Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12
13 #include <asm/hardirq.h>
14 #include <asm/apic.h>
15
16 #include "perf_event.h"
17
18 /*
19  * Intel PerfMon, used on Core and later.
20  */
21 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
22 {
23   [PERF_COUNT_HW_CPU_CYCLES]            = 0x003c,
24   [PERF_COUNT_HW_INSTRUCTIONS]          = 0x00c0,
25   [PERF_COUNT_HW_CACHE_REFERENCES]      = 0x4f2e,
26   [PERF_COUNT_HW_CACHE_MISSES]          = 0x412e,
27   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]   = 0x00c4,
28   [PERF_COUNT_HW_BRANCH_MISSES]         = 0x00c5,
29   [PERF_COUNT_HW_BUS_CYCLES]            = 0x013c,
30 };
31
32 static struct event_constraint intel_core_event_constraints[] __read_mostly =
33 {
34         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
35         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
36         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
37         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
38         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
39         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
40         EVENT_CONSTRAINT_END
41 };
42
43 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
44 {
45         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
46         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
47         /*
48          * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
49          * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
50          * ratio between these counters.
51          */
52         /* FIXED_EVENT_CONSTRAINT(0x013c, 2),  CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
85         EVENT_EXTRA_END
86 };
87
88 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
89 {
90         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
91         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
92         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
93         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
94         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
95         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
96         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
97         EVENT_CONSTRAINT_END
98 };
99
100 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
101 {
102         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
103         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
104         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
105         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
106         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
107         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
108         EVENT_CONSTRAINT_END
109 };
110
111 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
112 {
113         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
114         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
115         EVENT_EXTRA_END
116 };
117
118 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
119 {
120         EVENT_CONSTRAINT_END
121 };
122
123 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
124 {
125         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
126         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
127         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
132         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
133         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
134         EVENT_EXTRA_END
135 };
136
137 static u64 intel_pmu_event_map(int hw_event)
138 {
139         return intel_perfmon_event_map[hw_event];
140 }
141
142 static __initconst const u64 snb_hw_cache_event_ids
143                                 [PERF_COUNT_HW_CACHE_MAX]
144                                 [PERF_COUNT_HW_CACHE_OP_MAX]
145                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
146 {
147  [ C(L1D) ] = {
148         [ C(OP_READ) ] = {
149                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
150                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
151         },
152         [ C(OP_WRITE) ] = {
153                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
154                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
155         },
156         [ C(OP_PREFETCH) ] = {
157                 [ C(RESULT_ACCESS) ] = 0x0,
158                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
159         },
160  },
161  [ C(L1I ) ] = {
162         [ C(OP_READ) ] = {
163                 [ C(RESULT_ACCESS) ] = 0x0,
164                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
165         },
166         [ C(OP_WRITE) ] = {
167                 [ C(RESULT_ACCESS) ] = -1,
168                 [ C(RESULT_MISS)   ] = -1,
169         },
170         [ C(OP_PREFETCH) ] = {
171                 [ C(RESULT_ACCESS) ] = 0x0,
172                 [ C(RESULT_MISS)   ] = 0x0,
173         },
174  },
175  [ C(LL  ) ] = {
176         [ C(OP_READ) ] = {
177                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
178                 [ C(RESULT_ACCESS) ] = 0x01b7,
179                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
180                 [ C(RESULT_MISS)   ] = 0x01b7,
181         },
182         [ C(OP_WRITE) ] = {
183                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
184                 [ C(RESULT_ACCESS) ] = 0x01b7,
185                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
186                 [ C(RESULT_MISS)   ] = 0x01b7,
187         },
188         [ C(OP_PREFETCH) ] = {
189                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
190                 [ C(RESULT_ACCESS) ] = 0x01b7,
191                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
192                 [ C(RESULT_MISS)   ] = 0x01b7,
193         },
194  },
195  [ C(DTLB) ] = {
196         [ C(OP_READ) ] = {
197                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
198                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
199         },
200         [ C(OP_WRITE) ] = {
201                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
202                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
203         },
204         [ C(OP_PREFETCH) ] = {
205                 [ C(RESULT_ACCESS) ] = 0x0,
206                 [ C(RESULT_MISS)   ] = 0x0,
207         },
208  },
209  [ C(ITLB) ] = {
210         [ C(OP_READ) ] = {
211                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
212                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
213         },
214         [ C(OP_WRITE) ] = {
215                 [ C(RESULT_ACCESS) ] = -1,
216                 [ C(RESULT_MISS)   ] = -1,
217         },
218         [ C(OP_PREFETCH) ] = {
219                 [ C(RESULT_ACCESS) ] = -1,
220                 [ C(RESULT_MISS)   ] = -1,
221         },
222  },
223  [ C(BPU ) ] = {
224         [ C(OP_READ) ] = {
225                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
226                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
227         },
228         [ C(OP_WRITE) ] = {
229                 [ C(RESULT_ACCESS) ] = -1,
230                 [ C(RESULT_MISS)   ] = -1,
231         },
232         [ C(OP_PREFETCH) ] = {
233                 [ C(RESULT_ACCESS) ] = -1,
234                 [ C(RESULT_MISS)   ] = -1,
235         },
236  },
237  [ C(NODE) ] = {
238         [ C(OP_READ) ] = {
239                 [ C(RESULT_ACCESS) ] = -1,
240                 [ C(RESULT_MISS)   ] = -1,
241         },
242         [ C(OP_WRITE) ] = {
243                 [ C(RESULT_ACCESS) ] = -1,
244                 [ C(RESULT_MISS)   ] = -1,
245         },
246         [ C(OP_PREFETCH) ] = {
247                 [ C(RESULT_ACCESS) ] = -1,
248                 [ C(RESULT_MISS)   ] = -1,
249         },
250  },
251
252 };
253
254 static __initconst const u64 westmere_hw_cache_event_ids
255                                 [PERF_COUNT_HW_CACHE_MAX]
256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
258 {
259  [ C(L1D) ] = {
260         [ C(OP_READ) ] = {
261                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
262                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
263         },
264         [ C(OP_WRITE) ] = {
265                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
266                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
267         },
268         [ C(OP_PREFETCH) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
270                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
271         },
272  },
273  [ C(L1I ) ] = {
274         [ C(OP_READ) ] = {
275                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
276                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
277         },
278         [ C(OP_WRITE) ] = {
279                 [ C(RESULT_ACCESS) ] = -1,
280                 [ C(RESULT_MISS)   ] = -1,
281         },
282         [ C(OP_PREFETCH) ] = {
283                 [ C(RESULT_ACCESS) ] = 0x0,
284                 [ C(RESULT_MISS)   ] = 0x0,
285         },
286  },
287  [ C(LL  ) ] = {
288         [ C(OP_READ) ] = {
289                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
290                 [ C(RESULT_ACCESS) ] = 0x01b7,
291                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
292                 [ C(RESULT_MISS)   ] = 0x01b7,
293         },
294         /*
295          * Use RFO, not WRITEBACK, because a write miss would typically occur
296          * on RFO.
297          */
298         [ C(OP_WRITE) ] = {
299                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
300                 [ C(RESULT_ACCESS) ] = 0x01b7,
301                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
302                 [ C(RESULT_MISS)   ] = 0x01b7,
303         },
304         [ C(OP_PREFETCH) ] = {
305                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
306                 [ C(RESULT_ACCESS) ] = 0x01b7,
307                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
308                 [ C(RESULT_MISS)   ] = 0x01b7,
309         },
310  },
311  [ C(DTLB) ] = {
312         [ C(OP_READ) ] = {
313                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
314                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
315         },
316         [ C(OP_WRITE) ] = {
317                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
318                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
319         },
320         [ C(OP_PREFETCH) ] = {
321                 [ C(RESULT_ACCESS) ] = 0x0,
322                 [ C(RESULT_MISS)   ] = 0x0,
323         },
324  },
325  [ C(ITLB) ] = {
326         [ C(OP_READ) ] = {
327                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
328                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
329         },
330         [ C(OP_WRITE) ] = {
331                 [ C(RESULT_ACCESS) ] = -1,
332                 [ C(RESULT_MISS)   ] = -1,
333         },
334         [ C(OP_PREFETCH) ] = {
335                 [ C(RESULT_ACCESS) ] = -1,
336                 [ C(RESULT_MISS)   ] = -1,
337         },
338  },
339  [ C(BPU ) ] = {
340         [ C(OP_READ) ] = {
341                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
342                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
343         },
344         [ C(OP_WRITE) ] = {
345                 [ C(RESULT_ACCESS) ] = -1,
346                 [ C(RESULT_MISS)   ] = -1,
347         },
348         [ C(OP_PREFETCH) ] = {
349                 [ C(RESULT_ACCESS) ] = -1,
350                 [ C(RESULT_MISS)   ] = -1,
351         },
352  },
353  [ C(NODE) ] = {
354         [ C(OP_READ) ] = {
355                 [ C(RESULT_ACCESS) ] = 0x01b7,
356                 [ C(RESULT_MISS)   ] = 0x01b7,
357         },
358         [ C(OP_WRITE) ] = {
359                 [ C(RESULT_ACCESS) ] = 0x01b7,
360                 [ C(RESULT_MISS)   ] = 0x01b7,
361         },
362         [ C(OP_PREFETCH) ] = {
363                 [ C(RESULT_ACCESS) ] = 0x01b7,
364                 [ C(RESULT_MISS)   ] = 0x01b7,
365         },
366  },
367 };
368
369 /*
370  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
371  * See IA32 SDM Vol 3B 30.6.1.3
372  */
373
374 #define NHM_DMND_DATA_RD        (1 << 0)
375 #define NHM_DMND_RFO            (1 << 1)
376 #define NHM_DMND_IFETCH         (1 << 2)
377 #define NHM_DMND_WB             (1 << 3)
378 #define NHM_PF_DATA_RD          (1 << 4)
379 #define NHM_PF_DATA_RFO         (1 << 5)
380 #define NHM_PF_IFETCH           (1 << 6)
381 #define NHM_OFFCORE_OTHER       (1 << 7)
382 #define NHM_UNCORE_HIT          (1 << 8)
383 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
384 #define NHM_OTHER_CORE_HITM     (1 << 10)
385                                 /* reserved */
386 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
387 #define NHM_REMOTE_DRAM         (1 << 13)
388 #define NHM_LOCAL_DRAM          (1 << 14)
389 #define NHM_NON_DRAM            (1 << 15)
390
391 #define NHM_ALL_DRAM            (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
392
393 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
396
397 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
400
401 static __initconst const u64 nehalem_hw_cache_extra_regs
402                                 [PERF_COUNT_HW_CACHE_MAX]
403                                 [PERF_COUNT_HW_CACHE_OP_MAX]
404                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
405 {
406  [ C(LL  ) ] = {
407         [ C(OP_READ) ] = {
408                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
409                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
413                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
417                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
418         },
419  },
420  [ C(NODE) ] = {
421         [ C(OP_READ) ] = {
422                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
423                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
424         },
425         [ C(OP_WRITE) ] = {
426                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
427                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
428         },
429         [ C(OP_PREFETCH) ] = {
430                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
431                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
432         },
433  },
434 };
435
436 static __initconst const u64 nehalem_hw_cache_event_ids
437                                 [PERF_COUNT_HW_CACHE_MAX]
438                                 [PERF_COUNT_HW_CACHE_OP_MAX]
439                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
440 {
441  [ C(L1D) ] = {
442         [ C(OP_READ) ] = {
443                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
444                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
445         },
446         [ C(OP_WRITE) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
448                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
449         },
450         [ C(OP_PREFETCH) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
452                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
453         },
454  },
455  [ C(L1I ) ] = {
456         [ C(OP_READ) ] = {
457                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
458                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
459         },
460         [ C(OP_WRITE) ] = {
461                 [ C(RESULT_ACCESS) ] = -1,
462                 [ C(RESULT_MISS)   ] = -1,
463         },
464         [ C(OP_PREFETCH) ] = {
465                 [ C(RESULT_ACCESS) ] = 0x0,
466                 [ C(RESULT_MISS)   ] = 0x0,
467         },
468  },
469  [ C(LL  ) ] = {
470         [ C(OP_READ) ] = {
471                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472                 [ C(RESULT_ACCESS) ] = 0x01b7,
473                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474                 [ C(RESULT_MISS)   ] = 0x01b7,
475         },
476         /*
477          * Use RFO, not WRITEBACK, because a write miss would typically occur
478          * on RFO.
479          */
480         [ C(OP_WRITE) ] = {
481                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482                 [ C(RESULT_ACCESS) ] = 0x01b7,
483                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484                 [ C(RESULT_MISS)   ] = 0x01b7,
485         },
486         [ C(OP_PREFETCH) ] = {
487                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488                 [ C(RESULT_ACCESS) ] = 0x01b7,
489                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490                 [ C(RESULT_MISS)   ] = 0x01b7,
491         },
492  },
493  [ C(DTLB) ] = {
494         [ C(OP_READ) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
496                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
497         },
498         [ C(OP_WRITE) ] = {
499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
500                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
501         },
502         [ C(OP_PREFETCH) ] = {
503                 [ C(RESULT_ACCESS) ] = 0x0,
504                 [ C(RESULT_MISS)   ] = 0x0,
505         },
506  },
507  [ C(ITLB) ] = {
508         [ C(OP_READ) ] = {
509                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
510                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
511         },
512         [ C(OP_WRITE) ] = {
513                 [ C(RESULT_ACCESS) ] = -1,
514                 [ C(RESULT_MISS)   ] = -1,
515         },
516         [ C(OP_PREFETCH) ] = {
517                 [ C(RESULT_ACCESS) ] = -1,
518                 [ C(RESULT_MISS)   ] = -1,
519         },
520  },
521  [ C(BPU ) ] = {
522         [ C(OP_READ) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
525         },
526         [ C(OP_WRITE) ] = {
527                 [ C(RESULT_ACCESS) ] = -1,
528                 [ C(RESULT_MISS)   ] = -1,
529         },
530         [ C(OP_PREFETCH) ] = {
531                 [ C(RESULT_ACCESS) ] = -1,
532                 [ C(RESULT_MISS)   ] = -1,
533         },
534  },
535  [ C(NODE) ] = {
536         [ C(OP_READ) ] = {
537                 [ C(RESULT_ACCESS) ] = 0x01b7,
538                 [ C(RESULT_MISS)   ] = 0x01b7,
539         },
540         [ C(OP_WRITE) ] = {
541                 [ C(RESULT_ACCESS) ] = 0x01b7,
542                 [ C(RESULT_MISS)   ] = 0x01b7,
543         },
544         [ C(OP_PREFETCH) ] = {
545                 [ C(RESULT_ACCESS) ] = 0x01b7,
546                 [ C(RESULT_MISS)   ] = 0x01b7,
547         },
548  },
549 };
550
551 static __initconst const u64 core2_hw_cache_event_ids
552                                 [PERF_COUNT_HW_CACHE_MAX]
553                                 [PERF_COUNT_HW_CACHE_OP_MAX]
554                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556  [ C(L1D) ] = {
557         [ C(OP_READ) ] = {
558                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
559                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
560         },
561         [ C(OP_WRITE) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
563                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
564         },
565         [ C(OP_PREFETCH) ] = {
566                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
567                 [ C(RESULT_MISS)   ] = 0,
568         },
569  },
570  [ C(L1I ) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
573                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
574         },
575         [ C(OP_WRITE) ] = {
576                 [ C(RESULT_ACCESS) ] = -1,
577                 [ C(RESULT_MISS)   ] = -1,
578         },
579         [ C(OP_PREFETCH) ] = {
580                 [ C(RESULT_ACCESS) ] = 0,
581                 [ C(RESULT_MISS)   ] = 0,
582         },
583  },
584  [ C(LL  ) ] = {
585         [ C(OP_READ) ] = {
586                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
587                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
588         },
589         [ C(OP_WRITE) ] = {
590                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
591                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
592         },
593         [ C(OP_PREFETCH) ] = {
594                 [ C(RESULT_ACCESS) ] = 0,
595                 [ C(RESULT_MISS)   ] = 0,
596         },
597  },
598  [ C(DTLB) ] = {
599         [ C(OP_READ) ] = {
600                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
601                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
602         },
603         [ C(OP_WRITE) ] = {
604                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
605                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
606         },
607         [ C(OP_PREFETCH) ] = {
608                 [ C(RESULT_ACCESS) ] = 0,
609                 [ C(RESULT_MISS)   ] = 0,
610         },
611  },
612  [ C(ITLB) ] = {
613         [ C(OP_READ) ] = {
614                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
615                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
616         },
617         [ C(OP_WRITE) ] = {
618                 [ C(RESULT_ACCESS) ] = -1,
619                 [ C(RESULT_MISS)   ] = -1,
620         },
621         [ C(OP_PREFETCH) ] = {
622                 [ C(RESULT_ACCESS) ] = -1,
623                 [ C(RESULT_MISS)   ] = -1,
624         },
625  },
626  [ C(BPU ) ] = {
627         [ C(OP_READ) ] = {
628                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
629                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
630         },
631         [ C(OP_WRITE) ] = {
632                 [ C(RESULT_ACCESS) ] = -1,
633                 [ C(RESULT_MISS)   ] = -1,
634         },
635         [ C(OP_PREFETCH) ] = {
636                 [ C(RESULT_ACCESS) ] = -1,
637                 [ C(RESULT_MISS)   ] = -1,
638         },
639  },
640 };
641
642 static __initconst const u64 atom_hw_cache_event_ids
643                                 [PERF_COUNT_HW_CACHE_MAX]
644                                 [PERF_COUNT_HW_CACHE_OP_MAX]
645                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
646 {
647  [ C(L1D) ] = {
648         [ C(OP_READ) ] = {
649                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
650                 [ C(RESULT_MISS)   ] = 0,
651         },
652         [ C(OP_WRITE) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
654                 [ C(RESULT_MISS)   ] = 0,
655         },
656         [ C(OP_PREFETCH) ] = {
657                 [ C(RESULT_ACCESS) ] = 0x0,
658                 [ C(RESULT_MISS)   ] = 0,
659         },
660  },
661  [ C(L1I ) ] = {
662         [ C(OP_READ) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
664                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
665         },
666         [ C(OP_WRITE) ] = {
667                 [ C(RESULT_ACCESS) ] = -1,
668                 [ C(RESULT_MISS)   ] = -1,
669         },
670         [ C(OP_PREFETCH) ] = {
671                 [ C(RESULT_ACCESS) ] = 0,
672                 [ C(RESULT_MISS)   ] = 0,
673         },
674  },
675  [ C(LL  ) ] = {
676         [ C(OP_READ) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
678                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
679         },
680         [ C(OP_WRITE) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
682                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
683         },
684         [ C(OP_PREFETCH) ] = {
685                 [ C(RESULT_ACCESS) ] = 0,
686                 [ C(RESULT_MISS)   ] = 0,
687         },
688  },
689  [ C(DTLB) ] = {
690         [ C(OP_READ) ] = {
691                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
692                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
693         },
694         [ C(OP_WRITE) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
696                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
697         },
698         [ C(OP_PREFETCH) ] = {
699                 [ C(RESULT_ACCESS) ] = 0,
700                 [ C(RESULT_MISS)   ] = 0,
701         },
702  },
703  [ C(ITLB) ] = {
704         [ C(OP_READ) ] = {
705                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
706                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
707         },
708         [ C(OP_WRITE) ] = {
709                 [ C(RESULT_ACCESS) ] = -1,
710                 [ C(RESULT_MISS)   ] = -1,
711         },
712         [ C(OP_PREFETCH) ] = {
713                 [ C(RESULT_ACCESS) ] = -1,
714                 [ C(RESULT_MISS)   ] = -1,
715         },
716  },
717  [ C(BPU ) ] = {
718         [ C(OP_READ) ] = {
719                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
720                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
721         },
722         [ C(OP_WRITE) ] = {
723                 [ C(RESULT_ACCESS) ] = -1,
724                 [ C(RESULT_MISS)   ] = -1,
725         },
726         [ C(OP_PREFETCH) ] = {
727                 [ C(RESULT_ACCESS) ] = -1,
728                 [ C(RESULT_MISS)   ] = -1,
729         },
730  },
731 };
732
733 static void intel_pmu_disable_all(void)
734 {
735         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
736
737         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
738
739         if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
740                 intel_pmu_disable_bts();
741
742         intel_pmu_pebs_disable_all();
743         intel_pmu_lbr_disable_all();
744 }
745
746 static void intel_pmu_enable_all(int added)
747 {
748         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
749
750         intel_pmu_pebs_enable_all();
751         intel_pmu_lbr_enable_all();
752         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
753                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
754
755         if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
756                 struct perf_event *event =
757                         cpuc->events[X86_PMC_IDX_FIXED_BTS];
758
759                 if (WARN_ON_ONCE(!event))
760                         return;
761
762                 intel_pmu_enable_bts(event->hw.config);
763         }
764 }
765
766 /*
767  * Workaround for:
768  *   Intel Errata AAK100 (model 26)
769  *   Intel Errata AAP53  (model 30)
770  *   Intel Errata BD53   (model 44)
771  *
772  * The official story:
773  *   These chips need to be 'reset' when adding counters by programming the
774  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
775  *   in sequence on the same PMC or on different PMCs.
776  *
777  * In practise it appears some of these events do in fact count, and
778  * we need to programm all 4 events.
779  */
780 static void intel_pmu_nhm_workaround(void)
781 {
782         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
783         static const unsigned long nhm_magic[4] = {
784                 0x4300B5,
785                 0x4300D2,
786                 0x4300B1,
787                 0x4300B1
788         };
789         struct perf_event *event;
790         int i;
791
792         /*
793          * The Errata requires below steps:
794          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
795          * 2) Configure 4 PERFEVTSELx with the magic events and clear
796          *    the corresponding PMCx;
797          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
798          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
799          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
800          */
801
802         /*
803          * The real steps we choose are a little different from above.
804          * A) To reduce MSR operations, we don't run step 1) as they
805          *    are already cleared before this function is called;
806          * B) Call x86_perf_event_update to save PMCx before configuring
807          *    PERFEVTSELx with magic number;
808          * C) With step 5), we do clear only when the PERFEVTSELx is
809          *    not used currently.
810          * D) Call x86_perf_event_set_period to restore PMCx;
811          */
812
813         /* We always operate 4 pairs of PERF Counters */
814         for (i = 0; i < 4; i++) {
815                 event = cpuc->events[i];
816                 if (event)
817                         x86_perf_event_update(event);
818         }
819
820         for (i = 0; i < 4; i++) {
821                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
822                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
823         }
824
825         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
826         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
827
828         for (i = 0; i < 4; i++) {
829                 event = cpuc->events[i];
830
831                 if (event) {
832                         x86_perf_event_set_period(event);
833                         __x86_pmu_enable_event(&event->hw,
834                                         ARCH_PERFMON_EVENTSEL_ENABLE);
835                 } else
836                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
837         }
838 }
839
840 static void intel_pmu_nhm_enable_all(int added)
841 {
842         if (added)
843                 intel_pmu_nhm_workaround();
844         intel_pmu_enable_all(added);
845 }
846
847 static inline u64 intel_pmu_get_status(void)
848 {
849         u64 status;
850
851         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
852
853         return status;
854 }
855
856 static inline void intel_pmu_ack_status(u64 ack)
857 {
858         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
859 }
860
861 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
862 {
863         int idx = hwc->idx - X86_PMC_IDX_FIXED;
864         u64 ctrl_val, mask;
865
866         mask = 0xfULL << (idx * 4);
867
868         rdmsrl(hwc->config_base, ctrl_val);
869         ctrl_val &= ~mask;
870         wrmsrl(hwc->config_base, ctrl_val);
871 }
872
873 static void intel_pmu_disable_event(struct perf_event *event)
874 {
875         struct hw_perf_event *hwc = &event->hw;
876         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
877
878         if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
879                 intel_pmu_disable_bts();
880                 intel_pmu_drain_bts_buffer();
881                 return;
882         }
883
884         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
885         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
886
887         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
888                 intel_pmu_disable_fixed(hwc);
889                 return;
890         }
891
892         x86_pmu_disable_event(event);
893
894         if (unlikely(event->attr.precise_ip))
895                 intel_pmu_pebs_disable(event);
896 }
897
898 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
899 {
900         int idx = hwc->idx - X86_PMC_IDX_FIXED;
901         u64 ctrl_val, bits, mask;
902
903         /*
904          * Enable IRQ generation (0x8),
905          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
906          * if requested:
907          */
908         bits = 0x8ULL;
909         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
910                 bits |= 0x2;
911         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
912                 bits |= 0x1;
913
914         /*
915          * ANY bit is supported in v3 and up
916          */
917         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
918                 bits |= 0x4;
919
920         bits <<= (idx * 4);
921         mask = 0xfULL << (idx * 4);
922
923         rdmsrl(hwc->config_base, ctrl_val);
924         ctrl_val &= ~mask;
925         ctrl_val |= bits;
926         wrmsrl(hwc->config_base, ctrl_val);
927 }
928
929 static void intel_pmu_enable_event(struct perf_event *event)
930 {
931         struct hw_perf_event *hwc = &event->hw;
932         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
933
934         if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
935                 if (!__this_cpu_read(cpu_hw_events.enabled))
936                         return;
937
938                 intel_pmu_enable_bts(hwc->config);
939                 return;
940         }
941
942         if (event->attr.exclude_host)
943                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
944         if (event->attr.exclude_guest)
945                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
946
947         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
948                 intel_pmu_enable_fixed(hwc);
949                 return;
950         }
951
952         if (unlikely(event->attr.precise_ip))
953                 intel_pmu_pebs_enable(event);
954
955         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
956 }
957
958 /*
959  * Save and restart an expired event. Called by NMI contexts,
960  * so it has to be careful about preempting normal event ops:
961  */
962 int intel_pmu_save_and_restart(struct perf_event *event)
963 {
964         x86_perf_event_update(event);
965         return x86_perf_event_set_period(event);
966 }
967
968 static void intel_pmu_reset(void)
969 {
970         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
971         unsigned long flags;
972         int idx;
973
974         if (!x86_pmu.num_counters)
975                 return;
976
977         local_irq_save(flags);
978
979         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
980
981         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
982                 checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
983                 checking_wrmsrl(x86_pmu_event_addr(idx),  0ull);
984         }
985         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
986                 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
987
988         if (ds)
989                 ds->bts_index = ds->bts_buffer_base;
990
991         local_irq_restore(flags);
992 }
993
994 /*
995  * This handler is triggered by the local APIC, so the APIC IRQ handling
996  * rules apply:
997  */
998 static int intel_pmu_handle_irq(struct pt_regs *regs)
999 {
1000         struct perf_sample_data data;
1001         struct cpu_hw_events *cpuc;
1002         int bit, loops;
1003         u64 status;
1004         int handled;
1005
1006         perf_sample_data_init(&data, 0);
1007
1008         cpuc = &__get_cpu_var(cpu_hw_events);
1009
1010         /*
1011          * Some chipsets need to unmask the LVTPC in a particular spot
1012          * inside the nmi handler.  As a result, the unmasking was pushed
1013          * into all the nmi handlers.
1014          *
1015          * This handler doesn't seem to have any issues with the unmasking
1016          * so it was left at the top.
1017          */
1018         apic_write(APIC_LVTPC, APIC_DM_NMI);
1019
1020         intel_pmu_disable_all();
1021         handled = intel_pmu_drain_bts_buffer();
1022         status = intel_pmu_get_status();
1023         if (!status) {
1024                 intel_pmu_enable_all(0);
1025                 return handled;
1026         }
1027
1028         loops = 0;
1029 again:
1030         intel_pmu_ack_status(status);
1031         if (++loops > 100) {
1032                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1033                 perf_event_print_debug();
1034                 intel_pmu_reset();
1035                 goto done;
1036         }
1037
1038         inc_irq_stat(apic_perf_irqs);
1039
1040         intel_pmu_lbr_read();
1041
1042         /*
1043          * PEBS overflow sets bit 62 in the global status register
1044          */
1045         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1046                 handled++;
1047                 x86_pmu.drain_pebs(regs);
1048         }
1049
1050         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1051                 struct perf_event *event = cpuc->events[bit];
1052
1053                 handled++;
1054
1055                 if (!test_bit(bit, cpuc->active_mask))
1056                         continue;
1057
1058                 if (!intel_pmu_save_and_restart(event))
1059                         continue;
1060
1061                 data.period = event->hw.last_period;
1062
1063                 if (perf_event_overflow(event, &data, regs))
1064                         x86_pmu_stop(event, 0);
1065         }
1066
1067         /*
1068          * Repeat if there is more work to be done:
1069          */
1070         status = intel_pmu_get_status();
1071         if (status)
1072                 goto again;
1073
1074 done:
1075         intel_pmu_enable_all(0);
1076         return handled;
1077 }
1078
1079 static struct event_constraint *
1080 intel_bts_constraints(struct perf_event *event)
1081 {
1082         struct hw_perf_event *hwc = &event->hw;
1083         unsigned int hw_event, bts_event;
1084
1085         if (event->attr.freq)
1086                 return NULL;
1087
1088         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1089         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1090
1091         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1092                 return &bts_constraint;
1093
1094         return NULL;
1095 }
1096
1097 static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
1098 {
1099         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1100                 return false;
1101
1102         if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
1103                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1104                 event->hw.config |= 0x01bb;
1105                 event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
1106                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1107         } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
1108                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1109                 event->hw.config |= 0x01b7;
1110                 event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
1111                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1112         }
1113
1114         if (event->hw.extra_reg.idx == orig_idx)
1115                 return false;
1116
1117         return true;
1118 }
1119
1120 /*
1121  * manage allocation of shared extra msr for certain events
1122  *
1123  * sharing can be:
1124  * per-cpu: to be shared between the various events on a single PMU
1125  * per-core: per-cpu + shared by HT threads
1126  */
1127 static struct event_constraint *
1128 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1129                                    struct perf_event *event)
1130 {
1131         struct event_constraint *c = &emptyconstraint;
1132         struct hw_perf_event_extra *reg = &event->hw.extra_reg;
1133         struct er_account *era;
1134         unsigned long flags;
1135         int orig_idx = reg->idx;
1136
1137         /* already allocated shared msr */
1138         if (reg->alloc)
1139                 return &unconstrained;
1140
1141 again:
1142         era = &cpuc->shared_regs->regs[reg->idx];
1143         /*
1144          * we use spin_lock_irqsave() to avoid lockdep issues when
1145          * passing a fake cpuc
1146          */
1147         raw_spin_lock_irqsave(&era->lock, flags);
1148
1149         if (!atomic_read(&era->ref) || era->config == reg->config) {
1150
1151                 /* lock in msr value */
1152                 era->config = reg->config;
1153                 era->reg = reg->reg;
1154
1155                 /* one more user */
1156                 atomic_inc(&era->ref);
1157
1158                 /* no need to reallocate during incremental event scheduling */
1159                 reg->alloc = 1;
1160
1161                 /*
1162                  * All events using extra_reg are unconstrained.
1163                  * Avoids calling x86_get_event_constraints()
1164                  *
1165                  * Must revisit if extra_reg controlling events
1166                  * ever have constraints. Worst case we go through
1167                  * the regular event constraint table.
1168                  */
1169                 c = &unconstrained;
1170         } else if (intel_try_alt_er(event, orig_idx)) {
1171                 raw_spin_unlock(&era->lock);
1172                 goto again;
1173         }
1174         raw_spin_unlock_irqrestore(&era->lock, flags);
1175
1176         return c;
1177 }
1178
1179 static void
1180 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1181                                    struct hw_perf_event_extra *reg)
1182 {
1183         struct er_account *era;
1184
1185         /*
1186          * only put constraint if extra reg was actually
1187          * allocated. Also takes care of event which do
1188          * not use an extra shared reg
1189          */
1190         if (!reg->alloc)
1191                 return;
1192
1193         era = &cpuc->shared_regs->regs[reg->idx];
1194
1195         /* one fewer user */
1196         atomic_dec(&era->ref);
1197
1198         /* allocate again next time */
1199         reg->alloc = 0;
1200 }
1201
1202 static struct event_constraint *
1203 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1204                               struct perf_event *event)
1205 {
1206         struct event_constraint *c = NULL;
1207
1208         if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
1209                 c = __intel_shared_reg_get_constraints(cpuc, event);
1210
1211         return c;
1212 }
1213
1214 struct event_constraint *
1215 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1216 {
1217         struct event_constraint *c;
1218
1219         if (x86_pmu.event_constraints) {
1220                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1221                         if ((event->hw.config & c->cmask) == c->code)
1222                                 return c;
1223                 }
1224         }
1225
1226         return &unconstrained;
1227 }
1228
1229 static struct event_constraint *
1230 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1231 {
1232         struct event_constraint *c;
1233
1234         c = intel_bts_constraints(event);
1235         if (c)
1236                 return c;
1237
1238         c = intel_pebs_constraints(event);
1239         if (c)
1240                 return c;
1241
1242         c = intel_shared_regs_constraints(cpuc, event);
1243         if (c)
1244                 return c;
1245
1246         return x86_get_event_constraints(cpuc, event);
1247 }
1248
1249 static void
1250 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1251                                         struct perf_event *event)
1252 {
1253         struct hw_perf_event_extra *reg;
1254
1255         reg = &event->hw.extra_reg;
1256         if (reg->idx != EXTRA_REG_NONE)
1257                 __intel_shared_reg_put_constraints(cpuc, reg);
1258 }
1259
1260 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1261                                         struct perf_event *event)
1262 {
1263         intel_put_shared_regs_event_constraints(cpuc, event);
1264 }
1265
1266 static int intel_pmu_hw_config(struct perf_event *event)
1267 {
1268         int ret = x86_pmu_hw_config(event);
1269
1270         if (ret)
1271                 return ret;
1272
1273         if (event->attr.precise_ip &&
1274             (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1275                 /*
1276                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1277                  * (0x003c) so that we can use it with PEBS.
1278                  *
1279                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1280                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1281                  * (0x00c0), which is a PEBS capable event, to get the same
1282                  * count.
1283                  *
1284                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1285                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1286                  * larger than the maximum number of instructions that can be
1287                  * retired per cycle (4) and then inverting the condition, we
1288                  * count all cycles that retire 16 or less instructions, which
1289                  * is every cycle.
1290                  *
1291                  * Thereby we gain a PEBS capable cycle counter.
1292                  */
1293                 u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1294
1295                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1296                 event->hw.config = alt_config;
1297         }
1298
1299         if (event->attr.type != PERF_TYPE_RAW)
1300                 return 0;
1301
1302         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1303                 return 0;
1304
1305         if (x86_pmu.version < 3)
1306                 return -EINVAL;
1307
1308         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1309                 return -EACCES;
1310
1311         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1312
1313         return 0;
1314 }
1315
1316 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1317 {
1318         if (x86_pmu.guest_get_msrs)
1319                 return x86_pmu.guest_get_msrs(nr);
1320         *nr = 0;
1321         return NULL;
1322 }
1323 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1324
1325 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1326 {
1327         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1328         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1329
1330         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1331         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1332         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1333
1334         *nr = 1;
1335         return arr;
1336 }
1337
1338 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1339 {
1340         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1341         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1342         int idx;
1343
1344         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1345                 struct perf_event *event = cpuc->events[idx];
1346
1347                 arr[idx].msr = x86_pmu_config_addr(idx);
1348                 arr[idx].host = arr[idx].guest = 0;
1349
1350                 if (!test_bit(idx, cpuc->active_mask))
1351                         continue;
1352
1353                 arr[idx].host = arr[idx].guest =
1354                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1355
1356                 if (event->attr.exclude_host)
1357                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1358                 else if (event->attr.exclude_guest)
1359                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1360         }
1361
1362         *nr = x86_pmu.num_counters;
1363         return arr;
1364 }
1365
1366 static void core_pmu_enable_event(struct perf_event *event)
1367 {
1368         if (!event->attr.exclude_host)
1369                 x86_pmu_enable_event(event);
1370 }
1371
1372 static void core_pmu_enable_all(int added)
1373 {
1374         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1375         int idx;
1376
1377         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1378                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1379
1380                 if (!test_bit(idx, cpuc->active_mask) ||
1381                                 cpuc->events[idx]->attr.exclude_host)
1382                         continue;
1383
1384                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1385         }
1386 }
1387
1388 static __initconst const struct x86_pmu core_pmu = {
1389         .name                   = "core",
1390         .handle_irq             = x86_pmu_handle_irq,
1391         .disable_all            = x86_pmu_disable_all,
1392         .enable_all             = core_pmu_enable_all,
1393         .enable                 = core_pmu_enable_event,
1394         .disable                = x86_pmu_disable_event,
1395         .hw_config              = x86_pmu_hw_config,
1396         .schedule_events        = x86_schedule_events,
1397         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1398         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1399         .event_map              = intel_pmu_event_map,
1400         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1401         .apic                   = 1,
1402         /*
1403          * Intel PMCs cannot be accessed sanely above 32 bit width,
1404          * so we install an artificial 1<<31 period regardless of
1405          * the generic event period:
1406          */
1407         .max_period             = (1ULL << 31) - 1,
1408         .get_event_constraints  = intel_get_event_constraints,
1409         .put_event_constraints  = intel_put_event_constraints,
1410         .event_constraints      = intel_core_event_constraints,
1411         .guest_get_msrs         = core_guest_get_msrs,
1412 };
1413
1414 struct intel_shared_regs *allocate_shared_regs(int cpu)
1415 {
1416         struct intel_shared_regs *regs;
1417         int i;
1418
1419         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1420                             GFP_KERNEL, cpu_to_node(cpu));
1421         if (regs) {
1422                 /*
1423                  * initialize the locks to keep lockdep happy
1424                  */
1425                 for (i = 0; i < EXTRA_REG_MAX; i++)
1426                         raw_spin_lock_init(&regs->regs[i].lock);
1427
1428                 regs->core_id = -1;
1429         }
1430         return regs;
1431 }
1432
1433 static int intel_pmu_cpu_prepare(int cpu)
1434 {
1435         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1436
1437         if (!x86_pmu.extra_regs)
1438                 return NOTIFY_OK;
1439
1440         cpuc->shared_regs = allocate_shared_regs(cpu);
1441         if (!cpuc->shared_regs)
1442                 return NOTIFY_BAD;
1443
1444         return NOTIFY_OK;
1445 }
1446
1447 static void intel_pmu_cpu_starting(int cpu)
1448 {
1449         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1450         int core_id = topology_core_id(cpu);
1451         int i;
1452
1453         init_debug_store_on_cpu(cpu);
1454         /*
1455          * Deal with CPUs that don't clear their LBRs on power-up.
1456          */
1457         intel_pmu_lbr_reset();
1458
1459         if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
1460                 return;
1461
1462         for_each_cpu(i, topology_thread_cpumask(cpu)) {
1463                 struct intel_shared_regs *pc;
1464
1465                 pc = per_cpu(cpu_hw_events, i).shared_regs;
1466                 if (pc && pc->core_id == core_id) {
1467                         cpuc->kfree_on_online = cpuc->shared_regs;
1468                         cpuc->shared_regs = pc;
1469                         break;
1470                 }
1471         }
1472
1473         cpuc->shared_regs->core_id = core_id;
1474         cpuc->shared_regs->refcnt++;
1475 }
1476
1477 static void intel_pmu_cpu_dying(int cpu)
1478 {
1479         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1480         struct intel_shared_regs *pc;
1481
1482         pc = cpuc->shared_regs;
1483         if (pc) {
1484                 if (pc->core_id == -1 || --pc->refcnt == 0)
1485                         kfree(pc);
1486                 cpuc->shared_regs = NULL;
1487         }
1488
1489         fini_debug_store_on_cpu(cpu);
1490 }
1491
1492 static __initconst const struct x86_pmu intel_pmu = {
1493         .name                   = "Intel",
1494         .handle_irq             = intel_pmu_handle_irq,
1495         .disable_all            = intel_pmu_disable_all,
1496         .enable_all             = intel_pmu_enable_all,
1497         .enable                 = intel_pmu_enable_event,
1498         .disable                = intel_pmu_disable_event,
1499         .hw_config              = intel_pmu_hw_config,
1500         .schedule_events        = x86_schedule_events,
1501         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1502         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1503         .event_map              = intel_pmu_event_map,
1504         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1505         .apic                   = 1,
1506         /*
1507          * Intel PMCs cannot be accessed sanely above 32 bit width,
1508          * so we install an artificial 1<<31 period regardless of
1509          * the generic event period:
1510          */
1511         .max_period             = (1ULL << 31) - 1,
1512         .get_event_constraints  = intel_get_event_constraints,
1513         .put_event_constraints  = intel_put_event_constraints,
1514
1515         .cpu_prepare            = intel_pmu_cpu_prepare,
1516         .cpu_starting           = intel_pmu_cpu_starting,
1517         .cpu_dying              = intel_pmu_cpu_dying,
1518         .guest_get_msrs         = intel_guest_get_msrs,
1519 };
1520
1521 static void intel_clovertown_quirks(void)
1522 {
1523         /*
1524          * PEBS is unreliable due to:
1525          *
1526          *   AJ67  - PEBS may experience CPL leaks
1527          *   AJ68  - PEBS PMI may be delayed by one event
1528          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1529          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1530          *
1531          * AJ67 could be worked around by restricting the OS/USR flags.
1532          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1533          *
1534          * AJ106 could possibly be worked around by not allowing LBR
1535          *       usage from PEBS, including the fixup.
1536          * AJ68  could possibly be worked around by always programming
1537          *       a pebs_event_reset[0] value and coping with the lost events.
1538          *
1539          * But taken together it might just make sense to not enable PEBS on
1540          * these chips.
1541          */
1542         printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1543         x86_pmu.pebs = 0;
1544         x86_pmu.pebs_constraints = NULL;
1545 }
1546
1547 __init int intel_pmu_init(void)
1548 {
1549         union cpuid10_edx edx;
1550         union cpuid10_eax eax;
1551         unsigned int unused;
1552         unsigned int ebx;
1553         int version;
1554
1555         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1556                 switch (boot_cpu_data.x86) {
1557                 case 0x6:
1558                         return p6_pmu_init();
1559                 case 0xf:
1560                         return p4_pmu_init();
1561                 }
1562                 return -ENODEV;
1563         }
1564
1565         /*
1566          * Check whether the Architectural PerfMon supports
1567          * Branch Misses Retired hw_event or not.
1568          */
1569         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1570         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1571                 return -ENODEV;
1572
1573         version = eax.split.version_id;
1574         if (version < 2)
1575                 x86_pmu = core_pmu;
1576         else
1577                 x86_pmu = intel_pmu;
1578
1579         x86_pmu.version                 = version;
1580         x86_pmu.num_counters            = eax.split.num_counters;
1581         x86_pmu.cntval_bits             = eax.split.bit_width;
1582         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1583
1584         /*
1585          * Quirk: v2 perfmon does not report fixed-purpose events, so
1586          * assume at least 3 events:
1587          */
1588         if (version > 1)
1589                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1590
1591         /*
1592          * v2 and above have a perf capabilities MSR
1593          */
1594         if (version > 1) {
1595                 u64 capabilities;
1596
1597                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1598                 x86_pmu.intel_cap.capabilities = capabilities;
1599         }
1600
1601         intel_ds_init();
1602
1603         /*
1604          * Install the hw-cache-events table:
1605          */
1606         switch (boot_cpu_data.x86_model) {
1607         case 14: /* 65 nm core solo/duo, "Yonah" */
1608                 pr_cont("Core events, ");
1609                 break;
1610
1611         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1612                 x86_pmu.quirks = intel_clovertown_quirks;
1613         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1614         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1615         case 29: /* six-core 45 nm xeon "Dunnington" */
1616                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1617                        sizeof(hw_cache_event_ids));
1618
1619                 intel_pmu_lbr_init_core();
1620
1621                 x86_pmu.event_constraints = intel_core2_event_constraints;
1622                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1623                 pr_cont("Core2 events, ");
1624                 break;
1625
1626         case 26: /* 45 nm nehalem, "Bloomfield" */
1627         case 30: /* 45 nm nehalem, "Lynnfield" */
1628         case 46: /* 45 nm nehalem-ex, "Beckton" */
1629                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1630                        sizeof(hw_cache_event_ids));
1631                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1632                        sizeof(hw_cache_extra_regs));
1633
1634                 intel_pmu_lbr_init_nhm();
1635
1636                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1637                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1638                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1639                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1640
1641                 /* UOPS_ISSUED.STALLED_CYCLES */
1642                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1643                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1644                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1645
1646                 if (ebx & 0x40) {
1647                         /*
1648                          * Erratum AAJ80 detected, we work it around by using
1649                          * the BR_MISP_EXEC.ANY event. This will over-count
1650                          * branch-misses, but it's still much better than the
1651                          * architectural event which is often completely bogus:
1652                          */
1653                         intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1654
1655                         pr_cont("erratum AAJ80 worked around, ");
1656                 }
1657                 pr_cont("Nehalem events, ");
1658                 break;
1659
1660         case 28: /* Atom */
1661                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1662                        sizeof(hw_cache_event_ids));
1663
1664                 intel_pmu_lbr_init_atom();
1665
1666                 x86_pmu.event_constraints = intel_gen_event_constraints;
1667                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1668                 pr_cont("Atom events, ");
1669                 break;
1670
1671         case 37: /* 32 nm nehalem, "Clarkdale" */
1672         case 44: /* 32 nm nehalem, "Gulftown" */
1673         case 47: /* 32 nm Xeon E7 */
1674                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1675                        sizeof(hw_cache_event_ids));
1676                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1677                        sizeof(hw_cache_extra_regs));
1678
1679                 intel_pmu_lbr_init_nhm();
1680
1681                 x86_pmu.event_constraints = intel_westmere_event_constraints;
1682                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1683                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1684                 x86_pmu.extra_regs = intel_westmere_extra_regs;
1685                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1686
1687                 /* UOPS_ISSUED.STALLED_CYCLES */
1688                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1689                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1690                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1691
1692                 pr_cont("Westmere events, ");
1693                 break;
1694
1695         case 42: /* SandyBridge */
1696         case 45: /* SandyBridge, "Romely-EP" */
1697                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1698                        sizeof(hw_cache_event_ids));
1699
1700                 intel_pmu_lbr_init_nhm();
1701
1702                 x86_pmu.event_constraints = intel_snb_event_constraints;
1703                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1704                 x86_pmu.extra_regs = intel_snb_extra_regs;
1705                 /* all extra regs are per-cpu when HT is on */
1706                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1707                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1708
1709                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1710                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1711                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1712                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
1713
1714                 pr_cont("SandyBridge events, ");
1715                 break;
1716
1717         default:
1718                 switch (x86_pmu.version) {
1719                 case 1:
1720                         x86_pmu.event_constraints = intel_v1_event_constraints;
1721                         pr_cont("generic architected perfmon v1, ");
1722                         break;
1723                 default:
1724                         /*
1725                          * default constraints for v2 and up
1726                          */
1727                         x86_pmu.event_constraints = intel_gen_event_constraints;
1728                         pr_cont("generic architected perfmon, ");
1729                         break;
1730                 }
1731         }
1732         return 0;
1733 }