Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18
19 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
20
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC                   1000000L
24
25 #define HPET_DEV_USED_BIT               2
26 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID                  0x8
28 #define HPET_DEV_FSB_CAP                0x1000
29 #define HPET_DEV_PERI_CAP               0x2000
30
31 #define HPET_MIN_CYCLES                 128
32 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33
34 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
35
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long                           hpet_address;
40 u8                                      hpet_blockid; /* OS timer block num */
41 u8                                      hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned long                    hpet_num_timers;
45 #endif
46 static void __iomem                     *hpet_virt_address;
47
48 struct hpet_dev {
49         struct clock_event_device       evt;
50         unsigned int                    num;
51         int                             cpu;
52         unsigned int                    irq;
53         unsigned int                    flags;
54         char                            name[10];
55 };
56
57 inline unsigned int hpet_readl(unsigned int a)
58 {
59         return readl(hpet_virt_address + a);
60 }
61
62 static inline void hpet_writel(unsigned int d, unsigned int a)
63 {
64         writel(d, hpet_virt_address + a);
65 }
66
67 #ifdef CONFIG_X86_64
68 #include <asm/pgtable.h>
69 #endif
70
71 static inline void hpet_set_mapping(void)
72 {
73         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
74 #ifdef CONFIG_X86_64
75         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
76 #endif
77 }
78
79 static inline void hpet_clear_mapping(void)
80 {
81         iounmap(hpet_virt_address);
82         hpet_virt_address = NULL;
83 }
84
85 /*
86  * HPET command line enable / disable
87  */
88 static int boot_hpet_disable;
89 int hpet_force_user;
90 static int hpet_verbose;
91
92 static int __init hpet_setup(char *str)
93 {
94         if (str) {
95                 if (!strncmp("disable", str, 7))
96                         boot_hpet_disable = 1;
97                 if (!strncmp("force", str, 5))
98                         hpet_force_user = 1;
99                 if (!strncmp("verbose", str, 7))
100                         hpet_verbose = 1;
101         }
102         return 1;
103 }
104 __setup("hpet=", hpet_setup);
105
106 static int __init disable_hpet(char *str)
107 {
108         boot_hpet_disable = 1;
109         return 1;
110 }
111 __setup("nohpet", disable_hpet);
112
113 static inline int is_hpet_capable(void)
114 {
115         return !boot_hpet_disable && hpet_address;
116 }
117
118 /*
119  * HPET timer interrupt enable / disable
120  */
121 static int hpet_legacy_int_enabled;
122
123 /**
124  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
125  */
126 int is_hpet_enabled(void)
127 {
128         return is_hpet_capable() && hpet_legacy_int_enabled;
129 }
130 EXPORT_SYMBOL_GPL(is_hpet_enabled);
131
132 static void _hpet_print_config(const char *function, int line)
133 {
134         u32 i, timers, l, h;
135         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
136         l = hpet_readl(HPET_ID);
137         h = hpet_readl(HPET_PERIOD);
138         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
139         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
140         l = hpet_readl(HPET_CFG);
141         h = hpet_readl(HPET_STATUS);
142         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
143         l = hpet_readl(HPET_COUNTER);
144         h = hpet_readl(HPET_COUNTER+4);
145         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
146
147         for (i = 0; i < timers; i++) {
148                 l = hpet_readl(HPET_Tn_CFG(i));
149                 h = hpet_readl(HPET_Tn_CFG(i)+4);
150                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
151                        i, l, h);
152                 l = hpet_readl(HPET_Tn_CMP(i));
153                 h = hpet_readl(HPET_Tn_CMP(i)+4);
154                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
155                        i, l, h);
156                 l = hpet_readl(HPET_Tn_ROUTE(i));
157                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
158                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
159                        i, l, h);
160         }
161 }
162
163 #define hpet_print_config()                                     \
164 do {                                                            \
165         if (hpet_verbose)                                       \
166                 _hpet_print_config(__FUNCTION__, __LINE__);     \
167 } while (0)
168
169 /*
170  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
171  * timer 0 and timer 1 in case of RTC emulation.
172  */
173 #ifdef CONFIG_HPET
174
175 static void hpet_reserve_msi_timers(struct hpet_data *hd);
176
177 static void hpet_reserve_platform_timers(unsigned int id)
178 {
179         struct hpet __iomem *hpet = hpet_virt_address;
180         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
181         unsigned int nrtimers, i;
182         struct hpet_data hd;
183
184         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
185
186         memset(&hd, 0, sizeof(hd));
187         hd.hd_phys_address      = hpet_address;
188         hd.hd_address           = hpet;
189         hd.hd_nirqs             = nrtimers;
190         hpet_reserve_timer(&hd, 0);
191
192 #ifdef CONFIG_HPET_EMULATE_RTC
193         hpet_reserve_timer(&hd, 1);
194 #endif
195
196         /*
197          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
199          * don't bother configuring *any* comparator interrupts.
200          */
201         hd.hd_irq[0] = HPET_LEGACY_8254;
202         hd.hd_irq[1] = HPET_LEGACY_RTC;
203
204         for (i = 2; i < nrtimers; timer++, i++) {
205                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
206                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
207         }
208
209         hpet_reserve_msi_timers(&hd);
210
211         hpet_alloc(&hd);
212
213 }
214 #else
215 static void hpet_reserve_platform_timers(unsigned int id) { }
216 #endif
217
218 /*
219  * Common hpet info
220  */
221 static unsigned long hpet_freq;
222
223 static void hpet_legacy_set_mode(enum clock_event_mode mode,
224                           struct clock_event_device *evt);
225 static int hpet_legacy_next_event(unsigned long delta,
226                            struct clock_event_device *evt);
227
228 /*
229  * The hpet clock event device
230  */
231 static struct clock_event_device hpet_clockevent = {
232         .name           = "hpet",
233         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
234         .set_mode       = hpet_legacy_set_mode,
235         .set_next_event = hpet_legacy_next_event,
236         .irq            = 0,
237         .rating         = 50,
238 };
239
240 static void hpet_stop_counter(void)
241 {
242         unsigned long cfg = hpet_readl(HPET_CFG);
243         cfg &= ~HPET_CFG_ENABLE;
244         hpet_writel(cfg, HPET_CFG);
245 }
246
247 static void hpet_reset_counter(void)
248 {
249         hpet_writel(0, HPET_COUNTER);
250         hpet_writel(0, HPET_COUNTER + 4);
251 }
252
253 static void hpet_start_counter(void)
254 {
255         unsigned int cfg = hpet_readl(HPET_CFG);
256         cfg |= HPET_CFG_ENABLE;
257         hpet_writel(cfg, HPET_CFG);
258 }
259
260 static void hpet_restart_counter(void)
261 {
262         hpet_stop_counter();
263         hpet_reset_counter();
264         hpet_start_counter();
265 }
266
267 static void hpet_resume_device(void)
268 {
269         force_hpet_resume();
270 }
271
272 static void hpet_resume_counter(struct clocksource *cs)
273 {
274         hpet_resume_device();
275         hpet_restart_counter();
276 }
277
278 static void hpet_enable_legacy_int(void)
279 {
280         unsigned int cfg = hpet_readl(HPET_CFG);
281
282         cfg |= HPET_CFG_LEGACY;
283         hpet_writel(cfg, HPET_CFG);
284         hpet_legacy_int_enabled = 1;
285 }
286
287 static void hpet_legacy_clockevent_register(void)
288 {
289         /* Start HPET legacy interrupts */
290         hpet_enable_legacy_int();
291
292         /*
293          * Start hpet with the boot cpu mask and make it
294          * global after the IO_APIC has been initialized.
295          */
296         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
297         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
298                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
299         global_clock_event = &hpet_clockevent;
300         printk(KERN_DEBUG "hpet clockevent registered\n");
301 }
302
303 static int hpet_setup_msi_irq(unsigned int irq);
304
305 static void hpet_set_mode(enum clock_event_mode mode,
306                           struct clock_event_device *evt, int timer)
307 {
308         unsigned int cfg, cmp, now;
309         uint64_t delta;
310
311         switch (mode) {
312         case CLOCK_EVT_MODE_PERIODIC:
313                 hpet_stop_counter();
314                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
315                 delta >>= evt->shift;
316                 now = hpet_readl(HPET_COUNTER);
317                 cmp = now + (unsigned int) delta;
318                 cfg = hpet_readl(HPET_Tn_CFG(timer));
319                 /* Make sure we use edge triggered interrupts */
320                 cfg &= ~HPET_TN_LEVEL;
321                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
322                        HPET_TN_SETVAL | HPET_TN_32BIT;
323                 hpet_writel(cfg, HPET_Tn_CFG(timer));
324                 hpet_writel(cmp, HPET_Tn_CMP(timer));
325                 udelay(1);
326                 /*
327                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
328                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
329                  * bit is automatically cleared after the first write.
330                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
331                  * Publication # 24674)
332                  */
333                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
334                 hpet_start_counter();
335                 hpet_print_config();
336                 break;
337
338         case CLOCK_EVT_MODE_ONESHOT:
339                 cfg = hpet_readl(HPET_Tn_CFG(timer));
340                 cfg &= ~HPET_TN_PERIODIC;
341                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
342                 hpet_writel(cfg, HPET_Tn_CFG(timer));
343                 break;
344
345         case CLOCK_EVT_MODE_UNUSED:
346         case CLOCK_EVT_MODE_SHUTDOWN:
347                 cfg = hpet_readl(HPET_Tn_CFG(timer));
348                 cfg &= ~HPET_TN_ENABLE;
349                 hpet_writel(cfg, HPET_Tn_CFG(timer));
350                 break;
351
352         case CLOCK_EVT_MODE_RESUME:
353                 if (timer == 0) {
354                         hpet_enable_legacy_int();
355                 } else {
356                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
357                         hpet_setup_msi_irq(hdev->irq);
358                         disable_irq(hdev->irq);
359                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
360                         enable_irq(hdev->irq);
361                 }
362                 hpet_print_config();
363                 break;
364         }
365 }
366
367 static int hpet_next_event(unsigned long delta,
368                            struct clock_event_device *evt, int timer)
369 {
370         u32 cnt;
371         s32 res;
372
373         cnt = hpet_readl(HPET_COUNTER);
374         cnt += (u32) delta;
375         hpet_writel(cnt, HPET_Tn_CMP(timer));
376
377         /*
378          * HPETs are a complete disaster. The compare register is
379          * based on a equal comparison and neither provides a less
380          * than or equal functionality (which would require to take
381          * the wraparound into account) nor a simple count down event
382          * mode. Further the write to the comparator register is
383          * delayed internally up to two HPET clock cycles in certain
384          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
385          * longer delays. We worked around that by reading back the
386          * compare register, but that required another workaround for
387          * ICH9,10 chips where the first readout after write can
388          * return the old stale value. We already had a minimum
389          * programming delta of 5us enforced, but a NMI or SMI hitting
390          * between the counter readout and the comparator write can
391          * move us behind that point easily. Now instead of reading
392          * the compare register back several times, we make the ETIME
393          * decision based on the following: Return ETIME if the
394          * counter value after the write is less than HPET_MIN_CYCLES
395          * away from the event or if the counter is already ahead of
396          * the event. The minimum programming delta for the generic
397          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
398          */
399         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
400
401         return res < HPET_MIN_CYCLES ? -ETIME : 0;
402 }
403
404 static void hpet_legacy_set_mode(enum clock_event_mode mode,
405                         struct clock_event_device *evt)
406 {
407         hpet_set_mode(mode, evt, 0);
408 }
409
410 static int hpet_legacy_next_event(unsigned long delta,
411                         struct clock_event_device *evt)
412 {
413         return hpet_next_event(delta, evt, 0);
414 }
415
416 /*
417  * HPET MSI Support
418  */
419 #ifdef CONFIG_PCI_MSI
420
421 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
422 static struct hpet_dev  *hpet_devs;
423
424 void hpet_msi_unmask(struct irq_data *data)
425 {
426         struct hpet_dev *hdev = data->handler_data;
427         unsigned int cfg;
428
429         /* unmask it */
430         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
431         cfg |= HPET_TN_FSB;
432         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
433 }
434
435 void hpet_msi_mask(struct irq_data *data)
436 {
437         struct hpet_dev *hdev = data->handler_data;
438         unsigned int cfg;
439
440         /* mask it */
441         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
442         cfg &= ~HPET_TN_FSB;
443         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
444 }
445
446 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
447 {
448         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
449         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
450 }
451
452 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
453 {
454         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
455         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
456         msg->address_hi = 0;
457 }
458
459 static void hpet_msi_set_mode(enum clock_event_mode mode,
460                                 struct clock_event_device *evt)
461 {
462         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
463         hpet_set_mode(mode, evt, hdev->num);
464 }
465
466 static int hpet_msi_next_event(unsigned long delta,
467                                 struct clock_event_device *evt)
468 {
469         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
470         return hpet_next_event(delta, evt, hdev->num);
471 }
472
473 static int hpet_setup_msi_irq(unsigned int irq)
474 {
475         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
476                 destroy_irq(irq);
477                 return -EINVAL;
478         }
479         return 0;
480 }
481
482 static int hpet_assign_irq(struct hpet_dev *dev)
483 {
484         unsigned int irq;
485
486         irq = create_irq_nr(0, -1);
487         if (!irq)
488                 return -EINVAL;
489
490         irq_set_handler_data(irq, dev);
491
492         if (hpet_setup_msi_irq(irq))
493                 return -EINVAL;
494
495         dev->irq = irq;
496         return 0;
497 }
498
499 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
500 {
501         struct hpet_dev *dev = (struct hpet_dev *)data;
502         struct clock_event_device *hevt = &dev->evt;
503
504         if (!hevt->event_handler) {
505                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
506                                 dev->num);
507                 return IRQ_HANDLED;
508         }
509
510         hevt->event_handler(hevt);
511         return IRQ_HANDLED;
512 }
513
514 static int hpet_setup_irq(struct hpet_dev *dev)
515 {
516
517         if (request_irq(dev->irq, hpet_interrupt_handler,
518                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
519                         dev->name, dev))
520                 return -1;
521
522         disable_irq(dev->irq);
523         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
524         enable_irq(dev->irq);
525
526         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
527                          dev->name, dev->irq);
528
529         return 0;
530 }
531
532 /* This should be called in specific @cpu */
533 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
534 {
535         struct clock_event_device *evt = &hdev->evt;
536
537         WARN_ON(cpu != smp_processor_id());
538         if (!(hdev->flags & HPET_DEV_VALID))
539                 return;
540
541         if (hpet_setup_msi_irq(hdev->irq))
542                 return;
543
544         hdev->cpu = cpu;
545         per_cpu(cpu_hpet_dev, cpu) = hdev;
546         evt->name = hdev->name;
547         hpet_setup_irq(hdev);
548         evt->irq = hdev->irq;
549
550         evt->rating = 110;
551         evt->features = CLOCK_EVT_FEAT_ONESHOT;
552         if (hdev->flags & HPET_DEV_PERI_CAP)
553                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
554
555         evt->set_mode = hpet_msi_set_mode;
556         evt->set_next_event = hpet_msi_next_event;
557         evt->cpumask = cpumask_of(hdev->cpu);
558
559         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
560                                         0x7FFFFFFF);
561 }
562
563 #ifdef CONFIG_HPET
564 /* Reserve at least one timer for userspace (/dev/hpet) */
565 #define RESERVE_TIMERS 1
566 #else
567 #define RESERVE_TIMERS 0
568 #endif
569
570 static void hpet_msi_capability_lookup(unsigned int start_timer)
571 {
572         unsigned int id;
573         unsigned int num_timers;
574         unsigned int num_timers_used = 0;
575         int i;
576
577         if (hpet_msi_disable)
578                 return;
579
580         if (boot_cpu_has(X86_FEATURE_ARAT))
581                 return;
582         id = hpet_readl(HPET_ID);
583
584         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
585         num_timers++; /* Value read out starts from 0 */
586         hpet_print_config();
587
588         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
589         if (!hpet_devs)
590                 return;
591
592         hpet_num_timers = num_timers;
593
594         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
595                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
596                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
597
598                 /* Only consider HPET timer with MSI support */
599                 if (!(cfg & HPET_TN_FSB_CAP))
600                         continue;
601
602                 hdev->flags = 0;
603                 if (cfg & HPET_TN_PERIODIC_CAP)
604                         hdev->flags |= HPET_DEV_PERI_CAP;
605                 hdev->num = i;
606
607                 sprintf(hdev->name, "hpet%d", i);
608                 if (hpet_assign_irq(hdev))
609                         continue;
610
611                 hdev->flags |= HPET_DEV_FSB_CAP;
612                 hdev->flags |= HPET_DEV_VALID;
613                 num_timers_used++;
614                 if (num_timers_used == num_possible_cpus())
615                         break;
616         }
617
618         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
619                 num_timers, num_timers_used);
620 }
621
622 #ifdef CONFIG_HPET
623 static void hpet_reserve_msi_timers(struct hpet_data *hd)
624 {
625         int i;
626
627         if (!hpet_devs)
628                 return;
629
630         for (i = 0; i < hpet_num_timers; i++) {
631                 struct hpet_dev *hdev = &hpet_devs[i];
632
633                 if (!(hdev->flags & HPET_DEV_VALID))
634                         continue;
635
636                 hd->hd_irq[hdev->num] = hdev->irq;
637                 hpet_reserve_timer(hd, hdev->num);
638         }
639 }
640 #endif
641
642 static struct hpet_dev *hpet_get_unused_timer(void)
643 {
644         int i;
645
646         if (!hpet_devs)
647                 return NULL;
648
649         for (i = 0; i < hpet_num_timers; i++) {
650                 struct hpet_dev *hdev = &hpet_devs[i];
651
652                 if (!(hdev->flags & HPET_DEV_VALID))
653                         continue;
654                 if (test_and_set_bit(HPET_DEV_USED_BIT,
655                         (unsigned long *)&hdev->flags))
656                         continue;
657                 return hdev;
658         }
659         return NULL;
660 }
661
662 struct hpet_work_struct {
663         struct delayed_work work;
664         struct completion complete;
665 };
666
667 static void hpet_work(struct work_struct *w)
668 {
669         struct hpet_dev *hdev;
670         int cpu = smp_processor_id();
671         struct hpet_work_struct *hpet_work;
672
673         hpet_work = container_of(w, struct hpet_work_struct, work.work);
674
675         hdev = hpet_get_unused_timer();
676         if (hdev)
677                 init_one_hpet_msi_clockevent(hdev, cpu);
678
679         complete(&hpet_work->complete);
680 }
681
682 static int hpet_cpuhp_notify(struct notifier_block *n,
683                 unsigned long action, void *hcpu)
684 {
685         unsigned long cpu = (unsigned long)hcpu;
686         struct hpet_work_struct work;
687         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
688
689         switch (action & 0xf) {
690         case CPU_ONLINE:
691                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
692                 init_completion(&work.complete);
693                 /* FIXME: add schedule_work_on() */
694                 schedule_delayed_work_on(cpu, &work.work, 0);
695                 wait_for_completion(&work.complete);
696                 destroy_timer_on_stack(&work.work.timer);
697                 break;
698         case CPU_DEAD:
699                 if (hdev) {
700                         free_irq(hdev->irq, hdev);
701                         hdev->flags &= ~HPET_DEV_USED;
702                         per_cpu(cpu_hpet_dev, cpu) = NULL;
703                 }
704                 break;
705         }
706         return NOTIFY_OK;
707 }
708 #else
709
710 static int hpet_setup_msi_irq(unsigned int irq)
711 {
712         return 0;
713 }
714 static void hpet_msi_capability_lookup(unsigned int start_timer)
715 {
716         return;
717 }
718
719 #ifdef CONFIG_HPET
720 static void hpet_reserve_msi_timers(struct hpet_data *hd)
721 {
722         return;
723 }
724 #endif
725
726 static int hpet_cpuhp_notify(struct notifier_block *n,
727                 unsigned long action, void *hcpu)
728 {
729         return NOTIFY_OK;
730 }
731
732 #endif
733
734 /*
735  * Clock source related code
736  */
737 static cycle_t read_hpet(struct clocksource *cs)
738 {
739         return (cycle_t)hpet_readl(HPET_COUNTER);
740 }
741
742 #ifdef CONFIG_X86_64
743 static cycle_t __vsyscall_fn vread_hpet(void)
744 {
745         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
746 }
747 #endif
748
749 static struct clocksource clocksource_hpet = {
750         .name           = "hpet",
751         .rating         = 250,
752         .read           = read_hpet,
753         .mask           = HPET_MASK,
754         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
755         .resume         = hpet_resume_counter,
756 #ifdef CONFIG_X86_64
757         .vread          = vread_hpet,
758 #endif
759 };
760
761 static int hpet_clocksource_register(void)
762 {
763         u64 start, now;
764         cycle_t t1;
765
766         /* Start the counter */
767         hpet_restart_counter();
768
769         /* Verify whether hpet counter works */
770         t1 = hpet_readl(HPET_COUNTER);
771         rdtscll(start);
772
773         /*
774          * We don't know the TSC frequency yet, but waiting for
775          * 200000 TSC cycles is safe:
776          * 4 GHz == 50us
777          * 1 GHz == 200us
778          */
779         do {
780                 rep_nop();
781                 rdtscll(now);
782         } while ((now - start) < 200000UL);
783
784         if (t1 == hpet_readl(HPET_COUNTER)) {
785                 printk(KERN_WARNING
786                        "HPET counter not counting. HPET disabled\n");
787                 return -ENODEV;
788         }
789
790         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
791         return 0;
792 }
793
794 /**
795  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
796  */
797 int __init hpet_enable(void)
798 {
799         unsigned long hpet_period;
800         unsigned int id;
801         u64 freq;
802         int i;
803
804         if (!is_hpet_capable())
805                 return 0;
806
807         hpet_set_mapping();
808
809         /*
810          * Read the period and check for a sane value:
811          */
812         hpet_period = hpet_readl(HPET_PERIOD);
813
814         /*
815          * AMD SB700 based systems with spread spectrum enabled use a
816          * SMM based HPET emulation to provide proper frequency
817          * setting. The SMM code is initialized with the first HPET
818          * register access and takes some time to complete. During
819          * this time the config register reads 0xffffffff. We check
820          * for max. 1000 loops whether the config register reads a non
821          * 0xffffffff value to make sure that HPET is up and running
822          * before we go further. A counting loop is safe, as the HPET
823          * access takes thousands of CPU cycles. On non SB700 based
824          * machines this check is only done once and has no side
825          * effects.
826          */
827         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
828                 if (i == 1000) {
829                         printk(KERN_WARNING
830                                "HPET config register value = 0xFFFFFFFF. "
831                                "Disabling HPET\n");
832                         goto out_nohpet;
833                 }
834         }
835
836         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
837                 goto out_nohpet;
838
839         /*
840          * The period is a femto seconds value. Convert it to a
841          * frequency.
842          */
843         freq = FSEC_PER_SEC;
844         do_div(freq, hpet_period);
845         hpet_freq = freq;
846
847         /*
848          * Read the HPET ID register to retrieve the IRQ routing
849          * information and the number of channels
850          */
851         id = hpet_readl(HPET_ID);
852         hpet_print_config();
853
854 #ifdef CONFIG_HPET_EMULATE_RTC
855         /*
856          * The legacy routing mode needs at least two channels, tick timer
857          * and the rtc emulation channel.
858          */
859         if (!(id & HPET_ID_NUMBER))
860                 goto out_nohpet;
861 #endif
862
863         if (hpet_clocksource_register())
864                 goto out_nohpet;
865
866         if (id & HPET_ID_LEGSUP) {
867                 hpet_legacy_clockevent_register();
868                 return 1;
869         }
870         return 0;
871
872 out_nohpet:
873         hpet_clear_mapping();
874         hpet_address = 0;
875         return 0;
876 }
877
878 /*
879  * Needs to be late, as the reserve_timer code calls kalloc !
880  *
881  * Not a problem on i386 as hpet_enable is called from late_time_init,
882  * but on x86_64 it is necessary !
883  */
884 static __init int hpet_late_init(void)
885 {
886         int cpu;
887
888         if (boot_hpet_disable)
889                 return -ENODEV;
890
891         if (!hpet_address) {
892                 if (!force_hpet_address)
893                         return -ENODEV;
894
895                 hpet_address = force_hpet_address;
896                 hpet_enable();
897         }
898
899         if (!hpet_virt_address)
900                 return -ENODEV;
901
902         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
903                 hpet_msi_capability_lookup(2);
904         else
905                 hpet_msi_capability_lookup(0);
906
907         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
908         hpet_print_config();
909
910         if (hpet_msi_disable)
911                 return 0;
912
913         if (boot_cpu_has(X86_FEATURE_ARAT))
914                 return 0;
915
916         for_each_online_cpu(cpu) {
917                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
918         }
919
920         /* This notifier should be called after workqueue is ready */
921         hotcpu_notifier(hpet_cpuhp_notify, -20);
922
923         return 0;
924 }
925 fs_initcall(hpet_late_init);
926
927 void hpet_disable(void)
928 {
929         if (is_hpet_capable() && hpet_virt_address) {
930                 unsigned int cfg = hpet_readl(HPET_CFG);
931
932                 if (hpet_legacy_int_enabled) {
933                         cfg &= ~HPET_CFG_LEGACY;
934                         hpet_legacy_int_enabled = 0;
935                 }
936                 cfg &= ~HPET_CFG_ENABLE;
937                 hpet_writel(cfg, HPET_CFG);
938         }
939 }
940
941 #ifdef CONFIG_HPET_EMULATE_RTC
942
943 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
944  * is enabled, we support RTC interrupt functionality in software.
945  * RTC has 3 kinds of interrupts:
946  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
947  *    is updated
948  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
949  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
950  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
951  * (1) and (2) above are implemented using polling at a frequency of
952  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
953  * overhead. (DEFAULT_RTC_INT_FREQ)
954  * For (3), we use interrupts at 64Hz or user specified periodic
955  * frequency, whichever is higher.
956  */
957 #include <linux/mc146818rtc.h>
958 #include <linux/rtc.h>
959 #include <asm/rtc.h>
960
961 #define DEFAULT_RTC_INT_FREQ    64
962 #define DEFAULT_RTC_SHIFT       6
963 #define RTC_NUM_INTS            1
964
965 static unsigned long hpet_rtc_flags;
966 static int hpet_prev_update_sec;
967 static struct rtc_time hpet_alarm_time;
968 static unsigned long hpet_pie_count;
969 static u32 hpet_t1_cmp;
970 static u32 hpet_default_delta;
971 static u32 hpet_pie_delta;
972 static unsigned long hpet_pie_limit;
973
974 static rtc_irq_handler irq_handler;
975
976 /*
977  * Check that the hpet counter c1 is ahead of the c2
978  */
979 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
980 {
981         return (s32)(c2 - c1) < 0;
982 }
983
984 /*
985  * Registers a IRQ handler.
986  */
987 int hpet_register_irq_handler(rtc_irq_handler handler)
988 {
989         if (!is_hpet_enabled())
990                 return -ENODEV;
991         if (irq_handler)
992                 return -EBUSY;
993
994         irq_handler = handler;
995
996         return 0;
997 }
998 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
999
1000 /*
1001  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1002  * and does cleanup.
1003  */
1004 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1005 {
1006         if (!is_hpet_enabled())
1007                 return;
1008
1009         irq_handler = NULL;
1010         hpet_rtc_flags = 0;
1011 }
1012 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1013
1014 /*
1015  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1016  * is not supported by all HPET implementations for timer 1.
1017  *
1018  * hpet_rtc_timer_init() is called when the rtc is initialized.
1019  */
1020 int hpet_rtc_timer_init(void)
1021 {
1022         unsigned int cfg, cnt, delta;
1023         unsigned long flags;
1024
1025         if (!is_hpet_enabled())
1026                 return 0;
1027
1028         if (!hpet_default_delta) {
1029                 uint64_t clc;
1030
1031                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1032                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1033                 hpet_default_delta = clc;
1034         }
1035
1036         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1037                 delta = hpet_default_delta;
1038         else
1039                 delta = hpet_pie_delta;
1040
1041         local_irq_save(flags);
1042
1043         cnt = delta + hpet_readl(HPET_COUNTER);
1044         hpet_writel(cnt, HPET_T1_CMP);
1045         hpet_t1_cmp = cnt;
1046
1047         cfg = hpet_readl(HPET_T1_CFG);
1048         cfg &= ~HPET_TN_PERIODIC;
1049         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1050         hpet_writel(cfg, HPET_T1_CFG);
1051
1052         local_irq_restore(flags);
1053
1054         return 1;
1055 }
1056 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1057
1058 /*
1059  * The functions below are called from rtc driver.
1060  * Return 0 if HPET is not being used.
1061  * Otherwise do the necessary changes and return 1.
1062  */
1063 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1064 {
1065         if (!is_hpet_enabled())
1066                 return 0;
1067
1068         hpet_rtc_flags &= ~bit_mask;
1069         return 1;
1070 }
1071 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1072
1073 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1074 {
1075         unsigned long oldbits = hpet_rtc_flags;
1076
1077         if (!is_hpet_enabled())
1078                 return 0;
1079
1080         hpet_rtc_flags |= bit_mask;
1081
1082         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1083                 hpet_prev_update_sec = -1;
1084
1085         if (!oldbits)
1086                 hpet_rtc_timer_init();
1087
1088         return 1;
1089 }
1090 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1091
1092 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1093                         unsigned char sec)
1094 {
1095         if (!is_hpet_enabled())
1096                 return 0;
1097
1098         hpet_alarm_time.tm_hour = hrs;
1099         hpet_alarm_time.tm_min = min;
1100         hpet_alarm_time.tm_sec = sec;
1101
1102         return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1105
1106 int hpet_set_periodic_freq(unsigned long freq)
1107 {
1108         uint64_t clc;
1109
1110         if (!is_hpet_enabled())
1111                 return 0;
1112
1113         if (freq <= DEFAULT_RTC_INT_FREQ)
1114                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1115         else {
1116                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1117                 do_div(clc, freq);
1118                 clc >>= hpet_clockevent.shift;
1119                 hpet_pie_delta = clc;
1120                 hpet_pie_limit = 0;
1121         }
1122         return 1;
1123 }
1124 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1125
1126 int hpet_rtc_dropped_irq(void)
1127 {
1128         return is_hpet_enabled();
1129 }
1130 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1131
1132 static void hpet_rtc_timer_reinit(void)
1133 {
1134         unsigned int cfg, delta;
1135         int lost_ints = -1;
1136
1137         if (unlikely(!hpet_rtc_flags)) {
1138                 cfg = hpet_readl(HPET_T1_CFG);
1139                 cfg &= ~HPET_TN_ENABLE;
1140                 hpet_writel(cfg, HPET_T1_CFG);
1141                 return;
1142         }
1143
1144         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1145                 delta = hpet_default_delta;
1146         else
1147                 delta = hpet_pie_delta;
1148
1149         /*
1150          * Increment the comparator value until we are ahead of the
1151          * current count.
1152          */
1153         do {
1154                 hpet_t1_cmp += delta;
1155                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1156                 lost_ints++;
1157         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1158
1159         if (lost_ints) {
1160                 if (hpet_rtc_flags & RTC_PIE)
1161                         hpet_pie_count += lost_ints;
1162                 if (printk_ratelimit())
1163                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1164                                 lost_ints);
1165         }
1166 }
1167
1168 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1169 {
1170         struct rtc_time curr_time;
1171         unsigned long rtc_int_flag = 0;
1172
1173         hpet_rtc_timer_reinit();
1174         memset(&curr_time, 0, sizeof(struct rtc_time));
1175
1176         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1177                 get_rtc_time(&curr_time);
1178
1179         if (hpet_rtc_flags & RTC_UIE &&
1180             curr_time.tm_sec != hpet_prev_update_sec) {
1181                 if (hpet_prev_update_sec >= 0)
1182                         rtc_int_flag = RTC_UF;
1183                 hpet_prev_update_sec = curr_time.tm_sec;
1184         }
1185
1186         if (hpet_rtc_flags & RTC_PIE &&
1187             ++hpet_pie_count >= hpet_pie_limit) {
1188                 rtc_int_flag |= RTC_PF;
1189                 hpet_pie_count = 0;
1190         }
1191
1192         if (hpet_rtc_flags & RTC_AIE &&
1193             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1194             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1195             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1196                         rtc_int_flag |= RTC_AF;
1197
1198         if (rtc_int_flag) {
1199                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1200                 if (irq_handler)
1201                         irq_handler(rtc_int_flag, dev_id);
1202         }
1203         return IRQ_HANDLED;
1204 }
1205 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1206 #endif