perf, x86: Move perfctr init code to x86_setup_perfctr()
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110         u64                     tags[X86_PMC_IDX_MAX];
111         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112
113         /*
114          * Intel DebugStore bits
115          */
116         struct debug_store      *ds;
117         u64                     pebs_enabled;
118
119         /*
120          * Intel LBR bits
121          */
122         int                             lbr_users;
123         void                            *lbr_context;
124         struct perf_branch_stack        lbr_stack;
125         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
126
127         /*
128          * AMD specific bits
129          */
130         struct amd_nb           *amd_nb;
131 };
132
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134         { .idxmsk64 = (n) },            \
135         .code = (c),                    \
136         .cmask = (m),                   \
137         .weight = (w),                  \
138 }
139
140 #define EVENT_CONSTRAINT(c, n, m)       \
141         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
143 /*
144  * Constraint on the Event code.
145  */
146 #define INTEL_EVENT_CONSTRAINT(c, n)    \
147         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
148
149 /*
150  * Constraint on the Event code + UMask + fixed-mask
151  *
152  * filter mask to validate fixed counter events.
153  * the following filters disqualify for fixed counters:
154  *  - inv
155  *  - edge
156  *  - cnt-mask
157  *  The other filters are supported by fixed counters.
158  *  The any-thread option is supported starting with v3.
159  */
160 #define FIXED_EVENT_CONSTRAINT(c, n)    \
161         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
162
163 /*
164  * Constraint on the Event code + UMask
165  */
166 #define PEBS_EVENT_CONSTRAINT(c, n)     \
167         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
169 #define EVENT_CONSTRAINT_END            \
170         EVENT_CONSTRAINT(0, 0, 0)
171
172 #define for_each_event_constraint(e, c) \
173         for ((e) = (c); (e)->cmask; (e)++)
174
175 union perf_capabilities {
176         struct {
177                 u64     lbr_format    : 6;
178                 u64     pebs_trap     : 1;
179                 u64     pebs_arch_reg : 1;
180                 u64     pebs_format   : 4;
181                 u64     smm_freeze    : 1;
182         };
183         u64     capabilities;
184 };
185
186 /*
187  * struct x86_pmu - generic x86 pmu
188  */
189 struct x86_pmu {
190         /*
191          * Generic x86 PMC bits
192          */
193         const char      *name;
194         int             version;
195         int             (*handle_irq)(struct pt_regs *);
196         void            (*disable_all)(void);
197         void            (*enable_all)(int added);
198         void            (*enable)(struct perf_event *);
199         void            (*disable)(struct perf_event *);
200         int             (*hw_config)(struct perf_event *event);
201         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202         unsigned        eventsel;
203         unsigned        perfctr;
204         u64             (*event_map)(int);
205         int             max_events;
206         int             num_counters;
207         int             num_counters_fixed;
208         int             cntval_bits;
209         u64             cntval_mask;
210         int             apic;
211         u64             max_period;
212         struct event_constraint *
213                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
214                                                  struct perf_event *event);
215
216         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218         struct event_constraint *event_constraints;
219         void            (*quirks)(void);
220
221         int             (*cpu_prepare)(int cpu);
222         void            (*cpu_starting)(int cpu);
223         void            (*cpu_dying)(int cpu);
224         void            (*cpu_dead)(int cpu);
225
226         /*
227          * Intel Arch Perfmon v2+
228          */
229         u64                     intel_ctrl;
230         union perf_capabilities intel_cap;
231
232         /*
233          * Intel DebugStore bits
234          */
235         int             bts, pebs;
236         int             pebs_record_size;
237         void            (*drain_pebs)(struct pt_regs *regs);
238         struct event_constraint *pebs_constraints;
239
240         /*
241          * Intel LBR
242          */
243         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
244         int             lbr_nr;                    /* hardware stack size */
245 };
246
247 static struct x86_pmu x86_pmu __read_mostly;
248
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250         .enabled = 1,
251 };
252
253 static int x86_perf_event_set_period(struct perf_event *event);
254
255 /*
256  * Generalized hw caching related hw_event table, filled
257  * in on a per model basis. A value of 0 means
258  * 'not supported', -1 means 'hw_event makes no sense on
259  * this CPU', any other value means the raw hw_event
260  * ID.
261  */
262
263 #define C(x) PERF_COUNT_HW_CACHE_##x
264
265 static u64 __read_mostly hw_cache_event_ids
266                                 [PERF_COUNT_HW_CACHE_MAX]
267                                 [PERF_COUNT_HW_CACHE_OP_MAX]
268                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
270 /*
271  * Propagate event elapsed time into the generic event.
272  * Can only be executed on the CPU where the event is active.
273  * Returns the delta events processed.
274  */
275 static u64
276 x86_perf_event_update(struct perf_event *event)
277 {
278         struct hw_perf_event *hwc = &event->hw;
279         int shift = 64 - x86_pmu.cntval_bits;
280         u64 prev_raw_count, new_raw_count;
281         int idx = hwc->idx;
282         s64 delta;
283
284         if (idx == X86_PMC_IDX_FIXED_BTS)
285                 return 0;
286
287         /*
288          * Careful: an NMI might modify the previous event value.
289          *
290          * Our tactic to handle this is to first atomically read and
291          * exchange a new raw count - then add that new-prev delta
292          * count to the generic event atomically:
293          */
294 again:
295         prev_raw_count = atomic64_read(&hwc->prev_count);
296         rdmsrl(hwc->event_base + idx, new_raw_count);
297
298         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299                                         new_raw_count) != prev_raw_count)
300                 goto again;
301
302         /*
303          * Now we have the new raw value and have updated the prev
304          * timestamp already. We can now calculate the elapsed delta
305          * (event-)time and add that to the generic event.
306          *
307          * Careful, not all hw sign-extends above the physical width
308          * of the count.
309          */
310         delta = (new_raw_count << shift) - (prev_raw_count << shift);
311         delta >>= shift;
312
313         atomic64_add(delta, &event->count);
314         atomic64_sub(delta, &hwc->period_left);
315
316         return new_raw_count;
317 }
318
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
321
322 #ifdef CONFIG_X86_LOCAL_APIC
323
324 static bool reserve_pmc_hardware(void)
325 {
326         int i;
327
328         if (nmi_watchdog == NMI_LOCAL_APIC)
329                 disable_lapic_nmi_watchdog();
330
331         for (i = 0; i < x86_pmu.num_counters; i++) {
332                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333                         goto perfctr_fail;
334         }
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338                         goto eventsel_fail;
339         }
340
341         return true;
342
343 eventsel_fail:
344         for (i--; i >= 0; i--)
345                 release_evntsel_nmi(x86_pmu.eventsel + i);
346
347         i = x86_pmu.num_counters;
348
349 perfctr_fail:
350         for (i--; i >= 0; i--)
351                 release_perfctr_nmi(x86_pmu.perfctr + i);
352
353         if (nmi_watchdog == NMI_LOCAL_APIC)
354                 enable_lapic_nmi_watchdog();
355
356         return false;
357 }
358
359 static void release_pmc_hardware(void)
360 {
361         int i;
362
363         for (i = 0; i < x86_pmu.num_counters; i++) {
364                 release_perfctr_nmi(x86_pmu.perfctr + i);
365                 release_evntsel_nmi(x86_pmu.eventsel + i);
366         }
367
368         if (nmi_watchdog == NMI_LOCAL_APIC)
369                 enable_lapic_nmi_watchdog();
370 }
371
372 #else
373
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
376
377 #endif
378
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
381
382 static void hw_perf_event_destroy(struct perf_event *event)
383 {
384         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385                 release_pmc_hardware();
386                 release_ds_buffers();
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389 }
390
391 static inline int x86_pmu_initialized(void)
392 {
393         return x86_pmu.handle_irq != NULL;
394 }
395
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
398 {
399         unsigned int cache_type, cache_op, cache_result;
400         u64 config, val;
401
402         config = attr->config;
403
404         cache_type = (config >>  0) & 0xff;
405         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406                 return -EINVAL;
407
408         cache_op = (config >>  8) & 0xff;
409         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410                 return -EINVAL;
411
412         cache_result = (config >> 16) & 0xff;
413         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414                 return -EINVAL;
415
416         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418         if (val == 0)
419                 return -ENOENT;
420
421         if (val == -1)
422                 return -EINVAL;
423
424         hwc->config |= val;
425
426         return 0;
427 }
428
429 static int x86_setup_perfctr(struct perf_event *event);
430
431 static int x86_pmu_hw_config(struct perf_event *event)
432 {
433         /*
434          * Generate PMC IRQs:
435          * (keep 'enabled' bit clear for now)
436          */
437         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438
439         /*
440          * Count user and OS events unless requested not to
441          */
442         if (!event->attr.exclude_user)
443                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444         if (!event->attr.exclude_kernel)
445                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446
447         if (event->attr.type == PERF_TYPE_RAW)
448                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449
450         return 0;
451 }
452
453 /*
454  * Setup the hardware configuration for a given attr_type
455  */
456 static int __hw_perf_event_init(struct perf_event *event)
457 {
458         int err;
459
460         if (!x86_pmu_initialized())
461                 return -ENODEV;
462
463         err = 0;
464         if (!atomic_inc_not_zero(&active_events)) {
465                 mutex_lock(&pmc_reserve_mutex);
466                 if (atomic_read(&active_events) == 0) {
467                         if (!reserve_pmc_hardware())
468                                 err = -EBUSY;
469                         else {
470                                 err = reserve_ds_buffers();
471                                 if (err)
472                                         release_pmc_hardware();
473                         }
474                 }
475                 if (!err)
476                         atomic_inc(&active_events);
477                 mutex_unlock(&pmc_reserve_mutex);
478         }
479         if (err)
480                 return err;
481
482         event->destroy = hw_perf_event_destroy;
483
484         event->hw.idx = -1;
485         event->hw.last_cpu = -1;
486         event->hw.last_tag = ~0ULL;
487
488         /* Processor specifics */
489         err = x86_pmu.hw_config(event);
490         if (err)
491                 return err;
492
493         return x86_setup_perfctr(event);
494 }
495
496 static int x86_setup_perfctr(struct perf_event *event)
497 {
498         struct perf_event_attr *attr = &event->attr;
499         struct hw_perf_event *hwc = &event->hw;
500         u64 config;
501
502         if (!hwc->sample_period) {
503                 hwc->sample_period = x86_pmu.max_period;
504                 hwc->last_period = hwc->sample_period;
505                 atomic64_set(&hwc->period_left, hwc->sample_period);
506         } else {
507                 /*
508                  * If we have a PMU initialized but no APIC
509                  * interrupts, we cannot sample hardware
510                  * events (user-space has to fall back and
511                  * sample via a hrtimer based software event):
512                  */
513                 if (!x86_pmu.apic)
514                         return -EOPNOTSUPP;
515         }
516
517         if (attr->type == PERF_TYPE_RAW)
518                 return 0;
519
520         if (attr->type == PERF_TYPE_HW_CACHE)
521                 return set_ext_hw_attr(hwc, attr);
522
523         if (attr->config >= x86_pmu.max_events)
524                 return -EINVAL;
525
526         /*
527          * The generic map:
528          */
529         config = x86_pmu.event_map(attr->config);
530
531         if (config == 0)
532                 return -ENOENT;
533
534         if (config == -1LL)
535                 return -EINVAL;
536
537         /*
538          * Branch tracing:
539          */
540         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
541             (hwc->sample_period == 1)) {
542                 /* BTS is not supported by this architecture. */
543                 if (!x86_pmu.bts)
544                         return -EOPNOTSUPP;
545
546                 /* BTS is currently only allowed for user-mode. */
547                 if (!attr->exclude_kernel)
548                         return -EOPNOTSUPP;
549         }
550
551         hwc->config |= config;
552
553         return 0;
554 }
555
556 static void x86_pmu_disable_all(void)
557 {
558         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
559         int idx;
560
561         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
562                 u64 val;
563
564                 if (!test_bit(idx, cpuc->active_mask))
565                         continue;
566                 rdmsrl(x86_pmu.eventsel + idx, val);
567                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
568                         continue;
569                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
570                 wrmsrl(x86_pmu.eventsel + idx, val);
571         }
572 }
573
574 void hw_perf_disable(void)
575 {
576         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
577
578         if (!x86_pmu_initialized())
579                 return;
580
581         if (!cpuc->enabled)
582                 return;
583
584         cpuc->n_added = 0;
585         cpuc->enabled = 0;
586         barrier();
587
588         x86_pmu.disable_all();
589 }
590
591 static void x86_pmu_enable_all(int added)
592 {
593         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
594         int idx;
595
596         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
597                 struct perf_event *event = cpuc->events[idx];
598                 u64 val;
599
600                 if (!test_bit(idx, cpuc->active_mask))
601                         continue;
602
603                 val = event->hw.config;
604                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
605                 wrmsrl(x86_pmu.eventsel + idx, val);
606         }
607 }
608
609 static const struct pmu pmu;
610
611 static inline int is_x86_event(struct perf_event *event)
612 {
613         return event->pmu == &pmu;
614 }
615
616 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
617 {
618         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
619         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
620         int i, j, w, wmax, num = 0;
621         struct hw_perf_event *hwc;
622
623         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
624
625         for (i = 0; i < n; i++) {
626                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
627                 constraints[i] = c;
628         }
629
630         /*
631          * fastpath, try to reuse previous register
632          */
633         for (i = 0; i < n; i++) {
634                 hwc = &cpuc->event_list[i]->hw;
635                 c = constraints[i];
636
637                 /* never assigned */
638                 if (hwc->idx == -1)
639                         break;
640
641                 /* constraint still honored */
642                 if (!test_bit(hwc->idx, c->idxmsk))
643                         break;
644
645                 /* not already used */
646                 if (test_bit(hwc->idx, used_mask))
647                         break;
648
649                 __set_bit(hwc->idx, used_mask);
650                 if (assign)
651                         assign[i] = hwc->idx;
652         }
653         if (i == n)
654                 goto done;
655
656         /*
657          * begin slow path
658          */
659
660         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
661
662         /*
663          * weight = number of possible counters
664          *
665          * 1    = most constrained, only works on one counter
666          * wmax = least constrained, works on any counter
667          *
668          * assign events to counters starting with most
669          * constrained events.
670          */
671         wmax = x86_pmu.num_counters;
672
673         /*
674          * when fixed event counters are present,
675          * wmax is incremented by 1 to account
676          * for one more choice
677          */
678         if (x86_pmu.num_counters_fixed)
679                 wmax++;
680
681         for (w = 1, num = n; num && w <= wmax; w++) {
682                 /* for each event */
683                 for (i = 0; num && i < n; i++) {
684                         c = constraints[i];
685                         hwc = &cpuc->event_list[i]->hw;
686
687                         if (c->weight != w)
688                                 continue;
689
690                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
691                                 if (!test_bit(j, used_mask))
692                                         break;
693                         }
694
695                         if (j == X86_PMC_IDX_MAX)
696                                 break;
697
698                         __set_bit(j, used_mask);
699
700                         if (assign)
701                                 assign[i] = j;
702                         num--;
703                 }
704         }
705 done:
706         /*
707          * scheduling failed or is just a simulation,
708          * free resources if necessary
709          */
710         if (!assign || num) {
711                 for (i = 0; i < n; i++) {
712                         if (x86_pmu.put_event_constraints)
713                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
714                 }
715         }
716         return num ? -ENOSPC : 0;
717 }
718
719 /*
720  * dogrp: true if must collect siblings events (group)
721  * returns total number of events and error code
722  */
723 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
724 {
725         struct perf_event *event;
726         int n, max_count;
727
728         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
729
730         /* current number of events already accepted */
731         n = cpuc->n_events;
732
733         if (is_x86_event(leader)) {
734                 if (n >= max_count)
735                         return -ENOSPC;
736                 cpuc->event_list[n] = leader;
737                 n++;
738         }
739         if (!dogrp)
740                 return n;
741
742         list_for_each_entry(event, &leader->sibling_list, group_entry) {
743                 if (!is_x86_event(event) ||
744                     event->state <= PERF_EVENT_STATE_OFF)
745                         continue;
746
747                 if (n >= max_count)
748                         return -ENOSPC;
749
750                 cpuc->event_list[n] = event;
751                 n++;
752         }
753         return n;
754 }
755
756 static inline void x86_assign_hw_event(struct perf_event *event,
757                                 struct cpu_hw_events *cpuc, int i)
758 {
759         struct hw_perf_event *hwc = &event->hw;
760
761         hwc->idx = cpuc->assign[i];
762         hwc->last_cpu = smp_processor_id();
763         hwc->last_tag = ++cpuc->tags[i];
764
765         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
766                 hwc->config_base = 0;
767                 hwc->event_base = 0;
768         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
769                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
770                 /*
771                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
772                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
773                  */
774                 hwc->event_base =
775                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
776         } else {
777                 hwc->config_base = x86_pmu.eventsel;
778                 hwc->event_base  = x86_pmu.perfctr;
779         }
780 }
781
782 static inline int match_prev_assignment(struct hw_perf_event *hwc,
783                                         struct cpu_hw_events *cpuc,
784                                         int i)
785 {
786         return hwc->idx == cpuc->assign[i] &&
787                 hwc->last_cpu == smp_processor_id() &&
788                 hwc->last_tag == cpuc->tags[i];
789 }
790
791 static int x86_pmu_start(struct perf_event *event);
792 static void x86_pmu_stop(struct perf_event *event);
793
794 void hw_perf_enable(void)
795 {
796         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
797         struct perf_event *event;
798         struct hw_perf_event *hwc;
799         int i, added = cpuc->n_added;
800
801         if (!x86_pmu_initialized())
802                 return;
803
804         if (cpuc->enabled)
805                 return;
806
807         if (cpuc->n_added) {
808                 int n_running = cpuc->n_events - cpuc->n_added;
809                 /*
810                  * apply assignment obtained either from
811                  * hw_perf_group_sched_in() or x86_pmu_enable()
812                  *
813                  * step1: save events moving to new counters
814                  * step2: reprogram moved events into new counters
815                  */
816                 for (i = 0; i < n_running; i++) {
817                         event = cpuc->event_list[i];
818                         hwc = &event->hw;
819
820                         /*
821                          * we can avoid reprogramming counter if:
822                          * - assigned same counter as last time
823                          * - running on same CPU as last time
824                          * - no other event has used the counter since
825                          */
826                         if (hwc->idx == -1 ||
827                             match_prev_assignment(hwc, cpuc, i))
828                                 continue;
829
830                         x86_pmu_stop(event);
831                 }
832
833                 for (i = 0; i < cpuc->n_events; i++) {
834                         event = cpuc->event_list[i];
835                         hwc = &event->hw;
836
837                         if (!match_prev_assignment(hwc, cpuc, i))
838                                 x86_assign_hw_event(event, cpuc, i);
839                         else if (i < n_running)
840                                 continue;
841
842                         x86_pmu_start(event);
843                 }
844                 cpuc->n_added = 0;
845                 perf_events_lapic_init();
846         }
847
848         cpuc->enabled = 1;
849         barrier();
850
851         x86_pmu.enable_all(added);
852 }
853
854 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
855 {
856         wrmsrl(hwc->config_base + hwc->idx,
857                               hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
858 }
859
860 static inline void x86_pmu_disable_event(struct perf_event *event)
861 {
862         struct hw_perf_event *hwc = &event->hw;
863
864         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
865 }
866
867 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
868
869 /*
870  * Set the next IRQ period, based on the hwc->period_left value.
871  * To be called with the event disabled in hw:
872  */
873 static int
874 x86_perf_event_set_period(struct perf_event *event)
875 {
876         struct hw_perf_event *hwc = &event->hw;
877         s64 left = atomic64_read(&hwc->period_left);
878         s64 period = hwc->sample_period;
879         int ret = 0, idx = hwc->idx;
880
881         if (idx == X86_PMC_IDX_FIXED_BTS)
882                 return 0;
883
884         /*
885          * If we are way outside a reasonable range then just skip forward:
886          */
887         if (unlikely(left <= -period)) {
888                 left = period;
889                 atomic64_set(&hwc->period_left, left);
890                 hwc->last_period = period;
891                 ret = 1;
892         }
893
894         if (unlikely(left <= 0)) {
895                 left += period;
896                 atomic64_set(&hwc->period_left, left);
897                 hwc->last_period = period;
898                 ret = 1;
899         }
900         /*
901          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
902          */
903         if (unlikely(left < 2))
904                 left = 2;
905
906         if (left > x86_pmu.max_period)
907                 left = x86_pmu.max_period;
908
909         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
910
911         /*
912          * The hw event starts counting from this event offset,
913          * mark it to be able to extra future deltas:
914          */
915         atomic64_set(&hwc->prev_count, (u64)-left);
916
917         wrmsrl(hwc->event_base + idx,
918                         (u64)(-left) & x86_pmu.cntval_mask);
919
920         perf_event_update_userpage(event);
921
922         return ret;
923 }
924
925 static void x86_pmu_enable_event(struct perf_event *event)
926 {
927         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
928         if (cpuc->enabled)
929                 __x86_pmu_enable_event(&event->hw);
930 }
931
932 /*
933  * activate a single event
934  *
935  * The event is added to the group of enabled events
936  * but only if it can be scehduled with existing events.
937  *
938  * Called with PMU disabled. If successful and return value 1,
939  * then guaranteed to call perf_enable() and hw_perf_enable()
940  */
941 static int x86_pmu_enable(struct perf_event *event)
942 {
943         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
944         struct hw_perf_event *hwc;
945         int assign[X86_PMC_IDX_MAX];
946         int n, n0, ret;
947
948         hwc = &event->hw;
949
950         n0 = cpuc->n_events;
951         n = collect_events(cpuc, event, false);
952         if (n < 0)
953                 return n;
954
955         ret = x86_pmu.schedule_events(cpuc, n, assign);
956         if (ret)
957                 return ret;
958         /*
959          * copy new assignment, now we know it is possible
960          * will be used by hw_perf_enable()
961          */
962         memcpy(cpuc->assign, assign, n*sizeof(int));
963
964         cpuc->n_events = n;
965         cpuc->n_added += n - n0;
966
967         return 0;
968 }
969
970 static int x86_pmu_start(struct perf_event *event)
971 {
972         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
973         int idx = event->hw.idx;
974
975         if (idx == -1)
976                 return -EAGAIN;
977
978         x86_perf_event_set_period(event);
979         cpuc->events[idx] = event;
980         __set_bit(idx, cpuc->active_mask);
981         x86_pmu.enable(event);
982         perf_event_update_userpage(event);
983
984         return 0;
985 }
986
987 static void x86_pmu_unthrottle(struct perf_event *event)
988 {
989         int ret = x86_pmu_start(event);
990         WARN_ON_ONCE(ret);
991 }
992
993 void perf_event_print_debug(void)
994 {
995         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
996         u64 pebs;
997         struct cpu_hw_events *cpuc;
998         unsigned long flags;
999         int cpu, idx;
1000
1001         if (!x86_pmu.num_counters)
1002                 return;
1003
1004         local_irq_save(flags);
1005
1006         cpu = smp_processor_id();
1007         cpuc = &per_cpu(cpu_hw_events, cpu);
1008
1009         if (x86_pmu.version >= 2) {
1010                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1011                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1012                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1013                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1014                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1015
1016                 pr_info("\n");
1017                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1018                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1019                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1020                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1021                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1022         }
1023         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1024
1025         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1026                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1027                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1028
1029                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1030
1031                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1032                         cpu, idx, pmc_ctrl);
1033                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1034                         cpu, idx, pmc_count);
1035                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1036                         cpu, idx, prev_left);
1037         }
1038         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1039                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1040
1041                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1042                         cpu, idx, pmc_count);
1043         }
1044         local_irq_restore(flags);
1045 }
1046
1047 static void x86_pmu_stop(struct perf_event *event)
1048 {
1049         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1050         struct hw_perf_event *hwc = &event->hw;
1051         int idx = hwc->idx;
1052
1053         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1054                 return;
1055
1056         x86_pmu.disable(event);
1057
1058         /*
1059          * Drain the remaining delta count out of a event
1060          * that we are disabling:
1061          */
1062         x86_perf_event_update(event);
1063
1064         cpuc->events[idx] = NULL;
1065 }
1066
1067 static void x86_pmu_disable(struct perf_event *event)
1068 {
1069         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1070         int i;
1071
1072         x86_pmu_stop(event);
1073
1074         for (i = 0; i < cpuc->n_events; i++) {
1075                 if (event == cpuc->event_list[i]) {
1076
1077                         if (x86_pmu.put_event_constraints)
1078                                 x86_pmu.put_event_constraints(cpuc, event);
1079
1080                         while (++i < cpuc->n_events)
1081                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1082
1083                         --cpuc->n_events;
1084                         break;
1085                 }
1086         }
1087         perf_event_update_userpage(event);
1088 }
1089
1090 static int x86_pmu_handle_irq(struct pt_regs *regs)
1091 {
1092         struct perf_sample_data data;
1093         struct cpu_hw_events *cpuc;
1094         struct perf_event *event;
1095         struct hw_perf_event *hwc;
1096         int idx, handled = 0;
1097         u64 val;
1098
1099         perf_sample_data_init(&data, 0);
1100
1101         cpuc = &__get_cpu_var(cpu_hw_events);
1102
1103         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1104                 if (!test_bit(idx, cpuc->active_mask))
1105                         continue;
1106
1107                 event = cpuc->events[idx];
1108                 hwc = &event->hw;
1109
1110                 val = x86_perf_event_update(event);
1111                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1112                         continue;
1113
1114                 /*
1115                  * event overflow
1116                  */
1117                 handled         = 1;
1118                 data.period     = event->hw.last_period;
1119
1120                 if (!x86_perf_event_set_period(event))
1121                         continue;
1122
1123                 if (perf_event_overflow(event, 1, &data, regs))
1124                         x86_pmu_stop(event);
1125         }
1126
1127         if (handled)
1128                 inc_irq_stat(apic_perf_irqs);
1129
1130         return handled;
1131 }
1132
1133 void smp_perf_pending_interrupt(struct pt_regs *regs)
1134 {
1135         irq_enter();
1136         ack_APIC_irq();
1137         inc_irq_stat(apic_pending_irqs);
1138         perf_event_do_pending();
1139         irq_exit();
1140 }
1141
1142 void set_perf_event_pending(void)
1143 {
1144 #ifdef CONFIG_X86_LOCAL_APIC
1145         if (!x86_pmu.apic || !x86_pmu_initialized())
1146                 return;
1147
1148         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1149 #endif
1150 }
1151
1152 void perf_events_lapic_init(void)
1153 {
1154         if (!x86_pmu.apic || !x86_pmu_initialized())
1155                 return;
1156
1157         /*
1158          * Always use NMI for PMU
1159          */
1160         apic_write(APIC_LVTPC, APIC_DM_NMI);
1161 }
1162
1163 static int __kprobes
1164 perf_event_nmi_handler(struct notifier_block *self,
1165                          unsigned long cmd, void *__args)
1166 {
1167         struct die_args *args = __args;
1168         struct pt_regs *regs;
1169
1170         if (!atomic_read(&active_events))
1171                 return NOTIFY_DONE;
1172
1173         switch (cmd) {
1174         case DIE_NMI:
1175         case DIE_NMI_IPI:
1176                 break;
1177
1178         default:
1179                 return NOTIFY_DONE;
1180         }
1181
1182         regs = args->regs;
1183
1184         apic_write(APIC_LVTPC, APIC_DM_NMI);
1185         /*
1186          * Can't rely on the handled return value to say it was our NMI, two
1187          * events could trigger 'simultaneously' raising two back-to-back NMIs.
1188          *
1189          * If the first NMI handles both, the latter will be empty and daze
1190          * the CPU.
1191          */
1192         x86_pmu.handle_irq(regs);
1193
1194         return NOTIFY_STOP;
1195 }
1196
1197 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1198         .notifier_call          = perf_event_nmi_handler,
1199         .next                   = NULL,
1200         .priority               = 1
1201 };
1202
1203 static struct event_constraint unconstrained;
1204 static struct event_constraint emptyconstraint;
1205
1206 static struct event_constraint *
1207 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1208 {
1209         struct event_constraint *c;
1210
1211         if (x86_pmu.event_constraints) {
1212                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1213                         if ((event->hw.config & c->cmask) == c->code)
1214                                 return c;
1215                 }
1216         }
1217
1218         return &unconstrained;
1219 }
1220
1221 static int x86_event_sched_in(struct perf_event *event,
1222                           struct perf_cpu_context *cpuctx)
1223 {
1224         int ret = 0;
1225
1226         event->state = PERF_EVENT_STATE_ACTIVE;
1227         event->oncpu = smp_processor_id();
1228         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1229
1230         if (!is_x86_event(event))
1231                 ret = event->pmu->enable(event);
1232
1233         if (!ret && !is_software_event(event))
1234                 cpuctx->active_oncpu++;
1235
1236         if (!ret && event->attr.exclusive)
1237                 cpuctx->exclusive = 1;
1238
1239         return ret;
1240 }
1241
1242 static void x86_event_sched_out(struct perf_event *event,
1243                             struct perf_cpu_context *cpuctx)
1244 {
1245         event->state = PERF_EVENT_STATE_INACTIVE;
1246         event->oncpu = -1;
1247
1248         if (!is_x86_event(event))
1249                 event->pmu->disable(event);
1250
1251         event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1252
1253         if (!is_software_event(event))
1254                 cpuctx->active_oncpu--;
1255
1256         if (event->attr.exclusive || !cpuctx->active_oncpu)
1257                 cpuctx->exclusive = 0;
1258 }
1259
1260 /*
1261  * Called to enable a whole group of events.
1262  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1263  * Assumes the caller has disabled interrupts and has
1264  * frozen the PMU with hw_perf_save_disable.
1265  *
1266  * called with PMU disabled. If successful and return value 1,
1267  * then guaranteed to call perf_enable() and hw_perf_enable()
1268  */
1269 int hw_perf_group_sched_in(struct perf_event *leader,
1270                struct perf_cpu_context *cpuctx,
1271                struct perf_event_context *ctx)
1272 {
1273         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274         struct perf_event *sub;
1275         int assign[X86_PMC_IDX_MAX];
1276         int n0, n1, ret;
1277
1278         if (!x86_pmu_initialized())
1279                 return 0;
1280
1281         /* n0 = total number of events */
1282         n0 = collect_events(cpuc, leader, true);
1283         if (n0 < 0)
1284                 return n0;
1285
1286         ret = x86_pmu.schedule_events(cpuc, n0, assign);
1287         if (ret)
1288                 return ret;
1289
1290         ret = x86_event_sched_in(leader, cpuctx);
1291         if (ret)
1292                 return ret;
1293
1294         n1 = 1;
1295         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1296                 if (sub->state > PERF_EVENT_STATE_OFF) {
1297                         ret = x86_event_sched_in(sub, cpuctx);
1298                         if (ret)
1299                                 goto undo;
1300                         ++n1;
1301                 }
1302         }
1303         /*
1304          * copy new assignment, now we know it is possible
1305          * will be used by hw_perf_enable()
1306          */
1307         memcpy(cpuc->assign, assign, n0*sizeof(int));
1308
1309         cpuc->n_events  = n0;
1310         cpuc->n_added  += n1;
1311         ctx->nr_active += n1;
1312
1313         /*
1314          * 1 means successful and events are active
1315          * This is not quite true because we defer
1316          * actual activation until hw_perf_enable() but
1317          * this way we* ensure caller won't try to enable
1318          * individual events
1319          */
1320         return 1;
1321 undo:
1322         x86_event_sched_out(leader, cpuctx);
1323         n0  = 1;
1324         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1325                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1326                         x86_event_sched_out(sub, cpuctx);
1327                         if (++n0 == n1)
1328                                 break;
1329                 }
1330         }
1331         return ret;
1332 }
1333
1334 #include "perf_event_amd.c"
1335 #include "perf_event_p6.c"
1336 #include "perf_event_p4.c"
1337 #include "perf_event_intel_lbr.c"
1338 #include "perf_event_intel_ds.c"
1339 #include "perf_event_intel.c"
1340
1341 static int __cpuinit
1342 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1343 {
1344         unsigned int cpu = (long)hcpu;
1345         int ret = NOTIFY_OK;
1346
1347         switch (action & ~CPU_TASKS_FROZEN) {
1348         case CPU_UP_PREPARE:
1349                 if (x86_pmu.cpu_prepare)
1350                         ret = x86_pmu.cpu_prepare(cpu);
1351                 break;
1352
1353         case CPU_STARTING:
1354                 if (x86_pmu.cpu_starting)
1355                         x86_pmu.cpu_starting(cpu);
1356                 break;
1357
1358         case CPU_DYING:
1359                 if (x86_pmu.cpu_dying)
1360                         x86_pmu.cpu_dying(cpu);
1361                 break;
1362
1363         case CPU_UP_CANCELED:
1364         case CPU_DEAD:
1365                 if (x86_pmu.cpu_dead)
1366                         x86_pmu.cpu_dead(cpu);
1367                 break;
1368
1369         default:
1370                 break;
1371         }
1372
1373         return ret;
1374 }
1375
1376 static void __init pmu_check_apic(void)
1377 {
1378         if (cpu_has_apic)
1379                 return;
1380
1381         x86_pmu.apic = 0;
1382         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1383         pr_info("no hardware sampling interrupt available.\n");
1384 }
1385
1386 void __init init_hw_perf_events(void)
1387 {
1388         struct event_constraint *c;
1389         int err;
1390
1391         pr_info("Performance Events: ");
1392
1393         switch (boot_cpu_data.x86_vendor) {
1394         case X86_VENDOR_INTEL:
1395                 err = intel_pmu_init();
1396                 break;
1397         case X86_VENDOR_AMD:
1398                 err = amd_pmu_init();
1399                 break;
1400         default:
1401                 return;
1402         }
1403         if (err != 0) {
1404                 pr_cont("no PMU driver, software events only.\n");
1405                 return;
1406         }
1407
1408         pmu_check_apic();
1409
1410         pr_cont("%s PMU driver.\n", x86_pmu.name);
1411
1412         if (x86_pmu.quirks)
1413                 x86_pmu.quirks();
1414
1415         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1416                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1417                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1418                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1419         }
1420         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1421         perf_max_events = x86_pmu.num_counters;
1422
1423         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1424                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1425                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1426                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1427         }
1428
1429         x86_pmu.intel_ctrl |=
1430                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1431
1432         perf_events_lapic_init();
1433         register_die_notifier(&perf_event_nmi_notifier);
1434
1435         unconstrained = (struct event_constraint)
1436                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1437                                    0, x86_pmu.num_counters);
1438
1439         if (x86_pmu.event_constraints) {
1440                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1441                         if (c->cmask != X86_RAW_EVENT_MASK)
1442                                 continue;
1443
1444                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1445                         c->weight += x86_pmu.num_counters;
1446                 }
1447         }
1448
1449         pr_info("... version:                %d\n",     x86_pmu.version);
1450         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1451         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1452         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1453         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1454         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1455         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1456
1457         perf_cpu_notifier(x86_pmu_notifier);
1458 }
1459
1460 static inline void x86_pmu_read(struct perf_event *event)
1461 {
1462         x86_perf_event_update(event);
1463 }
1464
1465 static const struct pmu pmu = {
1466         .enable         = x86_pmu_enable,
1467         .disable        = x86_pmu_disable,
1468         .start          = x86_pmu_start,
1469         .stop           = x86_pmu_stop,
1470         .read           = x86_pmu_read,
1471         .unthrottle     = x86_pmu_unthrottle,
1472 };
1473
1474 /*
1475  * validate that we can schedule this event
1476  */
1477 static int validate_event(struct perf_event *event)
1478 {
1479         struct cpu_hw_events *fake_cpuc;
1480         struct event_constraint *c;
1481         int ret = 0;
1482
1483         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1484         if (!fake_cpuc)
1485                 return -ENOMEM;
1486
1487         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1488
1489         if (!c || !c->weight)
1490                 ret = -ENOSPC;
1491
1492         if (x86_pmu.put_event_constraints)
1493                 x86_pmu.put_event_constraints(fake_cpuc, event);
1494
1495         kfree(fake_cpuc);
1496
1497         return ret;
1498 }
1499
1500 /*
1501  * validate a single event group
1502  *
1503  * validation include:
1504  *      - check events are compatible which each other
1505  *      - events do not compete for the same counter
1506  *      - number of events <= number of counters
1507  *
1508  * validation ensures the group can be loaded onto the
1509  * PMU if it was the only group available.
1510  */
1511 static int validate_group(struct perf_event *event)
1512 {
1513         struct perf_event *leader = event->group_leader;
1514         struct cpu_hw_events *fake_cpuc;
1515         int ret, n;
1516
1517         ret = -ENOMEM;
1518         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1519         if (!fake_cpuc)
1520                 goto out;
1521
1522         /*
1523          * the event is not yet connected with its
1524          * siblings therefore we must first collect
1525          * existing siblings, then add the new event
1526          * before we can simulate the scheduling
1527          */
1528         ret = -ENOSPC;
1529         n = collect_events(fake_cpuc, leader, true);
1530         if (n < 0)
1531                 goto out_free;
1532
1533         fake_cpuc->n_events = n;
1534         n = collect_events(fake_cpuc, event, false);
1535         if (n < 0)
1536                 goto out_free;
1537
1538         fake_cpuc->n_events = n;
1539
1540         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1541
1542 out_free:
1543         kfree(fake_cpuc);
1544 out:
1545         return ret;
1546 }
1547
1548 const struct pmu *hw_perf_event_init(struct perf_event *event)
1549 {
1550         const struct pmu *tmp;
1551         int err;
1552
1553         err = __hw_perf_event_init(event);
1554         if (!err) {
1555                 /*
1556                  * we temporarily connect event to its pmu
1557                  * such that validate_group() can classify
1558                  * it as an x86 event using is_x86_event()
1559                  */
1560                 tmp = event->pmu;
1561                 event->pmu = &pmu;
1562
1563                 if (event->group_leader != event)
1564                         err = validate_group(event);
1565                 else
1566                         err = validate_event(event);
1567
1568                 event->pmu = tmp;
1569         }
1570         if (err) {
1571                 if (event->destroy)
1572                         event->destroy(event);
1573                 return ERR_PTR(err);
1574         }
1575
1576         return &pmu;
1577 }
1578
1579 /*
1580  * callchain support
1581  */
1582
1583 static inline
1584 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1585 {
1586         if (entry->nr < PERF_MAX_STACK_DEPTH)
1587                 entry->ip[entry->nr++] = ip;
1588 }
1589
1590 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1591 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1592
1593
1594 static void
1595 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1596 {
1597         /* Ignore warnings */
1598 }
1599
1600 static void backtrace_warning(void *data, char *msg)
1601 {
1602         /* Ignore warnings */
1603 }
1604
1605 static int backtrace_stack(void *data, char *name)
1606 {
1607         return 0;
1608 }
1609
1610 static void backtrace_address(void *data, unsigned long addr, int reliable)
1611 {
1612         struct perf_callchain_entry *entry = data;
1613
1614         callchain_store(entry, addr);
1615 }
1616
1617 static const struct stacktrace_ops backtrace_ops = {
1618         .warning                = backtrace_warning,
1619         .warning_symbol         = backtrace_warning_symbol,
1620         .stack                  = backtrace_stack,
1621         .address                = backtrace_address,
1622         .walk_stack             = print_context_stack_bp,
1623 };
1624
1625 #include "../dumpstack.h"
1626
1627 static void
1628 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1629 {
1630         callchain_store(entry, PERF_CONTEXT_KERNEL);
1631         callchain_store(entry, regs->ip);
1632
1633         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1634 }
1635
1636 #ifdef CONFIG_COMPAT
1637 static inline int
1638 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1639 {
1640         /* 32-bit process in 64-bit kernel. */
1641         struct stack_frame_ia32 frame;
1642         const void __user *fp;
1643
1644         if (!test_thread_flag(TIF_IA32))
1645                 return 0;
1646
1647         fp = compat_ptr(regs->bp);
1648         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1649                 unsigned long bytes;
1650                 frame.next_frame     = 0;
1651                 frame.return_address = 0;
1652
1653                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1654                 if (bytes != sizeof(frame))
1655                         break;
1656
1657                 if (fp < compat_ptr(regs->sp))
1658                         break;
1659
1660                 callchain_store(entry, frame.return_address);
1661                 fp = compat_ptr(frame.next_frame);
1662         }
1663         return 1;
1664 }
1665 #else
1666 static inline int
1667 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1668 {
1669     return 0;
1670 }
1671 #endif
1672
1673 static void
1674 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1675 {
1676         struct stack_frame frame;
1677         const void __user *fp;
1678
1679         if (!user_mode(regs))
1680                 regs = task_pt_regs(current);
1681
1682         fp = (void __user *)regs->bp;
1683
1684         callchain_store(entry, PERF_CONTEXT_USER);
1685         callchain_store(entry, regs->ip);
1686
1687         if (perf_callchain_user32(regs, entry))
1688                 return;
1689
1690         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1691                 unsigned long bytes;
1692                 frame.next_frame             = NULL;
1693                 frame.return_address = 0;
1694
1695                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1696                 if (bytes != sizeof(frame))
1697                         break;
1698
1699                 if ((unsigned long)fp < regs->sp)
1700                         break;
1701
1702                 callchain_store(entry, frame.return_address);
1703                 fp = frame.next_frame;
1704         }
1705 }
1706
1707 static void
1708 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1709 {
1710         int is_user;
1711
1712         if (!regs)
1713                 return;
1714
1715         is_user = user_mode(regs);
1716
1717         if (is_user && current->state != TASK_RUNNING)
1718                 return;
1719
1720         if (!is_user)
1721                 perf_callchain_kernel(regs, entry);
1722
1723         if (current->mm)
1724                 perf_callchain_user(regs, entry);
1725 }
1726
1727 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1728 {
1729         struct perf_callchain_entry *entry;
1730
1731         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1732                 /* TODO: We don't support guest os callchain now */
1733                 return NULL;
1734         }
1735
1736         if (in_nmi())
1737                 entry = &__get_cpu_var(pmc_nmi_entry);
1738         else
1739                 entry = &__get_cpu_var(pmc_irq_entry);
1740
1741         entry->nr = 0;
1742
1743         perf_do_callchain(regs, entry);
1744
1745         return entry;
1746 }
1747
1748 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1749 {
1750         regs->ip = ip;
1751         /*
1752          * perf_arch_fetch_caller_regs adds another call, we need to increment
1753          * the skip level
1754          */
1755         regs->bp = rewind_frame_pointer(skip + 1);
1756         regs->cs = __KERNEL_CS;
1757         local_save_flags(regs->flags);
1758 }
1759
1760 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1761 {
1762         unsigned long ip;
1763
1764         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1765                 ip = perf_guest_cbs->get_guest_ip();
1766         else
1767                 ip = instruction_pointer(regs);
1768
1769         return ip;
1770 }
1771
1772 unsigned long perf_misc_flags(struct pt_regs *regs)
1773 {
1774         int misc = 0;
1775
1776         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1777                 if (perf_guest_cbs->is_user_mode())
1778                         misc |= PERF_RECORD_MISC_GUEST_USER;
1779                 else
1780                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1781         } else {
1782                 if (user_mode(regs))
1783                         misc |= PERF_RECORD_MISC_USER;
1784                 else
1785                         misc |= PERF_RECORD_MISC_KERNEL;
1786         }
1787
1788         if (regs->flags & PERF_EFLAGS_EXACT)
1789                 misc |= PERF_RECORD_MISC_EXACT;
1790
1791         return misc;
1792 }