Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[pandora-kernel.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/ftrace.h>
12 #include <asm/system.h>
13 #include <asm/apic.h>
14 #include <asm/idle.h>
15 #include <asm/uaccess.h>
16 #include <asm/i387.h>
17
18 unsigned long idle_halt;
19 EXPORT_SYMBOL(idle_halt);
20 unsigned long idle_nomwait;
21 EXPORT_SYMBOL(idle_nomwait);
22
23 struct kmem_cache *task_xstate_cachep;
24
25 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
26 {
27         *dst = *src;
28         if (src->thread.xstate) {
29                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
30                                                       GFP_KERNEL);
31                 if (!dst->thread.xstate)
32                         return -ENOMEM;
33                 WARN_ON((unsigned long)dst->thread.xstate & 15);
34                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
35         }
36         return 0;
37 }
38
39 void free_thread_xstate(struct task_struct *tsk)
40 {
41         if (tsk->thread.xstate) {
42                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
43                 tsk->thread.xstate = NULL;
44         }
45 }
46
47 void free_thread_info(struct thread_info *ti)
48 {
49         free_thread_xstate(ti->task);
50         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
51 }
52
53 void arch_task_cache_init(void)
54 {
55         task_xstate_cachep =
56                 kmem_cache_create("task_xstate", xstate_size,
57                                   __alignof__(union thread_xstate),
58                                   SLAB_PANIC, NULL);
59 }
60
61 /*
62  * Free current thread data structures etc..
63  */
64 void exit_thread(void)
65 {
66         struct task_struct *me = current;
67         struct thread_struct *t = &me->thread;
68         unsigned long *bp = t->io_bitmap_ptr;
69
70         if (bp) {
71                 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
72
73                 t->io_bitmap_ptr = NULL;
74                 clear_thread_flag(TIF_IO_BITMAP);
75                 /*
76                  * Careful, clear this in the TSS too:
77                  */
78                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
79                 t->io_bitmap_max = 0;
80                 put_cpu();
81                 kfree(bp);
82         }
83
84         ds_exit_thread(current);
85 }
86
87 void flush_thread(void)
88 {
89         struct task_struct *tsk = current;
90
91 #ifdef CONFIG_X86_64
92         if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
93                 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
94                 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
95                         clear_tsk_thread_flag(tsk, TIF_IA32);
96                 } else {
97                         set_tsk_thread_flag(tsk, TIF_IA32);
98                         current_thread_info()->status |= TS_COMPAT;
99                 }
100         }
101 #endif
102
103         clear_tsk_thread_flag(tsk, TIF_DEBUG);
104
105         tsk->thread.debugreg0 = 0;
106         tsk->thread.debugreg1 = 0;
107         tsk->thread.debugreg2 = 0;
108         tsk->thread.debugreg3 = 0;
109         tsk->thread.debugreg6 = 0;
110         tsk->thread.debugreg7 = 0;
111         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
112         /*
113          * Forget coprocessor state..
114          */
115         tsk->fpu_counter = 0;
116         clear_fpu(tsk);
117         clear_used_math();
118 }
119
120 static void hard_disable_TSC(void)
121 {
122         write_cr4(read_cr4() | X86_CR4_TSD);
123 }
124
125 void disable_TSC(void)
126 {
127         preempt_disable();
128         if (!test_and_set_thread_flag(TIF_NOTSC))
129                 /*
130                  * Must flip the CPU state synchronously with
131                  * TIF_NOTSC in the current running context.
132                  */
133                 hard_disable_TSC();
134         preempt_enable();
135 }
136
137 static void hard_enable_TSC(void)
138 {
139         write_cr4(read_cr4() & ~X86_CR4_TSD);
140 }
141
142 static void enable_TSC(void)
143 {
144         preempt_disable();
145         if (test_and_clear_thread_flag(TIF_NOTSC))
146                 /*
147                  * Must flip the CPU state synchronously with
148                  * TIF_NOTSC in the current running context.
149                  */
150                 hard_enable_TSC();
151         preempt_enable();
152 }
153
154 int get_tsc_mode(unsigned long adr)
155 {
156         unsigned int val;
157
158         if (test_thread_flag(TIF_NOTSC))
159                 val = PR_TSC_SIGSEGV;
160         else
161                 val = PR_TSC_ENABLE;
162
163         return put_user(val, (unsigned int __user *)adr);
164 }
165
166 int set_tsc_mode(unsigned int val)
167 {
168         if (val == PR_TSC_SIGSEGV)
169                 disable_TSC();
170         else if (val == PR_TSC_ENABLE)
171                 enable_TSC();
172         else
173                 return -EINVAL;
174
175         return 0;
176 }
177
178 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
179                       struct tss_struct *tss)
180 {
181         struct thread_struct *prev, *next;
182
183         prev = &prev_p->thread;
184         next = &next_p->thread;
185
186         if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
187             test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
188                 ds_switch_to(prev_p, next_p);
189         else if (next->debugctlmsr != prev->debugctlmsr)
190                 update_debugctlmsr(next->debugctlmsr);
191
192         if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
193                 set_debugreg(next->debugreg0, 0);
194                 set_debugreg(next->debugreg1, 1);
195                 set_debugreg(next->debugreg2, 2);
196                 set_debugreg(next->debugreg3, 3);
197                 /* no 4 and 5 */
198                 set_debugreg(next->debugreg6, 6);
199                 set_debugreg(next->debugreg7, 7);
200         }
201
202         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
203             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
204                 /* prev and next are different */
205                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
206                         hard_disable_TSC();
207                 else
208                         hard_enable_TSC();
209         }
210
211         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
212                 /*
213                  * Copy the relevant range of the IO bitmap.
214                  * Normally this is 128 bytes or less:
215                  */
216                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
217                        max(prev->io_bitmap_max, next->io_bitmap_max));
218         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
219                 /*
220                  * Clear any possible leftover bits:
221                  */
222                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
223         }
224 }
225
226 int sys_fork(struct pt_regs *regs)
227 {
228         return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
229 }
230
231 /*
232  * This is trivial, and on the face of it looks like it
233  * could equally well be done in user mode.
234  *
235  * Not so, for quite unobvious reasons - register pressure.
236  * In user mode vfork() cannot have a stack frame, and if
237  * done by calling the "clone()" system call directly, you
238  * do not have enough call-clobbered registers to hold all
239  * the information you need.
240  */
241 int sys_vfork(struct pt_regs *regs)
242 {
243         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
244                        NULL, NULL);
245 }
246
247
248 /*
249  * Idle related variables and functions
250  */
251 unsigned long boot_option_idle_override = 0;
252 EXPORT_SYMBOL(boot_option_idle_override);
253
254 /*
255  * Powermanagement idle function, if any..
256  */
257 void (*pm_idle)(void);
258 EXPORT_SYMBOL(pm_idle);
259
260 #ifdef CONFIG_X86_32
261 /*
262  * This halt magic was a workaround for ancient floppy DMA
263  * wreckage. It should be safe to remove.
264  */
265 static int hlt_counter;
266 void disable_hlt(void)
267 {
268         hlt_counter++;
269 }
270 EXPORT_SYMBOL(disable_hlt);
271
272 void enable_hlt(void)
273 {
274         hlt_counter--;
275 }
276 EXPORT_SYMBOL(enable_hlt);
277
278 static inline int hlt_use_halt(void)
279 {
280         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
281 }
282 #else
283 static inline int hlt_use_halt(void)
284 {
285         return 1;
286 }
287 #endif
288
289 /*
290  * We use this if we don't have any better
291  * idle routine..
292  */
293 void default_idle(void)
294 {
295         if (hlt_use_halt()) {
296                 struct power_trace it;
297
298                 trace_power_start(&it, POWER_CSTATE, 1);
299                 current_thread_info()->status &= ~TS_POLLING;
300                 /*
301                  * TS_POLLING-cleared state must be visible before we
302                  * test NEED_RESCHED:
303                  */
304                 smp_mb();
305
306                 if (!need_resched())
307                         safe_halt();    /* enables interrupts racelessly */
308                 else
309                         local_irq_enable();
310                 current_thread_info()->status |= TS_POLLING;
311                 trace_power_end(&it);
312         } else {
313                 local_irq_enable();
314                 /* loop is done by the caller */
315                 cpu_relax();
316         }
317 }
318 #ifdef CONFIG_APM_MODULE
319 EXPORT_SYMBOL(default_idle);
320 #endif
321
322 void stop_this_cpu(void *dummy)
323 {
324         local_irq_disable();
325         /*
326          * Remove this CPU:
327          */
328         cpu_clear(smp_processor_id(), cpu_online_map);
329         disable_local_APIC();
330
331         for (;;) {
332                 if (hlt_works(smp_processor_id()))
333                         halt();
334         }
335 }
336
337 static void do_nothing(void *unused)
338 {
339 }
340
341 /*
342  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
343  * pm_idle and update to new pm_idle value. Required while changing pm_idle
344  * handler on SMP systems.
345  *
346  * Caller must have changed pm_idle to the new value before the call. Old
347  * pm_idle value will not be used by any CPU after the return of this function.
348  */
349 void cpu_idle_wait(void)
350 {
351         smp_mb();
352         /* kick all the CPUs so that they exit out of pm_idle */
353         smp_call_function(do_nothing, NULL, 1);
354 }
355 EXPORT_SYMBOL_GPL(cpu_idle_wait);
356
357 /*
358  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
359  * which can obviate IPI to trigger checking of need_resched.
360  * We execute MONITOR against need_resched and enter optimized wait state
361  * through MWAIT. Whenever someone changes need_resched, we would be woken
362  * up from MWAIT (without an IPI).
363  *
364  * New with Core Duo processors, MWAIT can take some hints based on CPU
365  * capability.
366  */
367 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
368 {
369         struct power_trace it;
370
371         trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
372         if (!need_resched()) {
373                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
374                         clflush((void *)&current_thread_info()->flags);
375
376                 __monitor((void *)&current_thread_info()->flags, 0, 0);
377                 smp_mb();
378                 if (!need_resched())
379                         __mwait(ax, cx);
380         }
381         trace_power_end(&it);
382 }
383
384 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
385 static void mwait_idle(void)
386 {
387         struct power_trace it;
388         if (!need_resched()) {
389                 trace_power_start(&it, POWER_CSTATE, 1);
390                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
391                         clflush((void *)&current_thread_info()->flags);
392
393                 __monitor((void *)&current_thread_info()->flags, 0, 0);
394                 smp_mb();
395                 if (!need_resched())
396                         __sti_mwait(0, 0);
397                 else
398                         local_irq_enable();
399                 trace_power_end(&it);
400         } else
401                 local_irq_enable();
402 }
403
404 /*
405  * On SMP it's slightly faster (but much more power-consuming!)
406  * to poll the ->work.need_resched flag instead of waiting for the
407  * cross-CPU IPI to arrive. Use this option with caution.
408  */
409 static void poll_idle(void)
410 {
411         struct power_trace it;
412
413         trace_power_start(&it, POWER_CSTATE, 0);
414         local_irq_enable();
415         while (!need_resched())
416                 cpu_relax();
417         trace_power_end(&it);
418 }
419
420 /*
421  * mwait selection logic:
422  *
423  * It depends on the CPU. For AMD CPUs that support MWAIT this is
424  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
425  * then depend on a clock divisor and current Pstate of the core. If
426  * all cores of a processor are in halt state (C1) the processor can
427  * enter the C1E (C1 enhanced) state. If mwait is used this will never
428  * happen.
429  *
430  * idle=mwait overrides this decision and forces the usage of mwait.
431  */
432 static int __cpuinitdata force_mwait;
433
434 #define MWAIT_INFO                      0x05
435 #define MWAIT_ECX_EXTENDED_INFO         0x01
436 #define MWAIT_EDX_C1                    0xf0
437
438 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
439 {
440         u32 eax, ebx, ecx, edx;
441
442         if (force_mwait)
443                 return 1;
444
445         if (c->cpuid_level < MWAIT_INFO)
446                 return 0;
447
448         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
449         /* Check, whether EDX has extended info about MWAIT */
450         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
451                 return 1;
452
453         /*
454          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
455          * C1  supports MWAIT
456          */
457         return (edx & MWAIT_EDX_C1);
458 }
459
460 /*
461  * Check for AMD CPUs, which have potentially C1E support
462  */
463 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
464 {
465         if (c->x86_vendor != X86_VENDOR_AMD)
466                 return 0;
467
468         if (c->x86 < 0x0F)
469                 return 0;
470
471         /* Family 0x0f models < rev F do not have C1E */
472         if (c->x86 == 0x0f && c->x86_model < 0x40)
473                 return 0;
474
475         return 1;
476 }
477
478 static cpumask_t c1e_mask = CPU_MASK_NONE;
479 static int c1e_detected;
480
481 void c1e_remove_cpu(int cpu)
482 {
483         cpu_clear(cpu, c1e_mask);
484 }
485
486 /*
487  * C1E aware idle routine. We check for C1E active in the interrupt
488  * pending message MSR. If we detect C1E, then we handle it the same
489  * way as C3 power states (local apic timer and TSC stop)
490  */
491 static void c1e_idle(void)
492 {
493         if (need_resched())
494                 return;
495
496         if (!c1e_detected) {
497                 u32 lo, hi;
498
499                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
500                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
501                         c1e_detected = 1;
502                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
503                                 mark_tsc_unstable("TSC halt in AMD C1E");
504                         printk(KERN_INFO "System has AMD C1E enabled\n");
505                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
506                 }
507         }
508
509         if (c1e_detected) {
510                 int cpu = smp_processor_id();
511
512                 if (!cpu_isset(cpu, c1e_mask)) {
513                         cpu_set(cpu, c1e_mask);
514                         /*
515                          * Force broadcast so ACPI can not interfere. Needs
516                          * to run with interrupts enabled as it uses
517                          * smp_function_call.
518                          */
519                         local_irq_enable();
520                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
521                                            &cpu);
522                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
523                                cpu);
524                         local_irq_disable();
525                 }
526                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
527
528                 default_idle();
529
530                 /*
531                  * The switch back from broadcast mode needs to be
532                  * called with interrupts disabled.
533                  */
534                  local_irq_disable();
535                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
536                  local_irq_enable();
537         } else
538                 default_idle();
539 }
540
541 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
542 {
543 #ifdef CONFIG_SMP
544         if (pm_idle == poll_idle && smp_num_siblings > 1) {
545                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
546                         " performance may degrade.\n");
547         }
548 #endif
549         if (pm_idle)
550                 return;
551
552         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
553                 /*
554                  * One CPU supports mwait => All CPUs supports mwait
555                  */
556                 printk(KERN_INFO "using mwait in idle threads.\n");
557                 pm_idle = mwait_idle;
558         } else if (check_c1e_idle(c)) {
559                 printk(KERN_INFO "using C1E aware idle routine\n");
560                 pm_idle = c1e_idle;
561         } else
562                 pm_idle = default_idle;
563 }
564
565 static int __init idle_setup(char *str)
566 {
567         if (!str)
568                 return -EINVAL;
569
570         if (!strcmp(str, "poll")) {
571                 printk("using polling idle threads.\n");
572                 pm_idle = poll_idle;
573         } else if (!strcmp(str, "mwait"))
574                 force_mwait = 1;
575         else if (!strcmp(str, "halt")) {
576                 /*
577                  * When the boot option of idle=halt is added, halt is
578                  * forced to be used for CPU idle. In such case CPU C2/C3
579                  * won't be used again.
580                  * To continue to load the CPU idle driver, don't touch
581                  * the boot_option_idle_override.
582                  */
583                 pm_idle = default_idle;
584                 idle_halt = 1;
585                 return 0;
586         } else if (!strcmp(str, "nomwait")) {
587                 /*
588                  * If the boot option of "idle=nomwait" is added,
589                  * it means that mwait will be disabled for CPU C2/C3
590                  * states. In such case it won't touch the variable
591                  * of boot_option_idle_override.
592                  */
593                 idle_nomwait = 1;
594                 return 0;
595         } else
596                 return -1;
597
598         boot_option_idle_override = 1;
599         return 0;
600 }
601 early_param("idle", idle_setup);
602