Merge branch 'linus' into perf/core
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110         u64                     tags[X86_PMC_IDX_MAX];
111         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112
113         /*
114          * Intel DebugStore bits
115          */
116         struct debug_store      *ds;
117         u64                     pebs_enabled;
118
119         /*
120          * Intel LBR bits
121          */
122         int                             lbr_users;
123         void                            *lbr_context;
124         struct perf_branch_stack        lbr_stack;
125         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
126
127         /*
128          * AMD specific bits
129          */
130         struct amd_nb           *amd_nb;
131 };
132
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134         { .idxmsk64 = (n) },            \
135         .code = (c),                    \
136         .cmask = (m),                   \
137         .weight = (w),                  \
138 }
139
140 #define EVENT_CONSTRAINT(c, n, m)       \
141         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
143 /*
144  * Constraint on the Event code.
145  */
146 #define INTEL_EVENT_CONSTRAINT(c, n)    \
147         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
148
149 /*
150  * Constraint on the Event code + UMask + fixed-mask
151  *
152  * filter mask to validate fixed counter events.
153  * the following filters disqualify for fixed counters:
154  *  - inv
155  *  - edge
156  *  - cnt-mask
157  *  The other filters are supported by fixed counters.
158  *  The any-thread option is supported starting with v3.
159  */
160 #define FIXED_EVENT_CONSTRAINT(c, n)    \
161         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
162
163 /*
164  * Constraint on the Event code + UMask
165  */
166 #define PEBS_EVENT_CONSTRAINT(c, n)     \
167         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
169 #define EVENT_CONSTRAINT_END            \
170         EVENT_CONSTRAINT(0, 0, 0)
171
172 #define for_each_event_constraint(e, c) \
173         for ((e) = (c); (e)->cmask; (e)++)
174
175 union perf_capabilities {
176         struct {
177                 u64     lbr_format    : 6;
178                 u64     pebs_trap     : 1;
179                 u64     pebs_arch_reg : 1;
180                 u64     pebs_format   : 4;
181                 u64     smm_freeze    : 1;
182         };
183         u64     capabilities;
184 };
185
186 /*
187  * struct x86_pmu - generic x86 pmu
188  */
189 struct x86_pmu {
190         /*
191          * Generic x86 PMC bits
192          */
193         const char      *name;
194         int             version;
195         int             (*handle_irq)(struct pt_regs *);
196         void            (*disable_all)(void);
197         void            (*enable_all)(int added);
198         void            (*enable)(struct perf_event *);
199         void            (*disable)(struct perf_event *);
200         int             (*hw_config)(struct perf_event *event);
201         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202         unsigned        eventsel;
203         unsigned        perfctr;
204         u64             (*event_map)(int);
205         int             max_events;
206         int             num_counters;
207         int             num_counters_fixed;
208         int             cntval_bits;
209         u64             cntval_mask;
210         int             apic;
211         u64             max_period;
212         struct event_constraint *
213                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
214                                                  struct perf_event *event);
215
216         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218         struct event_constraint *event_constraints;
219         void            (*quirks)(void);
220
221         int             (*cpu_prepare)(int cpu);
222         void            (*cpu_starting)(int cpu);
223         void            (*cpu_dying)(int cpu);
224         void            (*cpu_dead)(int cpu);
225
226         /*
227          * Intel Arch Perfmon v2+
228          */
229         u64                     intel_ctrl;
230         union perf_capabilities intel_cap;
231
232         /*
233          * Intel DebugStore bits
234          */
235         int             bts, pebs;
236         int             pebs_record_size;
237         void            (*drain_pebs)(struct pt_regs *regs);
238         struct event_constraint *pebs_constraints;
239
240         /*
241          * Intel LBR
242          */
243         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
244         int             lbr_nr;                    /* hardware stack size */
245 };
246
247 static struct x86_pmu x86_pmu __read_mostly;
248
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250         .enabled = 1,
251 };
252
253 static int x86_perf_event_set_period(struct perf_event *event);
254
255 /*
256  * Generalized hw caching related hw_event table, filled
257  * in on a per model basis. A value of 0 means
258  * 'not supported', -1 means 'hw_event makes no sense on
259  * this CPU', any other value means the raw hw_event
260  * ID.
261  */
262
263 #define C(x) PERF_COUNT_HW_CACHE_##x
264
265 static u64 __read_mostly hw_cache_event_ids
266                                 [PERF_COUNT_HW_CACHE_MAX]
267                                 [PERF_COUNT_HW_CACHE_OP_MAX]
268                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
270 /*
271  * Propagate event elapsed time into the generic event.
272  * Can only be executed on the CPU where the event is active.
273  * Returns the delta events processed.
274  */
275 static u64
276 x86_perf_event_update(struct perf_event *event)
277 {
278         struct hw_perf_event *hwc = &event->hw;
279         int shift = 64 - x86_pmu.cntval_bits;
280         u64 prev_raw_count, new_raw_count;
281         int idx = hwc->idx;
282         s64 delta;
283
284         if (idx == X86_PMC_IDX_FIXED_BTS)
285                 return 0;
286
287         /*
288          * Careful: an NMI might modify the previous event value.
289          *
290          * Our tactic to handle this is to first atomically read and
291          * exchange a new raw count - then add that new-prev delta
292          * count to the generic event atomically:
293          */
294 again:
295         prev_raw_count = atomic64_read(&hwc->prev_count);
296         rdmsrl(hwc->event_base + idx, new_raw_count);
297
298         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299                                         new_raw_count) != prev_raw_count)
300                 goto again;
301
302         /*
303          * Now we have the new raw value and have updated the prev
304          * timestamp already. We can now calculate the elapsed delta
305          * (event-)time and add that to the generic event.
306          *
307          * Careful, not all hw sign-extends above the physical width
308          * of the count.
309          */
310         delta = (new_raw_count << shift) - (prev_raw_count << shift);
311         delta >>= shift;
312
313         atomic64_add(delta, &event->count);
314         atomic64_sub(delta, &hwc->period_left);
315
316         return new_raw_count;
317 }
318
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
321
322 #ifdef CONFIG_X86_LOCAL_APIC
323
324 static bool reserve_pmc_hardware(void)
325 {
326         int i;
327
328         if (nmi_watchdog == NMI_LOCAL_APIC)
329                 disable_lapic_nmi_watchdog();
330
331         for (i = 0; i < x86_pmu.num_counters; i++) {
332                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333                         goto perfctr_fail;
334         }
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338                         goto eventsel_fail;
339         }
340
341         return true;
342
343 eventsel_fail:
344         for (i--; i >= 0; i--)
345                 release_evntsel_nmi(x86_pmu.eventsel + i);
346
347         i = x86_pmu.num_counters;
348
349 perfctr_fail:
350         for (i--; i >= 0; i--)
351                 release_perfctr_nmi(x86_pmu.perfctr + i);
352
353         if (nmi_watchdog == NMI_LOCAL_APIC)
354                 enable_lapic_nmi_watchdog();
355
356         return false;
357 }
358
359 static void release_pmc_hardware(void)
360 {
361         int i;
362
363         for (i = 0; i < x86_pmu.num_counters; i++) {
364                 release_perfctr_nmi(x86_pmu.perfctr + i);
365                 release_evntsel_nmi(x86_pmu.eventsel + i);
366         }
367
368         if (nmi_watchdog == NMI_LOCAL_APIC)
369                 enable_lapic_nmi_watchdog();
370 }
371
372 #else
373
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
376
377 #endif
378
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
381
382 static void hw_perf_event_destroy(struct perf_event *event)
383 {
384         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385                 release_pmc_hardware();
386                 release_ds_buffers();
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389 }
390
391 static inline int x86_pmu_initialized(void)
392 {
393         return x86_pmu.handle_irq != NULL;
394 }
395
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
398 {
399         unsigned int cache_type, cache_op, cache_result;
400         u64 config, val;
401
402         config = attr->config;
403
404         cache_type = (config >>  0) & 0xff;
405         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406                 return -EINVAL;
407
408         cache_op = (config >>  8) & 0xff;
409         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410                 return -EINVAL;
411
412         cache_result = (config >> 16) & 0xff;
413         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414                 return -EINVAL;
415
416         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418         if (val == 0)
419                 return -ENOENT;
420
421         if (val == -1)
422                 return -EINVAL;
423
424         hwc->config |= val;
425
426         return 0;
427 }
428
429 static int x86_pmu_hw_config(struct perf_event *event)
430 {
431         /*
432          * Generate PMC IRQs:
433          * (keep 'enabled' bit clear for now)
434          */
435         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
436
437         /*
438          * Count user and OS events unless requested not to
439          */
440         if (!event->attr.exclude_user)
441                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
442         if (!event->attr.exclude_kernel)
443                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
444
445         if (event->attr.type == PERF_TYPE_RAW)
446                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
447
448         return 0;
449 }
450
451 /*
452  * Setup the hardware configuration for a given attr_type
453  */
454 static int __hw_perf_event_init(struct perf_event *event)
455 {
456         struct perf_event_attr *attr = &event->attr;
457         struct hw_perf_event *hwc = &event->hw;
458         u64 config;
459         int err;
460
461         if (!x86_pmu_initialized())
462                 return -ENODEV;
463
464         err = 0;
465         if (!atomic_inc_not_zero(&active_events)) {
466                 mutex_lock(&pmc_reserve_mutex);
467                 if (atomic_read(&active_events) == 0) {
468                         if (!reserve_pmc_hardware())
469                                 err = -EBUSY;
470                         else {
471                                 err = reserve_ds_buffers();
472                                 if (err)
473                                         release_pmc_hardware();
474                         }
475                 }
476                 if (!err)
477                         atomic_inc(&active_events);
478                 mutex_unlock(&pmc_reserve_mutex);
479         }
480         if (err)
481                 return err;
482
483         event->destroy = hw_perf_event_destroy;
484
485         hwc->idx = -1;
486         hwc->last_cpu = -1;
487         hwc->last_tag = ~0ULL;
488
489         /* Processor specifics */
490         err = x86_pmu.hw_config(event);
491         if (err)
492                 return err;
493
494         if (!hwc->sample_period) {
495                 hwc->sample_period = x86_pmu.max_period;
496                 hwc->last_period = hwc->sample_period;
497                 atomic64_set(&hwc->period_left, hwc->sample_period);
498         } else {
499                 /*
500                  * If we have a PMU initialized but no APIC
501                  * interrupts, we cannot sample hardware
502                  * events (user-space has to fall back and
503                  * sample via a hrtimer based software event):
504                  */
505                 if (!x86_pmu.apic)
506                         return -EOPNOTSUPP;
507         }
508
509         if (attr->type == PERF_TYPE_RAW)
510                 return 0;
511
512         if (attr->type == PERF_TYPE_HW_CACHE)
513                 return set_ext_hw_attr(hwc, attr);
514
515         if (attr->config >= x86_pmu.max_events)
516                 return -EINVAL;
517
518         /*
519          * The generic map:
520          */
521         config = x86_pmu.event_map(attr->config);
522
523         if (config == 0)
524                 return -ENOENT;
525
526         if (config == -1LL)
527                 return -EINVAL;
528
529         /*
530          * Branch tracing:
531          */
532         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
533             (hwc->sample_period == 1)) {
534                 /* BTS is not supported by this architecture. */
535                 if (!x86_pmu.bts)
536                         return -EOPNOTSUPP;
537
538                 /* BTS is currently only allowed for user-mode. */
539                 if (!attr->exclude_kernel)
540                         return -EOPNOTSUPP;
541         }
542
543         hwc->config |= config;
544
545         return 0;
546 }
547
548 static void x86_pmu_disable_all(void)
549 {
550         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
551         int idx;
552
553         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
554                 u64 val;
555
556                 if (!test_bit(idx, cpuc->active_mask))
557                         continue;
558                 rdmsrl(x86_pmu.eventsel + idx, val);
559                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
560                         continue;
561                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
562                 wrmsrl(x86_pmu.eventsel + idx, val);
563         }
564 }
565
566 void hw_perf_disable(void)
567 {
568         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
569
570         if (!x86_pmu_initialized())
571                 return;
572
573         if (!cpuc->enabled)
574                 return;
575
576         cpuc->n_added = 0;
577         cpuc->enabled = 0;
578         barrier();
579
580         x86_pmu.disable_all();
581 }
582
583 static void x86_pmu_enable_all(int added)
584 {
585         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
586         int idx;
587
588         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
589                 struct perf_event *event = cpuc->events[idx];
590                 u64 val;
591
592                 if (!test_bit(idx, cpuc->active_mask))
593                         continue;
594
595                 val = event->hw.config;
596                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
597                 wrmsrl(x86_pmu.eventsel + idx, val);
598         }
599 }
600
601 static const struct pmu pmu;
602
603 static inline int is_x86_event(struct perf_event *event)
604 {
605         return event->pmu == &pmu;
606 }
607
608 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
609 {
610         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
611         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
612         int i, j, w, wmax, num = 0;
613         struct hw_perf_event *hwc;
614
615         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
616
617         for (i = 0; i < n; i++) {
618                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
619                 constraints[i] = c;
620         }
621
622         /*
623          * fastpath, try to reuse previous register
624          */
625         for (i = 0; i < n; i++) {
626                 hwc = &cpuc->event_list[i]->hw;
627                 c = constraints[i];
628
629                 /* never assigned */
630                 if (hwc->idx == -1)
631                         break;
632
633                 /* constraint still honored */
634                 if (!test_bit(hwc->idx, c->idxmsk))
635                         break;
636
637                 /* not already used */
638                 if (test_bit(hwc->idx, used_mask))
639                         break;
640
641                 __set_bit(hwc->idx, used_mask);
642                 if (assign)
643                         assign[i] = hwc->idx;
644         }
645         if (i == n)
646                 goto done;
647
648         /*
649          * begin slow path
650          */
651
652         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
653
654         /*
655          * weight = number of possible counters
656          *
657          * 1    = most constrained, only works on one counter
658          * wmax = least constrained, works on any counter
659          *
660          * assign events to counters starting with most
661          * constrained events.
662          */
663         wmax = x86_pmu.num_counters;
664
665         /*
666          * when fixed event counters are present,
667          * wmax is incremented by 1 to account
668          * for one more choice
669          */
670         if (x86_pmu.num_counters_fixed)
671                 wmax++;
672
673         for (w = 1, num = n; num && w <= wmax; w++) {
674                 /* for each event */
675                 for (i = 0; num && i < n; i++) {
676                         c = constraints[i];
677                         hwc = &cpuc->event_list[i]->hw;
678
679                         if (c->weight != w)
680                                 continue;
681
682                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
683                                 if (!test_bit(j, used_mask))
684                                         break;
685                         }
686
687                         if (j == X86_PMC_IDX_MAX)
688                                 break;
689
690                         __set_bit(j, used_mask);
691
692                         if (assign)
693                                 assign[i] = j;
694                         num--;
695                 }
696         }
697 done:
698         /*
699          * scheduling failed or is just a simulation,
700          * free resources if necessary
701          */
702         if (!assign || num) {
703                 for (i = 0; i < n; i++) {
704                         if (x86_pmu.put_event_constraints)
705                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
706                 }
707         }
708         return num ? -ENOSPC : 0;
709 }
710
711 /*
712  * dogrp: true if must collect siblings events (group)
713  * returns total number of events and error code
714  */
715 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
716 {
717         struct perf_event *event;
718         int n, max_count;
719
720         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
721
722         /* current number of events already accepted */
723         n = cpuc->n_events;
724
725         if (is_x86_event(leader)) {
726                 if (n >= max_count)
727                         return -ENOSPC;
728                 cpuc->event_list[n] = leader;
729                 n++;
730         }
731         if (!dogrp)
732                 return n;
733
734         list_for_each_entry(event, &leader->sibling_list, group_entry) {
735                 if (!is_x86_event(event) ||
736                     event->state <= PERF_EVENT_STATE_OFF)
737                         continue;
738
739                 if (n >= max_count)
740                         return -ENOSPC;
741
742                 cpuc->event_list[n] = event;
743                 n++;
744         }
745         return n;
746 }
747
748 static inline void x86_assign_hw_event(struct perf_event *event,
749                                 struct cpu_hw_events *cpuc, int i)
750 {
751         struct hw_perf_event *hwc = &event->hw;
752
753         hwc->idx = cpuc->assign[i];
754         hwc->last_cpu = smp_processor_id();
755         hwc->last_tag = ++cpuc->tags[i];
756
757         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
758                 hwc->config_base = 0;
759                 hwc->event_base = 0;
760         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
761                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
762                 /*
763                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
764                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
765                  */
766                 hwc->event_base =
767                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
768         } else {
769                 hwc->config_base = x86_pmu.eventsel;
770                 hwc->event_base  = x86_pmu.perfctr;
771         }
772 }
773
774 static inline int match_prev_assignment(struct hw_perf_event *hwc,
775                                         struct cpu_hw_events *cpuc,
776                                         int i)
777 {
778         return hwc->idx == cpuc->assign[i] &&
779                 hwc->last_cpu == smp_processor_id() &&
780                 hwc->last_tag == cpuc->tags[i];
781 }
782
783 static int x86_pmu_start(struct perf_event *event);
784 static void x86_pmu_stop(struct perf_event *event);
785
786 void hw_perf_enable(void)
787 {
788         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
789         struct perf_event *event;
790         struct hw_perf_event *hwc;
791         int i, added = cpuc->n_added;
792
793         if (!x86_pmu_initialized())
794                 return;
795
796         if (cpuc->enabled)
797                 return;
798
799         if (cpuc->n_added) {
800                 int n_running = cpuc->n_events - cpuc->n_added;
801                 /*
802                  * apply assignment obtained either from
803                  * hw_perf_group_sched_in() or x86_pmu_enable()
804                  *
805                  * step1: save events moving to new counters
806                  * step2: reprogram moved events into new counters
807                  */
808                 for (i = 0; i < n_running; i++) {
809                         event = cpuc->event_list[i];
810                         hwc = &event->hw;
811
812                         /*
813                          * we can avoid reprogramming counter if:
814                          * - assigned same counter as last time
815                          * - running on same CPU as last time
816                          * - no other event has used the counter since
817                          */
818                         if (hwc->idx == -1 ||
819                             match_prev_assignment(hwc, cpuc, i))
820                                 continue;
821
822                         x86_pmu_stop(event);
823                 }
824
825                 for (i = 0; i < cpuc->n_events; i++) {
826                         event = cpuc->event_list[i];
827                         hwc = &event->hw;
828
829                         if (!match_prev_assignment(hwc, cpuc, i))
830                                 x86_assign_hw_event(event, cpuc, i);
831                         else if (i < n_running)
832                                 continue;
833
834                         x86_pmu_start(event);
835                 }
836                 cpuc->n_added = 0;
837                 perf_events_lapic_init();
838         }
839
840         cpuc->enabled = 1;
841         barrier();
842
843         x86_pmu.enable_all(added);
844 }
845
846 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
847 {
848         wrmsrl(hwc->config_base + hwc->idx,
849                               hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
850 }
851
852 static inline void x86_pmu_disable_event(struct perf_event *event)
853 {
854         struct hw_perf_event *hwc = &event->hw;
855
856         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
857 }
858
859 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
860
861 /*
862  * Set the next IRQ period, based on the hwc->period_left value.
863  * To be called with the event disabled in hw:
864  */
865 static int
866 x86_perf_event_set_period(struct perf_event *event)
867 {
868         struct hw_perf_event *hwc = &event->hw;
869         s64 left = atomic64_read(&hwc->period_left);
870         s64 period = hwc->sample_period;
871         int ret = 0, idx = hwc->idx;
872
873         if (idx == X86_PMC_IDX_FIXED_BTS)
874                 return 0;
875
876         /*
877          * If we are way outside a reasonable range then just skip forward:
878          */
879         if (unlikely(left <= -period)) {
880                 left = period;
881                 atomic64_set(&hwc->period_left, left);
882                 hwc->last_period = period;
883                 ret = 1;
884         }
885
886         if (unlikely(left <= 0)) {
887                 left += period;
888                 atomic64_set(&hwc->period_left, left);
889                 hwc->last_period = period;
890                 ret = 1;
891         }
892         /*
893          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
894          */
895         if (unlikely(left < 2))
896                 left = 2;
897
898         if (left > x86_pmu.max_period)
899                 left = x86_pmu.max_period;
900
901         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
902
903         /*
904          * The hw event starts counting from this event offset,
905          * mark it to be able to extra future deltas:
906          */
907         atomic64_set(&hwc->prev_count, (u64)-left);
908
909         wrmsrl(hwc->event_base + idx,
910                         (u64)(-left) & x86_pmu.cntval_mask);
911
912         perf_event_update_userpage(event);
913
914         return ret;
915 }
916
917 static void x86_pmu_enable_event(struct perf_event *event)
918 {
919         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
920         if (cpuc->enabled)
921                 __x86_pmu_enable_event(&event->hw);
922 }
923
924 /*
925  * activate a single event
926  *
927  * The event is added to the group of enabled events
928  * but only if it can be scehduled with existing events.
929  *
930  * Called with PMU disabled. If successful and return value 1,
931  * then guaranteed to call perf_enable() and hw_perf_enable()
932  */
933 static int x86_pmu_enable(struct perf_event *event)
934 {
935         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
936         struct hw_perf_event *hwc;
937         int assign[X86_PMC_IDX_MAX];
938         int n, n0, ret;
939
940         hwc = &event->hw;
941
942         n0 = cpuc->n_events;
943         n = collect_events(cpuc, event, false);
944         if (n < 0)
945                 return n;
946
947         ret = x86_pmu.schedule_events(cpuc, n, assign);
948         if (ret)
949                 return ret;
950         /*
951          * copy new assignment, now we know it is possible
952          * will be used by hw_perf_enable()
953          */
954         memcpy(cpuc->assign, assign, n*sizeof(int));
955
956         cpuc->n_events = n;
957         cpuc->n_added += n - n0;
958
959         return 0;
960 }
961
962 static int x86_pmu_start(struct perf_event *event)
963 {
964         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
965         int idx = event->hw.idx;
966
967         if (idx == -1)
968                 return -EAGAIN;
969
970         x86_perf_event_set_period(event);
971         cpuc->events[idx] = event;
972         __set_bit(idx, cpuc->active_mask);
973         x86_pmu.enable(event);
974         perf_event_update_userpage(event);
975
976         return 0;
977 }
978
979 static void x86_pmu_unthrottle(struct perf_event *event)
980 {
981         int ret = x86_pmu_start(event);
982         WARN_ON_ONCE(ret);
983 }
984
985 void perf_event_print_debug(void)
986 {
987         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
988         u64 pebs;
989         struct cpu_hw_events *cpuc;
990         unsigned long flags;
991         int cpu, idx;
992
993         if (!x86_pmu.num_counters)
994                 return;
995
996         local_irq_save(flags);
997
998         cpu = smp_processor_id();
999         cpuc = &per_cpu(cpu_hw_events, cpu);
1000
1001         if (x86_pmu.version >= 2) {
1002                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1003                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1004                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1005                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1006                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1007
1008                 pr_info("\n");
1009                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1010                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1011                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1012                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1013                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1014         }
1015         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1016
1017         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1018                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1019                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1020
1021                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1022
1023                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1024                         cpu, idx, pmc_ctrl);
1025                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1026                         cpu, idx, pmc_count);
1027                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1028                         cpu, idx, prev_left);
1029         }
1030         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1031                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1032
1033                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1034                         cpu, idx, pmc_count);
1035         }
1036         local_irq_restore(flags);
1037 }
1038
1039 static void x86_pmu_stop(struct perf_event *event)
1040 {
1041         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1042         struct hw_perf_event *hwc = &event->hw;
1043         int idx = hwc->idx;
1044
1045         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1046                 return;
1047
1048         x86_pmu.disable(event);
1049
1050         /*
1051          * Drain the remaining delta count out of a event
1052          * that we are disabling:
1053          */
1054         x86_perf_event_update(event);
1055
1056         cpuc->events[idx] = NULL;
1057 }
1058
1059 static void x86_pmu_disable(struct perf_event *event)
1060 {
1061         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1062         int i;
1063
1064         x86_pmu_stop(event);
1065
1066         for (i = 0; i < cpuc->n_events; i++) {
1067                 if (event == cpuc->event_list[i]) {
1068
1069                         if (x86_pmu.put_event_constraints)
1070                                 x86_pmu.put_event_constraints(cpuc, event);
1071
1072                         while (++i < cpuc->n_events)
1073                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1074
1075                         --cpuc->n_events;
1076                         break;
1077                 }
1078         }
1079         perf_event_update_userpage(event);
1080 }
1081
1082 static int x86_pmu_handle_irq(struct pt_regs *regs)
1083 {
1084         struct perf_sample_data data;
1085         struct cpu_hw_events *cpuc;
1086         struct perf_event *event;
1087         struct hw_perf_event *hwc;
1088         int idx, handled = 0;
1089         u64 val;
1090
1091         perf_sample_data_init(&data, 0);
1092
1093         cpuc = &__get_cpu_var(cpu_hw_events);
1094
1095         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1096                 if (!test_bit(idx, cpuc->active_mask))
1097                         continue;
1098
1099                 event = cpuc->events[idx];
1100                 hwc = &event->hw;
1101
1102                 val = x86_perf_event_update(event);
1103                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1104                         continue;
1105
1106                 /*
1107                  * event overflow
1108                  */
1109                 handled         = 1;
1110                 data.period     = event->hw.last_period;
1111
1112                 if (!x86_perf_event_set_period(event))
1113                         continue;
1114
1115                 if (perf_event_overflow(event, 1, &data, regs))
1116                         x86_pmu_stop(event);
1117         }
1118
1119         if (handled)
1120                 inc_irq_stat(apic_perf_irqs);
1121
1122         return handled;
1123 }
1124
1125 void smp_perf_pending_interrupt(struct pt_regs *regs)
1126 {
1127         irq_enter();
1128         ack_APIC_irq();
1129         inc_irq_stat(apic_pending_irqs);
1130         perf_event_do_pending();
1131         irq_exit();
1132 }
1133
1134 void set_perf_event_pending(void)
1135 {
1136 #ifdef CONFIG_X86_LOCAL_APIC
1137         if (!x86_pmu.apic || !x86_pmu_initialized())
1138                 return;
1139
1140         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1141 #endif
1142 }
1143
1144 void perf_events_lapic_init(void)
1145 {
1146         if (!x86_pmu.apic || !x86_pmu_initialized())
1147                 return;
1148
1149         /*
1150          * Always use NMI for PMU
1151          */
1152         apic_write(APIC_LVTPC, APIC_DM_NMI);
1153 }
1154
1155 static int __kprobes
1156 perf_event_nmi_handler(struct notifier_block *self,
1157                          unsigned long cmd, void *__args)
1158 {
1159         struct die_args *args = __args;
1160         struct pt_regs *regs;
1161
1162         if (!atomic_read(&active_events))
1163                 return NOTIFY_DONE;
1164
1165         switch (cmd) {
1166         case DIE_NMI:
1167         case DIE_NMI_IPI:
1168                 break;
1169
1170         default:
1171                 return NOTIFY_DONE;
1172         }
1173
1174         regs = args->regs;
1175
1176         apic_write(APIC_LVTPC, APIC_DM_NMI);
1177         /*
1178          * Can't rely on the handled return value to say it was our NMI, two
1179          * events could trigger 'simultaneously' raising two back-to-back NMIs.
1180          *
1181          * If the first NMI handles both, the latter will be empty and daze
1182          * the CPU.
1183          */
1184         x86_pmu.handle_irq(regs);
1185
1186         return NOTIFY_STOP;
1187 }
1188
1189 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1190         .notifier_call          = perf_event_nmi_handler,
1191         .next                   = NULL,
1192         .priority               = 1
1193 };
1194
1195 static struct event_constraint unconstrained;
1196 static struct event_constraint emptyconstraint;
1197
1198 static struct event_constraint *
1199 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1200 {
1201         struct event_constraint *c;
1202
1203         if (x86_pmu.event_constraints) {
1204                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1205                         if ((event->hw.config & c->cmask) == c->code)
1206                                 return c;
1207                 }
1208         }
1209
1210         return &unconstrained;
1211 }
1212
1213 static int x86_event_sched_in(struct perf_event *event,
1214                           struct perf_cpu_context *cpuctx)
1215 {
1216         int ret = 0;
1217
1218         event->state = PERF_EVENT_STATE_ACTIVE;
1219         event->oncpu = smp_processor_id();
1220         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1221
1222         if (!is_x86_event(event))
1223                 ret = event->pmu->enable(event);
1224
1225         if (!ret && !is_software_event(event))
1226                 cpuctx->active_oncpu++;
1227
1228         if (!ret && event->attr.exclusive)
1229                 cpuctx->exclusive = 1;
1230
1231         return ret;
1232 }
1233
1234 static void x86_event_sched_out(struct perf_event *event,
1235                             struct perf_cpu_context *cpuctx)
1236 {
1237         event->state = PERF_EVENT_STATE_INACTIVE;
1238         event->oncpu = -1;
1239
1240         if (!is_x86_event(event))
1241                 event->pmu->disable(event);
1242
1243         event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1244
1245         if (!is_software_event(event))
1246                 cpuctx->active_oncpu--;
1247
1248         if (event->attr.exclusive || !cpuctx->active_oncpu)
1249                 cpuctx->exclusive = 0;
1250 }
1251
1252 /*
1253  * Called to enable a whole group of events.
1254  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1255  * Assumes the caller has disabled interrupts and has
1256  * frozen the PMU with hw_perf_save_disable.
1257  *
1258  * called with PMU disabled. If successful and return value 1,
1259  * then guaranteed to call perf_enable() and hw_perf_enable()
1260  */
1261 int hw_perf_group_sched_in(struct perf_event *leader,
1262                struct perf_cpu_context *cpuctx,
1263                struct perf_event_context *ctx)
1264 {
1265         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1266         struct perf_event *sub;
1267         int assign[X86_PMC_IDX_MAX];
1268         int n0, n1, ret;
1269
1270         if (!x86_pmu_initialized())
1271                 return 0;
1272
1273         /* n0 = total number of events */
1274         n0 = collect_events(cpuc, leader, true);
1275         if (n0 < 0)
1276                 return n0;
1277
1278         ret = x86_pmu.schedule_events(cpuc, n0, assign);
1279         if (ret)
1280                 return ret;
1281
1282         ret = x86_event_sched_in(leader, cpuctx);
1283         if (ret)
1284                 return ret;
1285
1286         n1 = 1;
1287         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1288                 if (sub->state > PERF_EVENT_STATE_OFF) {
1289                         ret = x86_event_sched_in(sub, cpuctx);
1290                         if (ret)
1291                                 goto undo;
1292                         ++n1;
1293                 }
1294         }
1295         /*
1296          * copy new assignment, now we know it is possible
1297          * will be used by hw_perf_enable()
1298          */
1299         memcpy(cpuc->assign, assign, n0*sizeof(int));
1300
1301         cpuc->n_events  = n0;
1302         cpuc->n_added  += n1;
1303         ctx->nr_active += n1;
1304
1305         /*
1306          * 1 means successful and events are active
1307          * This is not quite true because we defer
1308          * actual activation until hw_perf_enable() but
1309          * this way we* ensure caller won't try to enable
1310          * individual events
1311          */
1312         return 1;
1313 undo:
1314         x86_event_sched_out(leader, cpuctx);
1315         n0  = 1;
1316         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1317                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1318                         x86_event_sched_out(sub, cpuctx);
1319                         if (++n0 == n1)
1320                                 break;
1321                 }
1322         }
1323         return ret;
1324 }
1325
1326 #include "perf_event_amd.c"
1327 #include "perf_event_p6.c"
1328 #include "perf_event_p4.c"
1329 #include "perf_event_intel_lbr.c"
1330 #include "perf_event_intel_ds.c"
1331 #include "perf_event_intel.c"
1332
1333 static int __cpuinit
1334 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1335 {
1336         unsigned int cpu = (long)hcpu;
1337         int ret = NOTIFY_OK;
1338
1339         switch (action & ~CPU_TASKS_FROZEN) {
1340         case CPU_UP_PREPARE:
1341                 if (x86_pmu.cpu_prepare)
1342                         ret = x86_pmu.cpu_prepare(cpu);
1343                 break;
1344
1345         case CPU_STARTING:
1346                 if (x86_pmu.cpu_starting)
1347                         x86_pmu.cpu_starting(cpu);
1348                 break;
1349
1350         case CPU_DYING:
1351                 if (x86_pmu.cpu_dying)
1352                         x86_pmu.cpu_dying(cpu);
1353                 break;
1354
1355         case CPU_UP_CANCELED:
1356         case CPU_DEAD:
1357                 if (x86_pmu.cpu_dead)
1358                         x86_pmu.cpu_dead(cpu);
1359                 break;
1360
1361         default:
1362                 break;
1363         }
1364
1365         return ret;
1366 }
1367
1368 static void __init pmu_check_apic(void)
1369 {
1370         if (cpu_has_apic)
1371                 return;
1372
1373         x86_pmu.apic = 0;
1374         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1375         pr_info("no hardware sampling interrupt available.\n");
1376 }
1377
1378 void __init init_hw_perf_events(void)
1379 {
1380         struct event_constraint *c;
1381         int err;
1382
1383         pr_info("Performance Events: ");
1384
1385         switch (boot_cpu_data.x86_vendor) {
1386         case X86_VENDOR_INTEL:
1387                 err = intel_pmu_init();
1388                 break;
1389         case X86_VENDOR_AMD:
1390                 err = amd_pmu_init();
1391                 break;
1392         default:
1393                 return;
1394         }
1395         if (err != 0) {
1396                 pr_cont("no PMU driver, software events only.\n");
1397                 return;
1398         }
1399
1400         pmu_check_apic();
1401
1402         pr_cont("%s PMU driver.\n", x86_pmu.name);
1403
1404         if (x86_pmu.quirks)
1405                 x86_pmu.quirks();
1406
1407         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1408                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1409                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1410                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1411         }
1412         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1413         perf_max_events = x86_pmu.num_counters;
1414
1415         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1416                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1417                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1418                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1419         }
1420
1421         x86_pmu.intel_ctrl |=
1422                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1423
1424         perf_events_lapic_init();
1425         register_die_notifier(&perf_event_nmi_notifier);
1426
1427         unconstrained = (struct event_constraint)
1428                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1429                                    0, x86_pmu.num_counters);
1430
1431         if (x86_pmu.event_constraints) {
1432                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1433                         if (c->cmask != X86_RAW_EVENT_MASK)
1434                                 continue;
1435
1436                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1437                         c->weight += x86_pmu.num_counters;
1438                 }
1439         }
1440
1441         pr_info("... version:                %d\n",     x86_pmu.version);
1442         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1443         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1444         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1445         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1446         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1447         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1448
1449         perf_cpu_notifier(x86_pmu_notifier);
1450 }
1451
1452 static inline void x86_pmu_read(struct perf_event *event)
1453 {
1454         x86_perf_event_update(event);
1455 }
1456
1457 static const struct pmu pmu = {
1458         .enable         = x86_pmu_enable,
1459         .disable        = x86_pmu_disable,
1460         .start          = x86_pmu_start,
1461         .stop           = x86_pmu_stop,
1462         .read           = x86_pmu_read,
1463         .unthrottle     = x86_pmu_unthrottle,
1464 };
1465
1466 /*
1467  * validate that we can schedule this event
1468  */
1469 static int validate_event(struct perf_event *event)
1470 {
1471         struct cpu_hw_events *fake_cpuc;
1472         struct event_constraint *c;
1473         int ret = 0;
1474
1475         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1476         if (!fake_cpuc)
1477                 return -ENOMEM;
1478
1479         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1480
1481         if (!c || !c->weight)
1482                 ret = -ENOSPC;
1483
1484         if (x86_pmu.put_event_constraints)
1485                 x86_pmu.put_event_constraints(fake_cpuc, event);
1486
1487         kfree(fake_cpuc);
1488
1489         return ret;
1490 }
1491
1492 /*
1493  * validate a single event group
1494  *
1495  * validation include:
1496  *      - check events are compatible which each other
1497  *      - events do not compete for the same counter
1498  *      - number of events <= number of counters
1499  *
1500  * validation ensures the group can be loaded onto the
1501  * PMU if it was the only group available.
1502  */
1503 static int validate_group(struct perf_event *event)
1504 {
1505         struct perf_event *leader = event->group_leader;
1506         struct cpu_hw_events *fake_cpuc;
1507         int ret, n;
1508
1509         ret = -ENOMEM;
1510         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1511         if (!fake_cpuc)
1512                 goto out;
1513
1514         /*
1515          * the event is not yet connected with its
1516          * siblings therefore we must first collect
1517          * existing siblings, then add the new event
1518          * before we can simulate the scheduling
1519          */
1520         ret = -ENOSPC;
1521         n = collect_events(fake_cpuc, leader, true);
1522         if (n < 0)
1523                 goto out_free;
1524
1525         fake_cpuc->n_events = n;
1526         n = collect_events(fake_cpuc, event, false);
1527         if (n < 0)
1528                 goto out_free;
1529
1530         fake_cpuc->n_events = n;
1531
1532         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1533
1534 out_free:
1535         kfree(fake_cpuc);
1536 out:
1537         return ret;
1538 }
1539
1540 const struct pmu *hw_perf_event_init(struct perf_event *event)
1541 {
1542         const struct pmu *tmp;
1543         int err;
1544
1545         err = __hw_perf_event_init(event);
1546         if (!err) {
1547                 /*
1548                  * we temporarily connect event to its pmu
1549                  * such that validate_group() can classify
1550                  * it as an x86 event using is_x86_event()
1551                  */
1552                 tmp = event->pmu;
1553                 event->pmu = &pmu;
1554
1555                 if (event->group_leader != event)
1556                         err = validate_group(event);
1557                 else
1558                         err = validate_event(event);
1559
1560                 event->pmu = tmp;
1561         }
1562         if (err) {
1563                 if (event->destroy)
1564                         event->destroy(event);
1565                 return ERR_PTR(err);
1566         }
1567
1568         return &pmu;
1569 }
1570
1571 /*
1572  * callchain support
1573  */
1574
1575 static inline
1576 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1577 {
1578         if (entry->nr < PERF_MAX_STACK_DEPTH)
1579                 entry->ip[entry->nr++] = ip;
1580 }
1581
1582 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1583 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1584
1585
1586 static void
1587 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1588 {
1589         /* Ignore warnings */
1590 }
1591
1592 static void backtrace_warning(void *data, char *msg)
1593 {
1594         /* Ignore warnings */
1595 }
1596
1597 static int backtrace_stack(void *data, char *name)
1598 {
1599         return 0;
1600 }
1601
1602 static void backtrace_address(void *data, unsigned long addr, int reliable)
1603 {
1604         struct perf_callchain_entry *entry = data;
1605
1606         callchain_store(entry, addr);
1607 }
1608
1609 static const struct stacktrace_ops backtrace_ops = {
1610         .warning                = backtrace_warning,
1611         .warning_symbol         = backtrace_warning_symbol,
1612         .stack                  = backtrace_stack,
1613         .address                = backtrace_address,
1614         .walk_stack             = print_context_stack_bp,
1615 };
1616
1617 #include "../dumpstack.h"
1618
1619 static void
1620 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1621 {
1622         callchain_store(entry, PERF_CONTEXT_KERNEL);
1623         callchain_store(entry, regs->ip);
1624
1625         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1626 }
1627
1628 #ifdef CONFIG_COMPAT
1629 static inline int
1630 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1631 {
1632         /* 32-bit process in 64-bit kernel. */
1633         struct stack_frame_ia32 frame;
1634         const void __user *fp;
1635
1636         if (!test_thread_flag(TIF_IA32))
1637                 return 0;
1638
1639         fp = compat_ptr(regs->bp);
1640         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1641                 unsigned long bytes;
1642                 frame.next_frame     = 0;
1643                 frame.return_address = 0;
1644
1645                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1646                 if (bytes != sizeof(frame))
1647                         break;
1648
1649                 if (fp < compat_ptr(regs->sp))
1650                         break;
1651
1652                 callchain_store(entry, frame.return_address);
1653                 fp = compat_ptr(frame.next_frame);
1654         }
1655         return 1;
1656 }
1657 #else
1658 static inline int
1659 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1660 {
1661     return 0;
1662 }
1663 #endif
1664
1665 static void
1666 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1667 {
1668         struct stack_frame frame;
1669         const void __user *fp;
1670
1671         if (!user_mode(regs))
1672                 regs = task_pt_regs(current);
1673
1674         fp = (void __user *)regs->bp;
1675
1676         callchain_store(entry, PERF_CONTEXT_USER);
1677         callchain_store(entry, regs->ip);
1678
1679         if (perf_callchain_user32(regs, entry))
1680                 return;
1681
1682         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1683                 unsigned long bytes;
1684                 frame.next_frame             = NULL;
1685                 frame.return_address = 0;
1686
1687                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1688                 if (bytes != sizeof(frame))
1689                         break;
1690
1691                 if ((unsigned long)fp < regs->sp)
1692                         break;
1693
1694                 callchain_store(entry, frame.return_address);
1695                 fp = frame.next_frame;
1696         }
1697 }
1698
1699 static void
1700 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1701 {
1702         int is_user;
1703
1704         if (!regs)
1705                 return;
1706
1707         is_user = user_mode(regs);
1708
1709         if (is_user && current->state != TASK_RUNNING)
1710                 return;
1711
1712         if (!is_user)
1713                 perf_callchain_kernel(regs, entry);
1714
1715         if (current->mm)
1716                 perf_callchain_user(regs, entry);
1717 }
1718
1719 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1720 {
1721         struct perf_callchain_entry *entry;
1722
1723         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1724                 /* TODO: We don't support guest os callchain now */
1725                 return NULL;
1726         }
1727
1728         if (in_nmi())
1729                 entry = &__get_cpu_var(pmc_nmi_entry);
1730         else
1731                 entry = &__get_cpu_var(pmc_irq_entry);
1732
1733         entry->nr = 0;
1734
1735         perf_do_callchain(regs, entry);
1736
1737         return entry;
1738 }
1739
1740 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1741 {
1742         regs->ip = ip;
1743         /*
1744          * perf_arch_fetch_caller_regs adds another call, we need to increment
1745          * the skip level
1746          */
1747         regs->bp = rewind_frame_pointer(skip + 1);
1748         regs->cs = __KERNEL_CS;
1749         local_save_flags(regs->flags);
1750 }
1751
1752 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1753 {
1754         unsigned long ip;
1755
1756         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1757                 ip = perf_guest_cbs->get_guest_ip();
1758         else
1759                 ip = instruction_pointer(regs);
1760
1761         return ip;
1762 }
1763
1764 unsigned long perf_misc_flags(struct pt_regs *regs)
1765 {
1766         int misc = 0;
1767
1768         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1769                 if (perf_guest_cbs->is_user_mode())
1770                         misc |= PERF_RECORD_MISC_GUEST_USER;
1771                 else
1772                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1773         } else {
1774                 if (user_mode(regs))
1775                         misc |= PERF_RECORD_MISC_USER;
1776                 else
1777                         misc |= PERF_RECORD_MISC_KERNEL;
1778         }
1779
1780         if (regs->flags & PERF_EFLAGS_EXACT)
1781                 misc |= PERF_RECORD_MISC_EXACT;
1782
1783         return misc;
1784 }