Merge commit 'v3.0' into x86/vdso
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define HPET_MIN_CYCLES                 128
31 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 u8                                      hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long                    hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58         return readl(hpet_virt_address + a);
59 }
60
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63         writel(d, hpet_virt_address + a);
64 }
65
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69
70 static inline void hpet_set_mapping(void)
71 {
72         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
75 #endif
76 }
77
78 static inline void hpet_clear_mapping(void)
79 {
80         iounmap(hpet_virt_address);
81         hpet_virt_address = NULL;
82 }
83
84 /*
85  * HPET command line enable / disable
86  */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90
91 static int __init hpet_setup(char *str)
92 {
93         if (str) {
94                 if (!strncmp("disable", str, 7))
95                         boot_hpet_disable = 1;
96                 if (!strncmp("force", str, 5))
97                         hpet_force_user = 1;
98                 if (!strncmp("verbose", str, 7))
99                         hpet_verbose = 1;
100         }
101         return 1;
102 }
103 __setup("hpet=", hpet_setup);
104
105 static int __init disable_hpet(char *str)
106 {
107         boot_hpet_disable = 1;
108         return 1;
109 }
110 __setup("nohpet", disable_hpet);
111
112 static inline int is_hpet_capable(void)
113 {
114         return !boot_hpet_disable && hpet_address;
115 }
116
117 /*
118  * HPET timer interrupt enable / disable
119  */
120 static int hpet_legacy_int_enabled;
121
122 /**
123  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124  */
125 int is_hpet_enabled(void)
126 {
127         return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130
131 static void _hpet_print_config(const char *function, int line)
132 {
133         u32 i, timers, l, h;
134         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135         l = hpet_readl(HPET_ID);
136         h = hpet_readl(HPET_PERIOD);
137         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139         l = hpet_readl(HPET_CFG);
140         h = hpet_readl(HPET_STATUS);
141         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142         l = hpet_readl(HPET_COUNTER);
143         h = hpet_readl(HPET_COUNTER+4);
144         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145
146         for (i = 0; i < timers; i++) {
147                 l = hpet_readl(HPET_Tn_CFG(i));
148                 h = hpet_readl(HPET_Tn_CFG(i)+4);
149                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150                        i, l, h);
151                 l = hpet_readl(HPET_Tn_CMP(i));
152                 h = hpet_readl(HPET_Tn_CMP(i)+4);
153                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154                        i, l, h);
155                 l = hpet_readl(HPET_Tn_ROUTE(i));
156                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158                        i, l, h);
159         }
160 }
161
162 #define hpet_print_config()                                     \
163 do {                                                            \
164         if (hpet_verbose)                                       \
165                 _hpet_print_config(__FUNCTION__, __LINE__);     \
166 } while (0)
167
168 /*
169  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170  * timer 0 and timer 1 in case of RTC emulation.
171  */
172 #ifdef CONFIG_HPET
173
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178         struct hpet __iomem *hpet = hpet_virt_address;
179         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180         unsigned int nrtimers, i;
181         struct hpet_data hd;
182
183         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184
185         memset(&hd, 0, sizeof(hd));
186         hd.hd_phys_address      = hpet_address;
187         hd.hd_address           = hpet;
188         hd.hd_nirqs             = nrtimers;
189         hpet_reserve_timer(&hd, 0);
190
191 #ifdef CONFIG_HPET_EMULATE_RTC
192         hpet_reserve_timer(&hd, 1);
193 #endif
194
195         /*
196          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
198          * don't bother configuring *any* comparator interrupts.
199          */
200         hd.hd_irq[0] = HPET_LEGACY_8254;
201         hd.hd_irq[1] = HPET_LEGACY_RTC;
202
203         for (i = 2; i < nrtimers; timer++, i++) {
204                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
205                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206         }
207
208         hpet_reserve_msi_timers(&hd);
209
210         hpet_alloc(&hd);
211
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216
217 /*
218  * Common hpet info
219  */
220 static unsigned long hpet_freq;
221
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223                           struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225                            struct clock_event_device *evt);
226
227 /*
228  * The hpet clock event device
229  */
230 static struct clock_event_device hpet_clockevent = {
231         .name           = "hpet",
232         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233         .set_mode       = hpet_legacy_set_mode,
234         .set_next_event = hpet_legacy_next_event,
235         .irq            = 0,
236         .rating         = 50,
237 };
238
239 static void hpet_stop_counter(void)
240 {
241         unsigned long cfg = hpet_readl(HPET_CFG);
242         cfg &= ~HPET_CFG_ENABLE;
243         hpet_writel(cfg, HPET_CFG);
244 }
245
246 static void hpet_reset_counter(void)
247 {
248         hpet_writel(0, HPET_COUNTER);
249         hpet_writel(0, HPET_COUNTER + 4);
250 }
251
252 static void hpet_start_counter(void)
253 {
254         unsigned int cfg = hpet_readl(HPET_CFG);
255         cfg |= HPET_CFG_ENABLE;
256         hpet_writel(cfg, HPET_CFG);
257 }
258
259 static void hpet_restart_counter(void)
260 {
261         hpet_stop_counter();
262         hpet_reset_counter();
263         hpet_start_counter();
264 }
265
266 static void hpet_resume_device(void)
267 {
268         force_hpet_resume();
269 }
270
271 static void hpet_resume_counter(struct clocksource *cs)
272 {
273         hpet_resume_device();
274         hpet_restart_counter();
275 }
276
277 static void hpet_enable_legacy_int(void)
278 {
279         unsigned int cfg = hpet_readl(HPET_CFG);
280
281         cfg |= HPET_CFG_LEGACY;
282         hpet_writel(cfg, HPET_CFG);
283         hpet_legacy_int_enabled = 1;
284 }
285
286 static void hpet_legacy_clockevent_register(void)
287 {
288         /* Start HPET legacy interrupts */
289         hpet_enable_legacy_int();
290
291         /*
292          * Start hpet with the boot cpu mask and make it
293          * global after the IO_APIC has been initialized.
294          */
295         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
296         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
297                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
298         global_clock_event = &hpet_clockevent;
299         printk(KERN_DEBUG "hpet clockevent registered\n");
300 }
301
302 static int hpet_setup_msi_irq(unsigned int irq);
303
304 static void hpet_set_mode(enum clock_event_mode mode,
305                           struct clock_event_device *evt, int timer)
306 {
307         unsigned int cfg, cmp, now;
308         uint64_t delta;
309
310         switch (mode) {
311         case CLOCK_EVT_MODE_PERIODIC:
312                 hpet_stop_counter();
313                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
314                 delta >>= evt->shift;
315                 now = hpet_readl(HPET_COUNTER);
316                 cmp = now + (unsigned int) delta;
317                 cfg = hpet_readl(HPET_Tn_CFG(timer));
318                 /* Make sure we use edge triggered interrupts */
319                 cfg &= ~HPET_TN_LEVEL;
320                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
321                        HPET_TN_SETVAL | HPET_TN_32BIT;
322                 hpet_writel(cfg, HPET_Tn_CFG(timer));
323                 hpet_writel(cmp, HPET_Tn_CMP(timer));
324                 udelay(1);
325                 /*
326                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
327                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
328                  * bit is automatically cleared after the first write.
329                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
330                  * Publication # 24674)
331                  */
332                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
333                 hpet_start_counter();
334                 hpet_print_config();
335                 break;
336
337         case CLOCK_EVT_MODE_ONESHOT:
338                 cfg = hpet_readl(HPET_Tn_CFG(timer));
339                 cfg &= ~HPET_TN_PERIODIC;
340                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
341                 hpet_writel(cfg, HPET_Tn_CFG(timer));
342                 break;
343
344         case CLOCK_EVT_MODE_UNUSED:
345         case CLOCK_EVT_MODE_SHUTDOWN:
346                 cfg = hpet_readl(HPET_Tn_CFG(timer));
347                 cfg &= ~HPET_TN_ENABLE;
348                 hpet_writel(cfg, HPET_Tn_CFG(timer));
349                 break;
350
351         case CLOCK_EVT_MODE_RESUME:
352                 if (timer == 0) {
353                         hpet_enable_legacy_int();
354                 } else {
355                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
356                         hpet_setup_msi_irq(hdev->irq);
357                         disable_irq(hdev->irq);
358                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359                         enable_irq(hdev->irq);
360                 }
361                 hpet_print_config();
362                 break;
363         }
364 }
365
366 static int hpet_next_event(unsigned long delta,
367                            struct clock_event_device *evt, int timer)
368 {
369         u32 cnt;
370         s32 res;
371
372         cnt = hpet_readl(HPET_COUNTER);
373         cnt += (u32) delta;
374         hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376         /*
377          * HPETs are a complete disaster. The compare register is
378          * based on a equal comparison and neither provides a less
379          * than or equal functionality (which would require to take
380          * the wraparound into account) nor a simple count down event
381          * mode. Further the write to the comparator register is
382          * delayed internally up to two HPET clock cycles in certain
383          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384          * longer delays. We worked around that by reading back the
385          * compare register, but that required another workaround for
386          * ICH9,10 chips where the first readout after write can
387          * return the old stale value. We already had a minimum
388          * programming delta of 5us enforced, but a NMI or SMI hitting
389          * between the counter readout and the comparator write can
390          * move us behind that point easily. Now instead of reading
391          * the compare register back several times, we make the ETIME
392          * decision based on the following: Return ETIME if the
393          * counter value after the write is less than HPET_MIN_CYCLES
394          * away from the event or if the counter is already ahead of
395          * the event. The minimum programming delta for the generic
396          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397          */
398         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400         return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
403 static void hpet_legacy_set_mode(enum clock_event_mode mode,
404                         struct clock_event_device *evt)
405 {
406         hpet_set_mode(mode, evt, 0);
407 }
408
409 static int hpet_legacy_next_event(unsigned long delta,
410                         struct clock_event_device *evt)
411 {
412         return hpet_next_event(delta, evt, 0);
413 }
414
415 /*
416  * HPET MSI Support
417  */
418 #ifdef CONFIG_PCI_MSI
419
420 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
421 static struct hpet_dev  *hpet_devs;
422
423 void hpet_msi_unmask(struct irq_data *data)
424 {
425         struct hpet_dev *hdev = data->handler_data;
426         unsigned int cfg;
427
428         /* unmask it */
429         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
430         cfg |= HPET_TN_FSB;
431         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
432 }
433
434 void hpet_msi_mask(struct irq_data *data)
435 {
436         struct hpet_dev *hdev = data->handler_data;
437         unsigned int cfg;
438
439         /* mask it */
440         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441         cfg &= ~HPET_TN_FSB;
442         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443 }
444
445 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
446 {
447         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
448         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
449 }
450
451 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
452 {
453         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
454         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
455         msg->address_hi = 0;
456 }
457
458 static void hpet_msi_set_mode(enum clock_event_mode mode,
459                                 struct clock_event_device *evt)
460 {
461         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
462         hpet_set_mode(mode, evt, hdev->num);
463 }
464
465 static int hpet_msi_next_event(unsigned long delta,
466                                 struct clock_event_device *evt)
467 {
468         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469         return hpet_next_event(delta, evt, hdev->num);
470 }
471
472 static int hpet_setup_msi_irq(unsigned int irq)
473 {
474         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
475                 destroy_irq(irq);
476                 return -EINVAL;
477         }
478         return 0;
479 }
480
481 static int hpet_assign_irq(struct hpet_dev *dev)
482 {
483         unsigned int irq;
484
485         irq = create_irq_nr(0, -1);
486         if (!irq)
487                 return -EINVAL;
488
489         irq_set_handler_data(irq, dev);
490
491         if (hpet_setup_msi_irq(irq))
492                 return -EINVAL;
493
494         dev->irq = irq;
495         return 0;
496 }
497
498 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
499 {
500         struct hpet_dev *dev = (struct hpet_dev *)data;
501         struct clock_event_device *hevt = &dev->evt;
502
503         if (!hevt->event_handler) {
504                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
505                                 dev->num);
506                 return IRQ_HANDLED;
507         }
508
509         hevt->event_handler(hevt);
510         return IRQ_HANDLED;
511 }
512
513 static int hpet_setup_irq(struct hpet_dev *dev)
514 {
515
516         if (request_irq(dev->irq, hpet_interrupt_handler,
517                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
518                         dev->name, dev))
519                 return -1;
520
521         disable_irq(dev->irq);
522         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
523         enable_irq(dev->irq);
524
525         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
526                          dev->name, dev->irq);
527
528         return 0;
529 }
530
531 /* This should be called in specific @cpu */
532 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
533 {
534         struct clock_event_device *evt = &hdev->evt;
535
536         WARN_ON(cpu != smp_processor_id());
537         if (!(hdev->flags & HPET_DEV_VALID))
538                 return;
539
540         if (hpet_setup_msi_irq(hdev->irq))
541                 return;
542
543         hdev->cpu = cpu;
544         per_cpu(cpu_hpet_dev, cpu) = hdev;
545         evt->name = hdev->name;
546         hpet_setup_irq(hdev);
547         evt->irq = hdev->irq;
548
549         evt->rating = 110;
550         evt->features = CLOCK_EVT_FEAT_ONESHOT;
551         if (hdev->flags & HPET_DEV_PERI_CAP)
552                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
553
554         evt->set_mode = hpet_msi_set_mode;
555         evt->set_next_event = hpet_msi_next_event;
556         evt->cpumask = cpumask_of(hdev->cpu);
557
558         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
559                                         0x7FFFFFFF);
560 }
561
562 #ifdef CONFIG_HPET
563 /* Reserve at least one timer for userspace (/dev/hpet) */
564 #define RESERVE_TIMERS 1
565 #else
566 #define RESERVE_TIMERS 0
567 #endif
568
569 static void hpet_msi_capability_lookup(unsigned int start_timer)
570 {
571         unsigned int id;
572         unsigned int num_timers;
573         unsigned int num_timers_used = 0;
574         int i;
575
576         if (hpet_msi_disable)
577                 return;
578
579         if (boot_cpu_has(X86_FEATURE_ARAT))
580                 return;
581         id = hpet_readl(HPET_ID);
582
583         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
584         num_timers++; /* Value read out starts from 0 */
585         hpet_print_config();
586
587         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
588         if (!hpet_devs)
589                 return;
590
591         hpet_num_timers = num_timers;
592
593         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
594                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
595                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
596
597                 /* Only consider HPET timer with MSI support */
598                 if (!(cfg & HPET_TN_FSB_CAP))
599                         continue;
600
601                 hdev->flags = 0;
602                 if (cfg & HPET_TN_PERIODIC_CAP)
603                         hdev->flags |= HPET_DEV_PERI_CAP;
604                 hdev->num = i;
605
606                 sprintf(hdev->name, "hpet%d", i);
607                 if (hpet_assign_irq(hdev))
608                         continue;
609
610                 hdev->flags |= HPET_DEV_FSB_CAP;
611                 hdev->flags |= HPET_DEV_VALID;
612                 num_timers_used++;
613                 if (num_timers_used == num_possible_cpus())
614                         break;
615         }
616
617         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
618                 num_timers, num_timers_used);
619 }
620
621 #ifdef CONFIG_HPET
622 static void hpet_reserve_msi_timers(struct hpet_data *hd)
623 {
624         int i;
625
626         if (!hpet_devs)
627                 return;
628
629         for (i = 0; i < hpet_num_timers; i++) {
630                 struct hpet_dev *hdev = &hpet_devs[i];
631
632                 if (!(hdev->flags & HPET_DEV_VALID))
633                         continue;
634
635                 hd->hd_irq[hdev->num] = hdev->irq;
636                 hpet_reserve_timer(hd, hdev->num);
637         }
638 }
639 #endif
640
641 static struct hpet_dev *hpet_get_unused_timer(void)
642 {
643         int i;
644
645         if (!hpet_devs)
646                 return NULL;
647
648         for (i = 0; i < hpet_num_timers; i++) {
649                 struct hpet_dev *hdev = &hpet_devs[i];
650
651                 if (!(hdev->flags & HPET_DEV_VALID))
652                         continue;
653                 if (test_and_set_bit(HPET_DEV_USED_BIT,
654                         (unsigned long *)&hdev->flags))
655                         continue;
656                 return hdev;
657         }
658         return NULL;
659 }
660
661 struct hpet_work_struct {
662         struct delayed_work work;
663         struct completion complete;
664 };
665
666 static void hpet_work(struct work_struct *w)
667 {
668         struct hpet_dev *hdev;
669         int cpu = smp_processor_id();
670         struct hpet_work_struct *hpet_work;
671
672         hpet_work = container_of(w, struct hpet_work_struct, work.work);
673
674         hdev = hpet_get_unused_timer();
675         if (hdev)
676                 init_one_hpet_msi_clockevent(hdev, cpu);
677
678         complete(&hpet_work->complete);
679 }
680
681 static int hpet_cpuhp_notify(struct notifier_block *n,
682                 unsigned long action, void *hcpu)
683 {
684         unsigned long cpu = (unsigned long)hcpu;
685         struct hpet_work_struct work;
686         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
687
688         switch (action & 0xf) {
689         case CPU_ONLINE:
690                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
691                 init_completion(&work.complete);
692                 /* FIXME: add schedule_work_on() */
693                 schedule_delayed_work_on(cpu, &work.work, 0);
694                 wait_for_completion(&work.complete);
695                 destroy_timer_on_stack(&work.work.timer);
696                 break;
697         case CPU_DEAD:
698                 if (hdev) {
699                         free_irq(hdev->irq, hdev);
700                         hdev->flags &= ~HPET_DEV_USED;
701                         per_cpu(cpu_hpet_dev, cpu) = NULL;
702                 }
703                 break;
704         }
705         return NOTIFY_OK;
706 }
707 #else
708
709 static int hpet_setup_msi_irq(unsigned int irq)
710 {
711         return 0;
712 }
713 static void hpet_msi_capability_lookup(unsigned int start_timer)
714 {
715         return;
716 }
717
718 #ifdef CONFIG_HPET
719 static void hpet_reserve_msi_timers(struct hpet_data *hd)
720 {
721         return;
722 }
723 #endif
724
725 static int hpet_cpuhp_notify(struct notifier_block *n,
726                 unsigned long action, void *hcpu)
727 {
728         return NOTIFY_OK;
729 }
730
731 #endif
732
733 /*
734  * Clock source related code
735  */
736 static cycle_t read_hpet(struct clocksource *cs)
737 {
738         return (cycle_t)hpet_readl(HPET_COUNTER);
739 }
740
741 static struct clocksource clocksource_hpet = {
742         .name           = "hpet",
743         .rating         = 250,
744         .read           = read_hpet,
745         .mask           = HPET_MASK,
746         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
747         .resume         = hpet_resume_counter,
748 #ifdef CONFIG_X86_64
749         .archdata       = { .vclock_mode = VCLOCK_HPET },
750 #endif
751 };
752
753 static int hpet_clocksource_register(void)
754 {
755         u64 start, now;
756         cycle_t t1;
757
758         /* Start the counter */
759         hpet_restart_counter();
760
761         /* Verify whether hpet counter works */
762         t1 = hpet_readl(HPET_COUNTER);
763         rdtscll(start);
764
765         /*
766          * We don't know the TSC frequency yet, but waiting for
767          * 200000 TSC cycles is safe:
768          * 4 GHz == 50us
769          * 1 GHz == 200us
770          */
771         do {
772                 rep_nop();
773                 rdtscll(now);
774         } while ((now - start) < 200000UL);
775
776         if (t1 == hpet_readl(HPET_COUNTER)) {
777                 printk(KERN_WARNING
778                        "HPET counter not counting. HPET disabled\n");
779                 return -ENODEV;
780         }
781
782         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
783         return 0;
784 }
785
786 /**
787  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
788  */
789 int __init hpet_enable(void)
790 {
791         unsigned long hpet_period;
792         unsigned int id;
793         u64 freq;
794         int i;
795
796         if (!is_hpet_capable())
797                 return 0;
798
799         hpet_set_mapping();
800
801         /*
802          * Read the period and check for a sane value:
803          */
804         hpet_period = hpet_readl(HPET_PERIOD);
805
806         /*
807          * AMD SB700 based systems with spread spectrum enabled use a
808          * SMM based HPET emulation to provide proper frequency
809          * setting. The SMM code is initialized with the first HPET
810          * register access and takes some time to complete. During
811          * this time the config register reads 0xffffffff. We check
812          * for max. 1000 loops whether the config register reads a non
813          * 0xffffffff value to make sure that HPET is up and running
814          * before we go further. A counting loop is safe, as the HPET
815          * access takes thousands of CPU cycles. On non SB700 based
816          * machines this check is only done once and has no side
817          * effects.
818          */
819         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
820                 if (i == 1000) {
821                         printk(KERN_WARNING
822                                "HPET config register value = 0xFFFFFFFF. "
823                                "Disabling HPET\n");
824                         goto out_nohpet;
825                 }
826         }
827
828         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
829                 goto out_nohpet;
830
831         /*
832          * The period is a femto seconds value. Convert it to a
833          * frequency.
834          */
835         freq = FSEC_PER_SEC;
836         do_div(freq, hpet_period);
837         hpet_freq = freq;
838
839         /*
840          * Read the HPET ID register to retrieve the IRQ routing
841          * information and the number of channels
842          */
843         id = hpet_readl(HPET_ID);
844         hpet_print_config();
845
846 #ifdef CONFIG_HPET_EMULATE_RTC
847         /*
848          * The legacy routing mode needs at least two channels, tick timer
849          * and the rtc emulation channel.
850          */
851         if (!(id & HPET_ID_NUMBER))
852                 goto out_nohpet;
853 #endif
854
855         if (hpet_clocksource_register())
856                 goto out_nohpet;
857
858         if (id & HPET_ID_LEGSUP) {
859                 hpet_legacy_clockevent_register();
860                 return 1;
861         }
862         return 0;
863
864 out_nohpet:
865         hpet_clear_mapping();
866         hpet_address = 0;
867         return 0;
868 }
869
870 /*
871  * Needs to be late, as the reserve_timer code calls kalloc !
872  *
873  * Not a problem on i386 as hpet_enable is called from late_time_init,
874  * but on x86_64 it is necessary !
875  */
876 static __init int hpet_late_init(void)
877 {
878         int cpu;
879
880         if (boot_hpet_disable)
881                 return -ENODEV;
882
883         if (!hpet_address) {
884                 if (!force_hpet_address)
885                         return -ENODEV;
886
887                 hpet_address = force_hpet_address;
888                 hpet_enable();
889         }
890
891         if (!hpet_virt_address)
892                 return -ENODEV;
893
894         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
895                 hpet_msi_capability_lookup(2);
896         else
897                 hpet_msi_capability_lookup(0);
898
899         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
900         hpet_print_config();
901
902         if (hpet_msi_disable)
903                 return 0;
904
905         if (boot_cpu_has(X86_FEATURE_ARAT))
906                 return 0;
907
908         for_each_online_cpu(cpu) {
909                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
910         }
911
912         /* This notifier should be called after workqueue is ready */
913         hotcpu_notifier(hpet_cpuhp_notify, -20);
914
915         return 0;
916 }
917 fs_initcall(hpet_late_init);
918
919 void hpet_disable(void)
920 {
921         if (is_hpet_capable() && hpet_virt_address) {
922                 unsigned int cfg = hpet_readl(HPET_CFG);
923
924                 if (hpet_legacy_int_enabled) {
925                         cfg &= ~HPET_CFG_LEGACY;
926                         hpet_legacy_int_enabled = 0;
927                 }
928                 cfg &= ~HPET_CFG_ENABLE;
929                 hpet_writel(cfg, HPET_CFG);
930         }
931 }
932
933 #ifdef CONFIG_HPET_EMULATE_RTC
934
935 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
936  * is enabled, we support RTC interrupt functionality in software.
937  * RTC has 3 kinds of interrupts:
938  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
939  *    is updated
940  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
941  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
942  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
943  * (1) and (2) above are implemented using polling at a frequency of
944  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
945  * overhead. (DEFAULT_RTC_INT_FREQ)
946  * For (3), we use interrupts at 64Hz or user specified periodic
947  * frequency, whichever is higher.
948  */
949 #include <linux/mc146818rtc.h>
950 #include <linux/rtc.h>
951 #include <asm/rtc.h>
952
953 #define DEFAULT_RTC_INT_FREQ    64
954 #define DEFAULT_RTC_SHIFT       6
955 #define RTC_NUM_INTS            1
956
957 static unsigned long hpet_rtc_flags;
958 static int hpet_prev_update_sec;
959 static struct rtc_time hpet_alarm_time;
960 static unsigned long hpet_pie_count;
961 static u32 hpet_t1_cmp;
962 static u32 hpet_default_delta;
963 static u32 hpet_pie_delta;
964 static unsigned long hpet_pie_limit;
965
966 static rtc_irq_handler irq_handler;
967
968 /*
969  * Check that the hpet counter c1 is ahead of the c2
970  */
971 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
972 {
973         return (s32)(c2 - c1) < 0;
974 }
975
976 /*
977  * Registers a IRQ handler.
978  */
979 int hpet_register_irq_handler(rtc_irq_handler handler)
980 {
981         if (!is_hpet_enabled())
982                 return -ENODEV;
983         if (irq_handler)
984                 return -EBUSY;
985
986         irq_handler = handler;
987
988         return 0;
989 }
990 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
991
992 /*
993  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
994  * and does cleanup.
995  */
996 void hpet_unregister_irq_handler(rtc_irq_handler handler)
997 {
998         if (!is_hpet_enabled())
999                 return;
1000
1001         irq_handler = NULL;
1002         hpet_rtc_flags = 0;
1003 }
1004 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1005
1006 /*
1007  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1008  * is not supported by all HPET implementations for timer 1.
1009  *
1010  * hpet_rtc_timer_init() is called when the rtc is initialized.
1011  */
1012 int hpet_rtc_timer_init(void)
1013 {
1014         unsigned int cfg, cnt, delta;
1015         unsigned long flags;
1016
1017         if (!is_hpet_enabled())
1018                 return 0;
1019
1020         if (!hpet_default_delta) {
1021                 uint64_t clc;
1022
1023                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1024                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1025                 hpet_default_delta = clc;
1026         }
1027
1028         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1029                 delta = hpet_default_delta;
1030         else
1031                 delta = hpet_pie_delta;
1032
1033         local_irq_save(flags);
1034
1035         cnt = delta + hpet_readl(HPET_COUNTER);
1036         hpet_writel(cnt, HPET_T1_CMP);
1037         hpet_t1_cmp = cnt;
1038
1039         cfg = hpet_readl(HPET_T1_CFG);
1040         cfg &= ~HPET_TN_PERIODIC;
1041         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1042         hpet_writel(cfg, HPET_T1_CFG);
1043
1044         local_irq_restore(flags);
1045
1046         return 1;
1047 }
1048 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1049
1050 /*
1051  * The functions below are called from rtc driver.
1052  * Return 0 if HPET is not being used.
1053  * Otherwise do the necessary changes and return 1.
1054  */
1055 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1056 {
1057         if (!is_hpet_enabled())
1058                 return 0;
1059
1060         hpet_rtc_flags &= ~bit_mask;
1061         return 1;
1062 }
1063 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1064
1065 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1066 {
1067         unsigned long oldbits = hpet_rtc_flags;
1068
1069         if (!is_hpet_enabled())
1070                 return 0;
1071
1072         hpet_rtc_flags |= bit_mask;
1073
1074         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1075                 hpet_prev_update_sec = -1;
1076
1077         if (!oldbits)
1078                 hpet_rtc_timer_init();
1079
1080         return 1;
1081 }
1082 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1083
1084 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1085                         unsigned char sec)
1086 {
1087         if (!is_hpet_enabled())
1088                 return 0;
1089
1090         hpet_alarm_time.tm_hour = hrs;
1091         hpet_alarm_time.tm_min = min;
1092         hpet_alarm_time.tm_sec = sec;
1093
1094         return 1;
1095 }
1096 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1097
1098 int hpet_set_periodic_freq(unsigned long freq)
1099 {
1100         uint64_t clc;
1101
1102         if (!is_hpet_enabled())
1103                 return 0;
1104
1105         if (freq <= DEFAULT_RTC_INT_FREQ)
1106                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1107         else {
1108                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1109                 do_div(clc, freq);
1110                 clc >>= hpet_clockevent.shift;
1111                 hpet_pie_delta = clc;
1112                 hpet_pie_limit = 0;
1113         }
1114         return 1;
1115 }
1116 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1117
1118 int hpet_rtc_dropped_irq(void)
1119 {
1120         return is_hpet_enabled();
1121 }
1122 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1123
1124 static void hpet_rtc_timer_reinit(void)
1125 {
1126         unsigned int cfg, delta;
1127         int lost_ints = -1;
1128
1129         if (unlikely(!hpet_rtc_flags)) {
1130                 cfg = hpet_readl(HPET_T1_CFG);
1131                 cfg &= ~HPET_TN_ENABLE;
1132                 hpet_writel(cfg, HPET_T1_CFG);
1133                 return;
1134         }
1135
1136         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1137                 delta = hpet_default_delta;
1138         else
1139                 delta = hpet_pie_delta;
1140
1141         /*
1142          * Increment the comparator value until we are ahead of the
1143          * current count.
1144          */
1145         do {
1146                 hpet_t1_cmp += delta;
1147                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1148                 lost_ints++;
1149         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1150
1151         if (lost_ints) {
1152                 if (hpet_rtc_flags & RTC_PIE)
1153                         hpet_pie_count += lost_ints;
1154                 if (printk_ratelimit())
1155                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1156                                 lost_ints);
1157         }
1158 }
1159
1160 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1161 {
1162         struct rtc_time curr_time;
1163         unsigned long rtc_int_flag = 0;
1164
1165         hpet_rtc_timer_reinit();
1166         memset(&curr_time, 0, sizeof(struct rtc_time));
1167
1168         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1169                 get_rtc_time(&curr_time);
1170
1171         if (hpet_rtc_flags & RTC_UIE &&
1172             curr_time.tm_sec != hpet_prev_update_sec) {
1173                 if (hpet_prev_update_sec >= 0)
1174                         rtc_int_flag = RTC_UF;
1175                 hpet_prev_update_sec = curr_time.tm_sec;
1176         }
1177
1178         if (hpet_rtc_flags & RTC_PIE &&
1179             ++hpet_pie_count >= hpet_pie_limit) {
1180                 rtc_int_flag |= RTC_PF;
1181                 hpet_pie_count = 0;
1182         }
1183
1184         if (hpet_rtc_flags & RTC_AIE &&
1185             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1186             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1187             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1188                         rtc_int_flag |= RTC_AF;
1189
1190         if (rtc_int_flag) {
1191                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1192                 if (irq_handler)
1193                         irq_handler(rtc_int_flag, dev_id);
1194         }
1195         return IRQ_HANDLED;
1196 }
1197 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1198 #endif