hpet or pmtimer available ? */
227         if (!hpet && !pm1 && !pm2) {
228                 printk(KERN_INFO "TSC calibrated against PIT\n");
229                 return;
230         }
231
232         /* Check, whether the sampling was disturbed by an SMI */
233         if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
234                 printk(KERN_WARNING "TSC calibration disturbed by SMI, "
235                        "using PIT calibration result\n");
236                 return;
237         }
238
239         tsc2 = (tsc2 - tsc1) * 1000000L;
240
241         if (hpet) {
242                 printk(KERN_INFO "TSC calibrated against HPET\n");
243                 if (hpet2 < hpet1)
244                         hpet2 += 0x100000000;
245                 hpet2 -= hpet1;
246                 tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
247         } else {
248                 printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
249                 if (pm2 < pm1)
250                         pm2 += ACPI_PM_OVRRUN;
251                 pm2 -= pm1;
252                 tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
253         }
254
255         tsc_khz = tsc2 / tsc1;
256
257         for_each_possible_cpu(cpu)
258                 set_cyc2ns_scale(tsc_khz, cpu);
259 }
260
261 /*
262  * Make an educated guess if the TSC is trustworthy and synchronized
263  * over all CPUs.
264  */
265 __cpuinit int unsynchronized_tsc(void)
266 {
267         if (tsc_unstable)
268                 return 1;
269
270 #ifdef CONFIG_SMP
271         if (apic_is_clustered_box())
272                 return 1;
273 #endif
274
275         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
276                 return 0;
277
278         /* Assume multi socket systems are not synchronized */
279         return num_present_cpus() > 1;
280 }
281
282 int __init notsc_setup(char *s)
283 {
284         notsc = 1;
285         return 1;
286 }
287
288 __setup("notsc", notsc_setup);
289
290
291 /* clock source code: */
292 static cycle_t read_tsc(void)
293 {
294         cycle_t ret = (cycle_t)get_cycles();
295         return ret;
296 }
297
298 static cycle_t __vsyscall_fn vread_tsc(void)
299 {
300         cycle_t ret = (cycle_t)vget_cycles();
301         return ret;
302 }
303
304 static struct clocksource clocksource_tsc = {
305         .name                   = "tsc",
306         .rating                 = 300,
307         .read                   = read_tsc,
308         .mask                   = CLOCKSOURCE_MASK(64),
309         .shift                  = 22,
310         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
311                                   CLOCK_SOURCE_MUST_VERIFY,
312         .vread                  = vread_tsc,
313 };
314
315 void mark_tsc_unstable(char *reason)
316 {
317         if (!tsc_unstable) {
318                 tsc_unstable = 1;
319                 printk("Marking TSC unstable due to %s\n", reason);
320                 /* Change only the rating, when not registered */
321                 if (clocksource_tsc.mult)
322                         clocksource_change_rating(&clocksource_tsc, 0);
323                 else
324                         clocksource_tsc.rating = 0;
325         }
326 }
327 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
328
329 void __init init_tsc_clocksource(void)
330 {
331         if (!notsc) {
332                 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
333                                                         clocksource_tsc.shift);
334                 if (check_tsc_unstable())
335                         clocksource_tsc.rating = 0;
336
337                 clocksource_register(&clocksource_tsc);
338         }
339 }