Merge branches 'slab/documentation', 'slab/fixes', 'slob/cleanups' and 'slub/fixes...
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long                    hpet_num_timers;
38 #endif
39 static void __iomem                     *hpet_virt_address;
40
41 struct hpet_dev {
42         struct clock_event_device       evt;
43         unsigned int                    num;
44         int                             cpu;
45         unsigned int                    irq;
46         unsigned int                    flags;
47         char                            name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52         return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57         writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74         iounmap(hpet_virt_address);
75         hpet_virt_address = NULL;
76 }
77
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 static int hpet_verbose;
84
85 static int __init hpet_setup(char *str)
86 {
87         if (str) {
88                 if (!strncmp("disable", str, 7))
89                         boot_hpet_disable = 1;
90                 if (!strncmp("force", str, 5))
91                         hpet_force_user = 1;
92                 if (!strncmp("verbose", str, 7))
93                         hpet_verbose = 1;
94         }
95         return 1;
96 }
97 __setup("hpet=", hpet_setup);
98
99 static int __init disable_hpet(char *str)
100 {
101         boot_hpet_disable = 1;
102         return 1;
103 }
104 __setup("nohpet", disable_hpet);
105
106 static inline int is_hpet_capable(void)
107 {
108         return !boot_hpet_disable && hpet_address;
109 }
110
111 /*
112  * HPET timer interrupt enable / disable
113  */
114 static int hpet_legacy_int_enabled;
115
116 /**
117  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118  */
119 int is_hpet_enabled(void)
120 {
121         return is_hpet_capable() && hpet_legacy_int_enabled;
122 }
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
124
125 static void _hpet_print_config(const char *function, int line)
126 {
127         u32 i, timers, l, h;
128         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129         l = hpet_readl(HPET_ID);
130         h = hpet_readl(HPET_PERIOD);
131         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133         l = hpet_readl(HPET_CFG);
134         h = hpet_readl(HPET_STATUS);
135         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136         l = hpet_readl(HPET_COUNTER);
137         h = hpet_readl(HPET_COUNTER+4);
138         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139
140         for (i = 0; i < timers; i++) {
141                 l = hpet_readl(HPET_Tn_CFG(i));
142                 h = hpet_readl(HPET_Tn_CFG(i)+4);
143                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144                        i, l, h);
145                 l = hpet_readl(HPET_Tn_CMP(i));
146                 h = hpet_readl(HPET_Tn_CMP(i)+4);
147                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148                        i, l, h);
149                 l = hpet_readl(HPET_Tn_ROUTE(i));
150                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152                        i, l, h);
153         }
154 }
155
156 #define hpet_print_config()                                     \
157 do {                                                            \
158         if (hpet_verbose)                                       \
159                 _hpet_print_config(__FUNCTION__, __LINE__);     \
160 } while (0)
161
162 /*
163  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164  * timer 0 and timer 1 in case of RTC emulation.
165  */
166 #ifdef CONFIG_HPET
167
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
169
170 static void hpet_reserve_platform_timers(unsigned long id)
171 {
172         struct hpet __iomem *hpet = hpet_virt_address;
173         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174         unsigned int nrtimers, i;
175         struct hpet_data hd;
176
177         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178
179         memset(&hd, 0, sizeof(hd));
180         hd.hd_phys_address      = hpet_address;
181         hd.hd_address           = hpet;
182         hd.hd_nirqs             = nrtimers;
183         hpet_reserve_timer(&hd, 0);
184
185 #ifdef CONFIG_HPET_EMULATE_RTC
186         hpet_reserve_timer(&hd, 1);
187 #endif
188
189         /*
190          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
192          * don't bother configuring *any* comparator interrupts.
193          */
194         hd.hd_irq[0] = HPET_LEGACY_8254;
195         hd.hd_irq[1] = HPET_LEGACY_RTC;
196
197         for (i = 2; i < nrtimers; timer++, i++) {
198                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
200         }
201
202         hpet_reserve_msi_timers(&hd);
203
204         hpet_alloc(&hd);
205
206 }
207 #else
208 static void hpet_reserve_platform_timers(unsigned long id) { }
209 #endif
210
211 /*
212  * Common hpet info
213  */
214 static unsigned long hpet_period;
215
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217                           struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219                            struct clock_event_device *evt);
220
221 /*
222  * The hpet clock event device
223  */
224 static struct clock_event_device hpet_clockevent = {
225         .name           = "hpet",
226         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227         .set_mode       = hpet_legacy_set_mode,
228         .set_next_event = hpet_legacy_next_event,
229         .shift          = 32,
230         .irq            = 0,
231         .rating         = 50,
232 };
233
234 static void hpet_stop_counter(void)
235 {
236         unsigned long cfg = hpet_readl(HPET_CFG);
237         cfg &= ~HPET_CFG_ENABLE;
238         hpet_writel(cfg, HPET_CFG);
239 }
240
241 static void hpet_reset_counter(void)
242 {
243         hpet_writel(0, HPET_COUNTER);
244         hpet_writel(0, HPET_COUNTER + 4);
245 }
246
247 static void hpet_start_counter(void)
248 {
249         unsigned long cfg = hpet_readl(HPET_CFG);
250         cfg |= HPET_CFG_ENABLE;
251         hpet_writel(cfg, HPET_CFG);
252 }
253
254 static void hpet_restart_counter(void)
255 {
256         hpet_stop_counter();
257         hpet_reset_counter();
258         hpet_start_counter();
259 }
260
261 static void hpet_resume_device(void)
262 {
263         force_hpet_resume();
264 }
265
266 static void hpet_resume_counter(void)
267 {
268         hpet_resume_device();
269         hpet_restart_counter();
270 }
271
272 static void hpet_enable_legacy_int(void)
273 {
274         unsigned long cfg = hpet_readl(HPET_CFG);
275
276         cfg |= HPET_CFG_LEGACY;
277         hpet_writel(cfg, HPET_CFG);
278         hpet_legacy_int_enabled = 1;
279 }
280
281 static void hpet_legacy_clockevent_register(void)
282 {
283         /* Start HPET legacy interrupts */
284         hpet_enable_legacy_int();
285
286         /*
287          * The mult factor is defined as (include/linux/clockchips.h)
288          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
289          * hpet_period is in units of femtoseconds (per cycle), so
290          *  mult/2^shift = cyc/ns = 10^6/hpet_period
291          *  mult = (10^6 * 2^shift)/hpet_period
292          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
293          */
294         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
295                                       hpet_period, hpet_clockevent.shift);
296         /* Calculate the min / max delta */
297         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
298                                                            &hpet_clockevent);
299         /* 5 usec minimum reprogramming delta. */
300         hpet_clockevent.min_delta_ns = 5000;
301
302         /*
303          * Start hpet with the boot cpu mask and make it
304          * global after the IO_APIC has been initialized.
305          */
306         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
307         clockevents_register_device(&hpet_clockevent);
308         global_clock_event = &hpet_clockevent;
309         printk(KERN_DEBUG "hpet clockevent registered\n");
310 }
311
312 static int hpet_setup_msi_irq(unsigned int irq);
313
314 static void hpet_set_mode(enum clock_event_mode mode,
315                           struct clock_event_device *evt, int timer)
316 {
317         unsigned long cfg, cmp, now;
318         uint64_t delta;
319
320         switch (mode) {
321         case CLOCK_EVT_MODE_PERIODIC:
322                 hpet_stop_counter();
323                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
324                 delta >>= evt->shift;
325                 now = hpet_readl(HPET_COUNTER);
326                 cmp = now + (unsigned long) delta;
327                 cfg = hpet_readl(HPET_Tn_CFG(timer));
328                 /* Make sure we use edge triggered interrupts */
329                 cfg &= ~HPET_TN_LEVEL;
330                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
331                        HPET_TN_SETVAL | HPET_TN_32BIT;
332                 hpet_writel(cfg, HPET_Tn_CFG(timer));
333                 hpet_writel(cmp, HPET_Tn_CMP(timer));
334                 udelay(1);
335                 /*
336                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
337                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
338                  * bit is automatically cleared after the first write.
339                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
340                  * Publication # 24674)
341                  */
342                 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
343                 hpet_start_counter();
344                 hpet_print_config();
345                 break;
346
347         case CLOCK_EVT_MODE_ONESHOT:
348                 cfg = hpet_readl(HPET_Tn_CFG(timer));
349                 cfg &= ~HPET_TN_PERIODIC;
350                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
351                 hpet_writel(cfg, HPET_Tn_CFG(timer));
352                 break;
353
354         case CLOCK_EVT_MODE_UNUSED:
355         case CLOCK_EVT_MODE_SHUTDOWN:
356                 cfg = hpet_readl(HPET_Tn_CFG(timer));
357                 cfg &= ~HPET_TN_ENABLE;
358                 hpet_writel(cfg, HPET_Tn_CFG(timer));
359                 break;
360
361         case CLOCK_EVT_MODE_RESUME:
362                 if (timer == 0) {
363                         hpet_enable_legacy_int();
364                 } else {
365                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
366                         hpet_setup_msi_irq(hdev->irq);
367                         disable_irq(hdev->irq);
368                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
369                         enable_irq(hdev->irq);
370                 }
371                 hpet_print_config();
372                 break;
373         }
374 }
375
376 static int hpet_next_event(unsigned long delta,
377                            struct clock_event_device *evt, int timer)
378 {
379         u32 cnt;
380
381         cnt = hpet_readl(HPET_COUNTER);
382         cnt += (u32) delta;
383         hpet_writel(cnt, HPET_Tn_CMP(timer));
384
385         /*
386          * We need to read back the CMP register to make sure that
387          * what we wrote hit the chip before we compare it to the
388          * counter.
389          */
390         WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
391
392         return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
393 }
394
395 static void hpet_legacy_set_mode(enum clock_event_mode mode,
396                         struct clock_event_device *evt)
397 {
398         hpet_set_mode(mode, evt, 0);
399 }
400
401 static int hpet_legacy_next_event(unsigned long delta,
402                         struct clock_event_device *evt)
403 {
404         return hpet_next_event(delta, evt, 0);
405 }
406
407 /*
408  * HPET MSI Support
409  */
410 #ifdef CONFIG_PCI_MSI
411
412 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
413 static struct hpet_dev  *hpet_devs;
414
415 void hpet_msi_unmask(unsigned int irq)
416 {
417         struct hpet_dev *hdev = get_irq_data(irq);
418         unsigned long cfg;
419
420         /* unmask it */
421         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
422         cfg |= HPET_TN_FSB;
423         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
424 }
425
426 void hpet_msi_mask(unsigned int irq)
427 {
428         unsigned long cfg;
429         struct hpet_dev *hdev = get_irq_data(irq);
430
431         /* mask it */
432         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
433         cfg &= ~HPET_TN_FSB;
434         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
435 }
436
437 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
438 {
439         struct hpet_dev *hdev = get_irq_data(irq);
440
441         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
442         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
443 }
444
445 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
446 {
447         struct hpet_dev *hdev = get_irq_data(irq);
448
449         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
450         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
451         msg->address_hi = 0;
452 }
453
454 static void hpet_msi_set_mode(enum clock_event_mode mode,
455                                 struct clock_event_device *evt)
456 {
457         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
458         hpet_set_mode(mode, evt, hdev->num);
459 }
460
461 static int hpet_msi_next_event(unsigned long delta,
462                                 struct clock_event_device *evt)
463 {
464         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
465         return hpet_next_event(delta, evt, hdev->num);
466 }
467
468 static int hpet_setup_msi_irq(unsigned int irq)
469 {
470         if (arch_setup_hpet_msi(irq)) {
471                 destroy_irq(irq);
472                 return -EINVAL;
473         }
474         return 0;
475 }
476
477 static int hpet_assign_irq(struct hpet_dev *dev)
478 {
479         unsigned int irq;
480
481         irq = create_irq();
482         if (!irq)
483                 return -EINVAL;
484
485         set_irq_data(irq, dev);
486
487         if (hpet_setup_msi_irq(irq))
488                 return -EINVAL;
489
490         dev->irq = irq;
491         return 0;
492 }
493
494 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
495 {
496         struct hpet_dev *dev = (struct hpet_dev *)data;
497         struct clock_event_device *hevt = &dev->evt;
498
499         if (!hevt->event_handler) {
500                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
501                                 dev->num);
502                 return IRQ_HANDLED;
503         }
504
505         hevt->event_handler(hevt);
506         return IRQ_HANDLED;
507 }
508
509 static int hpet_setup_irq(struct hpet_dev *dev)
510 {
511
512         if (request_irq(dev->irq, hpet_interrupt_handler,
513                         IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
514                 return -1;
515
516         disable_irq(dev->irq);
517         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
518         enable_irq(dev->irq);
519
520         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
521                          dev->name, dev->irq);
522
523         return 0;
524 }
525
526 /* This should be called in specific @cpu */
527 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
528 {
529         struct clock_event_device *evt = &hdev->evt;
530         uint64_t hpet_freq;
531
532         WARN_ON(cpu != smp_processor_id());
533         if (!(hdev->flags & HPET_DEV_VALID))
534                 return;
535
536         if (hpet_setup_msi_irq(hdev->irq))
537                 return;
538
539         hdev->cpu = cpu;
540         per_cpu(cpu_hpet_dev, cpu) = hdev;
541         evt->name = hdev->name;
542         hpet_setup_irq(hdev);
543         evt->irq = hdev->irq;
544
545         evt->rating = 110;
546         evt->features = CLOCK_EVT_FEAT_ONESHOT;
547         if (hdev->flags & HPET_DEV_PERI_CAP)
548                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
549
550         evt->set_mode = hpet_msi_set_mode;
551         evt->set_next_event = hpet_msi_next_event;
552         evt->shift = 32;
553
554         /*
555          * The period is a femto seconds value. We need to calculate the
556          * scaled math multiplication factor for nanosecond to hpet tick
557          * conversion.
558          */
559         hpet_freq = 1000000000000000ULL;
560         do_div(hpet_freq, hpet_period);
561         evt->mult = div_sc((unsigned long) hpet_freq,
562                                       NSEC_PER_SEC, evt->shift);
563         /* Calculate the max delta */
564         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
565         /* 5 usec minimum reprogramming delta. */
566         evt->min_delta_ns = 5000;
567
568         evt->cpumask = cpumask_of(hdev->cpu);
569         clockevents_register_device(evt);
570 }
571
572 #ifdef CONFIG_HPET
573 /* Reserve at least one timer for userspace (/dev/hpet) */
574 #define RESERVE_TIMERS 1
575 #else
576 #define RESERVE_TIMERS 0
577 #endif
578
579 static void hpet_msi_capability_lookup(unsigned int start_timer)
580 {
581         unsigned int id;
582         unsigned int num_timers;
583         unsigned int num_timers_used = 0;
584         int i;
585
586         id = hpet_readl(HPET_ID);
587
588         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
589         num_timers++; /* Value read out starts from 0 */
590         hpet_print_config();
591
592         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
593         if (!hpet_devs)
594                 return;
595
596         hpet_num_timers = num_timers;
597
598         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
599                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
600                 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
601
602                 /* Only consider HPET timer with MSI support */
603                 if (!(cfg & HPET_TN_FSB_CAP))
604                         continue;
605
606                 hdev->flags = 0;
607                 if (cfg & HPET_TN_PERIODIC_CAP)
608                         hdev->flags |= HPET_DEV_PERI_CAP;
609                 hdev->num = i;
610
611                 sprintf(hdev->name, "hpet%d", i);
612                 if (hpet_assign_irq(hdev))
613                         continue;
614
615                 hdev->flags |= HPET_DEV_FSB_CAP;
616                 hdev->flags |= HPET_DEV_VALID;
617                 num_timers_used++;
618                 if (num_timers_used == num_possible_cpus())
619                         break;
620         }
621
622         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623                 num_timers, num_timers_used);
624 }
625
626 #ifdef CONFIG_HPET
627 static void hpet_reserve_msi_timers(struct hpet_data *hd)
628 {
629         int i;
630
631         if (!hpet_devs)
632                 return;
633
634         for (i = 0; i < hpet_num_timers; i++) {
635                 struct hpet_dev *hdev = &hpet_devs[i];
636
637                 if (!(hdev->flags & HPET_DEV_VALID))
638                         continue;
639
640                 hd->hd_irq[hdev->num] = hdev->irq;
641                 hpet_reserve_timer(hd, hdev->num);
642         }
643 }
644 #endif
645
646 static struct hpet_dev *hpet_get_unused_timer(void)
647 {
648         int i;
649
650         if (!hpet_devs)
651                 return NULL;
652
653         for (i = 0; i < hpet_num_timers; i++) {
654                 struct hpet_dev *hdev = &hpet_devs[i];
655
656                 if (!(hdev->flags & HPET_DEV_VALID))
657                         continue;
658                 if (test_and_set_bit(HPET_DEV_USED_BIT,
659                         (unsigned long *)&hdev->flags))
660                         continue;
661                 return hdev;
662         }
663         return NULL;
664 }
665
666 struct hpet_work_struct {
667         struct delayed_work work;
668         struct completion complete;
669 };
670
671 static void hpet_work(struct work_struct *w)
672 {
673         struct hpet_dev *hdev;
674         int cpu = smp_processor_id();
675         struct hpet_work_struct *hpet_work;
676
677         hpet_work = container_of(w, struct hpet_work_struct, work.work);
678
679         hdev = hpet_get_unused_timer();
680         if (hdev)
681                 init_one_hpet_msi_clockevent(hdev, cpu);
682
683         complete(&hpet_work->complete);
684 }
685
686 static int hpet_cpuhp_notify(struct notifier_block *n,
687                 unsigned long action, void *hcpu)
688 {
689         unsigned long cpu = (unsigned long)hcpu;
690         struct hpet_work_struct work;
691         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
692
693         switch (action & 0xf) {
694         case CPU_ONLINE:
695                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
696                 init_completion(&work.complete);
697                 /* FIXME: add schedule_work_on() */
698                 schedule_delayed_work_on(cpu, &work.work, 0);
699                 wait_for_completion(&work.complete);
700                 destroy_timer_on_stack(&work.work.timer);
701                 break;
702         case CPU_DEAD:
703                 if (hdev) {
704                         free_irq(hdev->irq, hdev);
705                         hdev->flags &= ~HPET_DEV_USED;
706                         per_cpu(cpu_hpet_dev, cpu) = NULL;
707                 }
708                 break;
709         }
710         return NOTIFY_OK;
711 }
712 #else
713
714 static int hpet_setup_msi_irq(unsigned int irq)
715 {
716         return 0;
717 }
718 static void hpet_msi_capability_lookup(unsigned int start_timer)
719 {
720         return;
721 }
722
723 #ifdef CONFIG_HPET
724 static void hpet_reserve_msi_timers(struct hpet_data *hd)
725 {
726         return;
727 }
728 #endif
729
730 static int hpet_cpuhp_notify(struct notifier_block *n,
731                 unsigned long action, void *hcpu)
732 {
733         return NOTIFY_OK;
734 }
735
736 #endif
737
738 /*
739  * Clock source related code
740  */
741 static cycle_t read_hpet(struct clocksource *cs)
742 {
743         return (cycle_t)hpet_readl(HPET_COUNTER);
744 }
745
746 #ifdef CONFIG_X86_64
747 static cycle_t __vsyscall_fn vread_hpet(void)
748 {
749         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
750 }
751 #endif
752
753 static struct clocksource clocksource_hpet = {
754         .name           = "hpet",
755         .rating         = 250,
756         .read           = read_hpet,
757         .mask           = HPET_MASK,
758         .shift          = HPET_SHIFT,
759         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
760         .resume         = hpet_resume_counter,
761 #ifdef CONFIG_X86_64
762         .vread          = vread_hpet,
763 #endif
764 };
765
766 static int hpet_clocksource_register(void)
767 {
768         u64 start, now;
769         cycle_t t1;
770
771         /* Start the counter */
772         hpet_restart_counter();
773
774         /* Verify whether hpet counter works */
775         t1 = hpet_readl(HPET_COUNTER);
776         rdtscll(start);
777
778         /*
779          * We don't know the TSC frequency yet, but waiting for
780          * 200000 TSC cycles is safe:
781          * 4 GHz == 50us
782          * 1 GHz == 200us
783          */
784         do {
785                 rep_nop();
786                 rdtscll(now);
787         } while ((now - start) < 200000UL);
788
789         if (t1 == hpet_readl(HPET_COUNTER)) {
790                 printk(KERN_WARNING
791                        "HPET counter not counting. HPET disabled\n");
792                 return -ENODEV;
793         }
794
795         /*
796          * The definition of mult is (include/linux/clocksource.h)
797          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
798          * so we first need to convert hpet_period to ns/cyc units:
799          *  mult/2^shift = ns/cyc = hpet_period/10^6
800          *  mult = (hpet_period * 2^shift)/10^6
801          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
802          */
803         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
804
805         clocksource_register(&clocksource_hpet);
806
807         return 0;
808 }
809
810 /**
811  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
812  */
813 int __init hpet_enable(void)
814 {
815         unsigned long id;
816         int i;
817
818         if (!is_hpet_capable())
819                 return 0;
820
821         hpet_set_mapping();
822
823         /*
824          * Read the period and check for a sane value:
825          */
826         hpet_period = hpet_readl(HPET_PERIOD);
827
828         /*
829          * AMD SB700 based systems with spread spectrum enabled use a
830          * SMM based HPET emulation to provide proper frequency
831          * setting. The SMM code is initialized with the first HPET
832          * register access and takes some time to complete. During
833          * this time the config register reads 0xffffffff. We check
834          * for max. 1000 loops whether the config register reads a non
835          * 0xffffffff value to make sure that HPET is up and running
836          * before we go further. A counting loop is safe, as the HPET
837          * access takes thousands of CPU cycles. On non SB700 based
838          * machines this check is only done once and has no side
839          * effects.
840          */
841         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
842                 if (i == 1000) {
843                         printk(KERN_WARNING
844                                "HPET config register value = 0xFFFFFFFF. "
845                                "Disabling HPET\n");
846                         goto out_nohpet;
847                 }
848         }
849
850         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
851                 goto out_nohpet;
852
853         /*
854          * Read the HPET ID register to retrieve the IRQ routing
855          * information and the number of channels
856          */
857         id = hpet_readl(HPET_ID);
858         hpet_print_config();
859
860 #ifdef CONFIG_HPET_EMULATE_RTC
861         /*
862          * The legacy routing mode needs at least two channels, tick timer
863          * and the rtc emulation channel.
864          */
865         if (!(id & HPET_ID_NUMBER))
866                 goto out_nohpet;
867 #endif
868
869         if (hpet_clocksource_register())
870                 goto out_nohpet;
871
872         if (id & HPET_ID_LEGSUP) {
873                 hpet_legacy_clockevent_register();
874                 hpet_msi_capability_lookup(2);
875                 return 1;
876         }
877         hpet_msi_capability_lookup(0);
878         return 0;
879
880 out_nohpet:
881         hpet_clear_mapping();
882         hpet_address = 0;
883         return 0;
884 }
885
886 /*
887  * Needs to be late, as the reserve_timer code calls kalloc !
888  *
889  * Not a problem on i386 as hpet_enable is called from late_time_init,
890  * but on x86_64 it is necessary !
891  */
892 static __init int hpet_late_init(void)
893 {
894         int cpu;
895
896         if (boot_hpet_disable)
897                 return -ENODEV;
898
899         if (!hpet_address) {
900                 if (!force_hpet_address)
901                         return -ENODEV;
902
903                 hpet_address = force_hpet_address;
904                 hpet_enable();
905         }
906
907         if (!hpet_virt_address)
908                 return -ENODEV;
909
910         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
911         hpet_print_config();
912
913         for_each_online_cpu(cpu) {
914                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
915         }
916
917         /* This notifier should be called after workqueue is ready */
918         hotcpu_notifier(hpet_cpuhp_notify, -20);
919
920         return 0;
921 }
922 fs_initcall(hpet_late_init);
923
924 void hpet_disable(void)
925 {
926         if (is_hpet_capable()) {
927                 unsigned long cfg = hpet_readl(HPET_CFG);
928
929                 if (hpet_legacy_int_enabled) {
930                         cfg &= ~HPET_CFG_LEGACY;
931                         hpet_legacy_int_enabled = 0;
932                 }
933                 cfg &= ~HPET_CFG_ENABLE;
934                 hpet_writel(cfg, HPET_CFG);
935         }
936 }
937
938 #ifdef CONFIG_HPET_EMULATE_RTC
939
940 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
941  * is enabled, we support RTC interrupt functionality in software.
942  * RTC has 3 kinds of interrupts:
943  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
944  *    is updated
945  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
946  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
947  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
948  * (1) and (2) above are implemented using polling at a frequency of
949  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
950  * overhead. (DEFAULT_RTC_INT_FREQ)
951  * For (3), we use interrupts at 64Hz or user specified periodic
952  * frequency, whichever is higher.
953  */
954 #include <linux/mc146818rtc.h>
955 #include <linux/rtc.h>
956 #include <asm/rtc.h>
957
958 #define DEFAULT_RTC_INT_FREQ    64
959 #define DEFAULT_RTC_SHIFT       6
960 #define RTC_NUM_INTS            1
961
962 static unsigned long hpet_rtc_flags;
963 static int hpet_prev_update_sec;
964 static struct rtc_time hpet_alarm_time;
965 static unsigned long hpet_pie_count;
966 static u32 hpet_t1_cmp;
967 static unsigned long hpet_default_delta;
968 static unsigned long hpet_pie_delta;
969 static unsigned long hpet_pie_limit;
970
971 static rtc_irq_handler irq_handler;
972
973 /*
974  * Check that the hpet counter c1 is ahead of the c2
975  */
976 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
977 {
978         return (s32)(c2 - c1) < 0;
979 }
980
981 /*
982  * Registers a IRQ handler.
983  */
984 int hpet_register_irq_handler(rtc_irq_handler handler)
985 {
986         if (!is_hpet_enabled())
987                 return -ENODEV;
988         if (irq_handler)
989                 return -EBUSY;
990
991         irq_handler = handler;
992
993         return 0;
994 }
995 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
996
997 /*
998  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
999  * and does cleanup.
1000  */
1001 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1002 {
1003         if (!is_hpet_enabled())
1004                 return;
1005
1006         irq_handler = NULL;
1007         hpet_rtc_flags = 0;
1008 }
1009 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1010
1011 /*
1012  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1013  * is not supported by all HPET implementations for timer 1.
1014  *
1015  * hpet_rtc_timer_init() is called when the rtc is initialized.
1016  */
1017 int hpet_rtc_timer_init(void)
1018 {
1019         unsigned long cfg, cnt, delta, flags;
1020
1021         if (!is_hpet_enabled())
1022                 return 0;
1023
1024         if (!hpet_default_delta) {
1025                 uint64_t clc;
1026
1027                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1028                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1029                 hpet_default_delta = (unsigned long) clc;
1030         }
1031
1032         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1033                 delta = hpet_default_delta;
1034         else
1035                 delta = hpet_pie_delta;
1036
1037         local_irq_save(flags);
1038
1039         cnt = delta + hpet_readl(HPET_COUNTER);
1040         hpet_writel(cnt, HPET_T1_CMP);
1041         hpet_t1_cmp = cnt;
1042
1043         cfg = hpet_readl(HPET_T1_CFG);
1044         cfg &= ~HPET_TN_PERIODIC;
1045         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1046         hpet_writel(cfg, HPET_T1_CFG);
1047
1048         local_irq_restore(flags);
1049
1050         return 1;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053
1054 /*
1055  * The functions below are called from rtc driver.
1056  * Return 0 if HPET is not being used.
1057  * Otherwise do the necessary changes and return 1.
1058  */
1059 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1060 {
1061         if (!is_hpet_enabled())
1062                 return 0;
1063
1064         hpet_rtc_flags &= ~bit_mask;
1065         return 1;
1066 }
1067 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1068
1069 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1070 {
1071         unsigned long oldbits = hpet_rtc_flags;
1072
1073         if (!is_hpet_enabled())
1074                 return 0;
1075
1076         hpet_rtc_flags |= bit_mask;
1077
1078         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1079                 hpet_prev_update_sec = -1;
1080
1081         if (!oldbits)
1082                 hpet_rtc_timer_init();
1083
1084         return 1;
1085 }
1086 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1087
1088 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1089                         unsigned char sec)
1090 {
1091         if (!is_hpet_enabled())
1092                 return 0;
1093
1094         hpet_alarm_time.tm_hour = hrs;
1095         hpet_alarm_time.tm_min = min;
1096         hpet_alarm_time.tm_sec = sec;
1097
1098         return 1;
1099 }
1100 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1101
1102 int hpet_set_periodic_freq(unsigned long freq)
1103 {
1104         uint64_t clc;
1105
1106         if (!is_hpet_enabled())
1107                 return 0;
1108
1109         if (freq <= DEFAULT_RTC_INT_FREQ)
1110                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1111         else {
1112                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1113                 do_div(clc, freq);
1114                 clc >>= hpet_clockevent.shift;
1115                 hpet_pie_delta = (unsigned long) clc;
1116         }
1117         return 1;
1118 }
1119 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1120
1121 int hpet_rtc_dropped_irq(void)
1122 {
1123         return is_hpet_enabled();
1124 }
1125 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1126
1127 static void hpet_rtc_timer_reinit(void)
1128 {
1129         unsigned long cfg, delta;
1130         int lost_ints = -1;
1131
1132         if (unlikely(!hpet_rtc_flags)) {
1133                 cfg = hpet_readl(HPET_T1_CFG);
1134                 cfg &= ~HPET_TN_ENABLE;
1135                 hpet_writel(cfg, HPET_T1_CFG);
1136                 return;
1137         }
1138
1139         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1140                 delta = hpet_default_delta;
1141         else
1142                 delta = hpet_pie_delta;
1143
1144         /*
1145          * Increment the comparator value until we are ahead of the
1146          * current count.
1147          */
1148         do {
1149                 hpet_t1_cmp += delta;
1150                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1151                 lost_ints++;
1152         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1153
1154         if (lost_ints) {
1155                 if (hpet_rtc_flags & RTC_PIE)
1156                         hpet_pie_count += lost_ints;
1157                 if (printk_ratelimit())
1158                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1159                                 lost_ints);
1160         }
1161 }
1162
1163 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1164 {
1165         struct rtc_time curr_time;
1166         unsigned long rtc_int_flag = 0;
1167
1168         hpet_rtc_timer_reinit();
1169         memset(&curr_time, 0, sizeof(struct rtc_time));
1170
1171         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1172                 get_rtc_time(&curr_time);
1173
1174         if (hpet_rtc_flags & RTC_UIE &&
1175             curr_time.tm_sec != hpet_prev_update_sec) {
1176                 if (hpet_prev_update_sec >= 0)
1177                         rtc_int_flag = RTC_UF;
1178                 hpet_prev_update_sec = curr_time.tm_sec;
1179         }
1180
1181         if (hpet_rtc_flags & RTC_PIE &&
1182             ++hpet_pie_count >= hpet_pie_limit) {
1183                 rtc_int_flag |= RTC_PF;
1184                 hpet_pie_count = 0;
1185         }
1186
1187         if (hpet_rtc_flags & RTC_AIE &&
1188             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1189             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1190             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1191                         rtc_int_flag |= RTC_AF;
1192
1193         if (rtc_int_flag) {
1194                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1195                 if (irq_handler)
1196                         irq_handler(rtc_int_flag, dev_id);
1197         }
1198         return IRQ_HANDLED;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1201 #endif