Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         unsigned long size, len = 0;
53         struct page *page;
54         void *map;
55         int ret;
56
57         do {
58                 ret = __get_user_pages_fast(addr, 1, 0, &page);
59                 if (!ret)
60                         break;
61
62                 offset = addr & (PAGE_SIZE - 1);
63                 size = min(PAGE_SIZE - offset, n - len);
64
65                 map = kmap_atomic(page);
66                 memcpy(to, map+offset, size);
67                 kunmap_atomic(map);
68                 put_page(page);
69
70                 len  += size;
71                 to   += size;
72                 addr += size;
73
74         } while (len < n);
75
76         return len;
77 }
78
79 struct event_constraint {
80         union {
81                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82                 u64             idxmsk64;
83         };
84         u64     code;
85         u64     cmask;
86         int     weight;
87 };
88
89 struct amd_nb {
90         int nb_id;  /* NorthBridge id */
91         int refcnt; /* reference count */
92         struct perf_event *owners[X86_PMC_IDX_MAX];
93         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
94 };
95
96 #define MAX_LBR_ENTRIES         16
97
98 struct cpu_hw_events {
99         /*
100          * Generic x86 PMC bits
101          */
102         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
103         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
104         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     n_txn;
110         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111         u64                     tags[X86_PMC_IDX_MAX];
112         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
113
114         unsigned int            group_flag;
115
116         /*
117          * Intel DebugStore bits
118          */
119         struct debug_store      *ds;
120         u64                     pebs_enabled;
121
122         /*
123          * Intel LBR bits
124          */
125         int                             lbr_users;
126         void                            *lbr_context;
127         struct perf_branch_stack        lbr_stack;
128         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
129
130         /*
131          * AMD specific bits
132          */
133         struct amd_nb           *amd_nb;
134 };
135
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137         { .idxmsk64 = (n) },            \
138         .code = (c),                    \
139         .cmask = (m),                   \
140         .weight = (w),                  \
141 }
142
143 #define EVENT_CONSTRAINT(c, n, m)       \
144         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145
146 /*
147  * Constraint on the Event code.
148  */
149 #define INTEL_EVENT_CONSTRAINT(c, n)    \
150         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151
152 /*
153  * Constraint on the Event code + UMask + fixed-mask
154  *
155  * filter mask to validate fixed counter events.
156  * the following filters disqualify for fixed counters:
157  *  - inv
158  *  - edge
159  *  - cnt-mask
160  *  The other filters are supported by fixed counters.
161  *  The any-thread option is supported starting with v3.
162  */
163 #define FIXED_EVENT_CONSTRAINT(c, n)    \
164         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165
166 /*
167  * Constraint on the Event code + UMask
168  */
169 #define PEBS_EVENT_CONSTRAINT(c, n)     \
170         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
171
172 #define EVENT_CONSTRAINT_END            \
173         EVENT_CONSTRAINT(0, 0, 0)
174
175 #define for_each_event_constraint(e, c) \
176         for ((e) = (c); (e)->weight; (e)++)
177
178 union perf_capabilities {
179         struct {
180                 u64     lbr_format    : 6;
181                 u64     pebs_trap     : 1;
182                 u64     pebs_arch_reg : 1;
183                 u64     pebs_format   : 4;
184                 u64     smm_freeze    : 1;
185         };
186         u64     capabilities;
187 };
188
189 /*
190  * struct x86_pmu - generic x86 pmu
191  */
192 struct x86_pmu {
193         /*
194          * Generic x86 PMC bits
195          */
196         const char      *name;
197         int             version;
198         int             (*handle_irq)(struct pt_regs *);
199         void            (*disable_all)(void);
200         void            (*enable_all)(int added);
201         void            (*enable)(struct perf_event *);
202         void            (*disable)(struct perf_event *);
203         int             (*hw_config)(struct perf_event *event);
204         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205         unsigned        eventsel;
206         unsigned        perfctr;
207         u64             (*event_map)(int);
208         int             max_events;
209         int             num_counters;
210         int             num_counters_fixed;
211         int             cntval_bits;
212         u64             cntval_mask;
213         int             apic;
214         u64             max_period;
215         struct event_constraint *
216                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218
219         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
220                                                  struct perf_event *event);
221         struct event_constraint *event_constraints;
222         void            (*quirks)(void);
223         int             perfctr_second_write;
224
225         int             (*cpu_prepare)(int cpu);
226         void            (*cpu_starting)(int cpu);
227         void            (*cpu_dying)(int cpu);
228         void            (*cpu_dead)(int cpu);
229
230         /*
231          * Intel Arch Perfmon v2+
232          */
233         u64                     intel_ctrl;
234         union perf_capabilities intel_cap;
235
236         /*
237          * Intel DebugStore bits
238          */
239         int             bts, pebs;
240         int             pebs_record_size;
241         void            (*drain_pebs)(struct pt_regs *regs);
242         struct event_constraint *pebs_constraints;
243
244         /*
245          * Intel LBR
246          */
247         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
248         int             lbr_nr;                    /* hardware stack size */
249 };
250
251 static struct x86_pmu x86_pmu __read_mostly;
252
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254         .enabled = 1,
255 };
256
257 static int x86_perf_event_set_period(struct perf_event *event);
258
259 /*
260  * Generalized hw caching related hw_event table, filled
261  * in on a per model basis. A value of 0 means
262  * 'not supported', -1 means 'hw_event makes no sense on
263  * this CPU', any other value means the raw hw_event
264  * ID.
265  */
266
267 #define C(x) PERF_COUNT_HW_CACHE_##x
268
269 static u64 __read_mostly hw_cache_event_ids
270                                 [PERF_COUNT_HW_CACHE_MAX]
271                                 [PERF_COUNT_HW_CACHE_OP_MAX]
272                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
273
274 /*
275  * Propagate event elapsed time into the generic event.
276  * Can only be executed on the CPU where the event is active.
277  * Returns the delta events processed.
278  */
279 static u64
280 x86_perf_event_update(struct perf_event *event)
281 {
282         struct hw_perf_event *hwc = &event->hw;
283         int shift = 64 - x86_pmu.cntval_bits;
284         u64 prev_raw_count, new_raw_count;
285         int idx = hwc->idx;
286         s64 delta;
287
288         if (idx == X86_PMC_IDX_FIXED_BTS)
289                 return 0;
290
291         /*
292          * Careful: an NMI might modify the previous event value.
293          *
294          * Our tactic to handle this is to first atomically read and
295          * exchange a new raw count - then add that new-prev delta
296          * count to the generic event atomically:
297          */
298 again:
299         prev_raw_count = local64_read(&hwc->prev_count);
300         rdmsrl(hwc->event_base + idx, new_raw_count);
301
302         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303                                         new_raw_count) != prev_raw_count)
304                 goto again;
305
306         /*
307          * Now we have the new raw value and have updated the prev
308          * timestamp already. We can now calculate the elapsed delta
309          * (event-)time and add that to the generic event.
310          *
311          * Careful, not all hw sign-extends above the physical width
312          * of the count.
313          */
314         delta = (new_raw_count << shift) - (prev_raw_count << shift);
315         delta >>= shift;
316
317         local64_add(delta, &event->count);
318         local64_sub(delta, &hwc->period_left);
319
320         return new_raw_count;
321 }
322
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
325
326 #ifdef CONFIG_X86_LOCAL_APIC
327
328 static bool reserve_pmc_hardware(void)
329 {
330         int i;
331
332         if (nmi_watchdog == NMI_LOCAL_APIC)
333                 disable_lapic_nmi_watchdog();
334
335         for (i = 0; i < x86_pmu.num_counters; i++) {
336                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337                         goto perfctr_fail;
338         }
339
340         for (i = 0; i < x86_pmu.num_counters; i++) {
341                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342                         goto eventsel_fail;
343         }
344
345         return true;
346
347 eventsel_fail:
348         for (i--; i >= 0; i--)
349                 release_evntsel_nmi(x86_pmu.eventsel + i);
350
351         i = x86_pmu.num_counters;
352
353 perfctr_fail:
354         for (i--; i >= 0; i--)
355                 release_perfctr_nmi(x86_pmu.perfctr + i);
356
357         if (nmi_watchdog == NMI_LOCAL_APIC)
358                 enable_lapic_nmi_watchdog();
359
360         return false;
361 }
362
363 static void release_pmc_hardware(void)
364 {
365         int i;
366
367         for (i = 0; i < x86_pmu.num_counters; i++) {
368                 release_perfctr_nmi(x86_pmu.perfctr + i);
369                 release_evntsel_nmi(x86_pmu.eventsel + i);
370         }
371
372         if (nmi_watchdog == NMI_LOCAL_APIC)
373                 enable_lapic_nmi_watchdog();
374 }
375
376 #else
377
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
380
381 #endif
382
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
385
386 static void hw_perf_event_destroy(struct perf_event *event)
387 {
388         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389                 release_pmc_hardware();
390                 release_ds_buffers();
391                 mutex_unlock(&pmc_reserve_mutex);
392         }
393 }
394
395 static inline int x86_pmu_initialized(void)
396 {
397         return x86_pmu.handle_irq != NULL;
398 }
399
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
402 {
403         unsigned int cache_type, cache_op, cache_result;
404         u64 config, val;
405
406         config = attr->config;
407
408         cache_type = (config >>  0) & 0xff;
409         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410                 return -EINVAL;
411
412         cache_op = (config >>  8) & 0xff;
413         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414                 return -EINVAL;
415
416         cache_result = (config >> 16) & 0xff;
417         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418                 return -EINVAL;
419
420         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
421
422         if (val == 0)
423                 return -ENOENT;
424
425         if (val == -1)
426                 return -EINVAL;
427
428         hwc->config |= val;
429
430         return 0;
431 }
432
433 static int x86_setup_perfctr(struct perf_event *event)
434 {
435         struct perf_event_attr *attr = &event->attr;
436         struct hw_perf_event *hwc = &event->hw;
437         u64 config;
438
439         if (!hwc->sample_period) {
440                 hwc->sample_period = x86_pmu.max_period;
441                 hwc->last_period = hwc->sample_period;
442                 local64_set(&hwc->period_left, hwc->sample_period);
443         } else {
444                 /*
445                  * If we have a PMU initialized but no APIC
446                  * interrupts, we cannot sample hardware
447                  * events (user-space has to fall back and
448                  * sample via a hrtimer based software event):
449                  */
450                 if (!x86_pmu.apic)
451                         return -EOPNOTSUPP;
452         }
453
454         if (attr->type == PERF_TYPE_RAW)
455                 return 0;
456
457         if (attr->type == PERF_TYPE_HW_CACHE)
458                 return set_ext_hw_attr(hwc, attr);
459
460         if (attr->config >= x86_pmu.max_events)
461                 return -EINVAL;
462
463         /*
464          * The generic map:
465          */
466         config = x86_pmu.event_map(attr->config);
467
468         if (config == 0)
469                 return -ENOENT;
470
471         if (config == -1LL)
472                 return -EINVAL;
473
474         /*
475          * Branch tracing:
476          */
477         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478             (hwc->sample_period == 1)) {
479                 /* BTS is not supported by this architecture. */
480                 if (!x86_pmu.bts)
481                         return -EOPNOTSUPP;
482
483                 /* BTS is currently only allowed for user-mode. */
484                 if (!attr->exclude_kernel)
485                         return -EOPNOTSUPP;
486         }
487
488         hwc->config |= config;
489
490         return 0;
491 }
492
493 static int x86_pmu_hw_config(struct perf_event *event)
494 {
495         if (event->attr.precise_ip) {
496                 int precise = 0;
497
498                 /* Support for constant skid */
499                 if (x86_pmu.pebs)
500                         precise++;
501
502                 /* Support for IP fixup */
503                 if (x86_pmu.lbr_nr)
504                         precise++;
505
506                 if (event->attr.precise_ip > precise)
507                         return -EOPNOTSUPP;
508         }
509
510         /*
511          * Generate PMC IRQs:
512          * (keep 'enabled' bit clear for now)
513          */
514         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
515
516         /*
517          * Count user and OS events unless requested not to
518          */
519         if (!event->attr.exclude_user)
520                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521         if (!event->attr.exclude_kernel)
522                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
523
524         if (event->attr.type == PERF_TYPE_RAW)
525                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
526
527         return x86_setup_perfctr(event);
528 }
529
530 /*
531  * Setup the hardware configuration for a given attr_type
532  */
533 static int __x86_pmu_event_init(struct perf_event *event)
534 {
535         int err;
536
537         if (!x86_pmu_initialized())
538                 return -ENODEV;
539
540         err = 0;
541         if (!atomic_inc_not_zero(&active_events)) {
542                 mutex_lock(&pmc_reserve_mutex);
543                 if (atomic_read(&active_events) == 0) {
544                         if (!reserve_pmc_hardware())
545                                 err = -EBUSY;
546                         else {
547                                 err = reserve_ds_buffers();
548                                 if (err)
549                                         release_pmc_hardware();
550                         }
551                 }
552                 if (!err)
553                         atomic_inc(&active_events);
554                 mutex_unlock(&pmc_reserve_mutex);
555         }
556         if (err)
557                 return err;
558
559         event->destroy = hw_perf_event_destroy;
560
561         event->hw.idx = -1;
562         event->hw.last_cpu = -1;
563         event->hw.last_tag = ~0ULL;
564
565         return x86_pmu.hw_config(event);
566 }
567
568 static void x86_pmu_disable_all(void)
569 {
570         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571         int idx;
572
573         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574                 u64 val;
575
576                 if (!test_bit(idx, cpuc->active_mask))
577                         continue;
578                 rdmsrl(x86_pmu.eventsel + idx, val);
579                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580                         continue;
581                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582                 wrmsrl(x86_pmu.eventsel + idx, val);
583         }
584 }
585
586 static void x86_pmu_disable(struct pmu *pmu)
587 {
588         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
589
590         if (!x86_pmu_initialized())
591                 return;
592
593         if (!cpuc->enabled)
594                 return;
595
596         cpuc->n_added = 0;
597         cpuc->enabled = 0;
598         barrier();
599
600         x86_pmu.disable_all();
601 }
602
603 static void x86_pmu_enable_all(int added)
604 {
605         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606         int idx;
607
608         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609                 struct perf_event *event = cpuc->events[idx];
610                 u64 val;
611
612                 if (!test_bit(idx, cpuc->active_mask))
613                         continue;
614
615                 val = event->hw.config;
616                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617                 wrmsrl(x86_pmu.eventsel + idx, val);
618         }
619 }
620
621 static struct pmu pmu;
622
623 static inline int is_x86_event(struct perf_event *event)
624 {
625         return event->pmu == &pmu;
626 }
627
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
629 {
630         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632         int i, j, w, wmax, num = 0;
633         struct hw_perf_event *hwc;
634
635         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
636
637         for (i = 0; i < n; i++) {
638                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639                 constraints[i] = c;
640         }
641
642         /*
643          * fastpath, try to reuse previous register
644          */
645         for (i = 0; i < n; i++) {
646                 hwc = &cpuc->event_list[i]->hw;
647                 c = constraints[i];
648
649                 /* never assigned */
650                 if (hwc->idx == -1)
651                         break;
652
653                 /* constraint still honored */
654                 if (!test_bit(hwc->idx, c->idxmsk))
655                         break;
656
657                 /* not already used */
658                 if (test_bit(hwc->idx, used_mask))
659                         break;
660
661                 __set_bit(hwc->idx, used_mask);
662                 if (assign)
663                         assign[i] = hwc->idx;
664         }
665         if (i == n)
666                 goto done;
667
668         /*
669          * begin slow path
670          */
671
672         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
673
674         /*
675          * weight = number of possible counters
676          *
677          * 1    = most constrained, only works on one counter
678          * wmax = least constrained, works on any counter
679          *
680          * assign events to counters starting with most
681          * constrained events.
682          */
683         wmax = x86_pmu.num_counters;
684
685         /*
686          * when fixed event counters are present,
687          * wmax is incremented by 1 to account
688          * for one more choice
689          */
690         if (x86_pmu.num_counters_fixed)
691                 wmax++;
692
693         for (w = 1, num = n; num && w <= wmax; w++) {
694                 /* for each event */
695                 for (i = 0; num && i < n; i++) {
696                         c = constraints[i];
697                         hwc = &cpuc->event_list[i]->hw;
698
699                         if (c->weight != w)
700                                 continue;
701
702                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703                                 if (!test_bit(j, used_mask))
704                                         break;
705                         }
706
707                         if (j == X86_PMC_IDX_MAX)
708                                 break;
709
710                         __set_bit(j, used_mask);
711
712                         if (assign)
713                                 assign[i] = j;
714                         num--;
715                 }
716         }
717 done:
718         /*
719          * scheduling failed or is just a simulation,
720          * free resources if necessary
721          */
722         if (!assign || num) {
723                 for (i = 0; i < n; i++) {
724                         if (x86_pmu.put_event_constraints)
725                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
726                 }
727         }
728         return num ? -ENOSPC : 0;
729 }
730
731 /*
732  * dogrp: true if must collect siblings events (group)
733  * returns total number of events and error code
734  */
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
736 {
737         struct perf_event *event;
738         int n, max_count;
739
740         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
741
742         /* current number of events already accepted */
743         n = cpuc->n_events;
744
745         if (is_x86_event(leader)) {
746                 if (n >= max_count)
747                         return -ENOSPC;
748                 cpuc->event_list[n] = leader;
749                 n++;
750         }
751         if (!dogrp)
752                 return n;
753
754         list_for_each_entry(event, &leader->sibling_list, group_entry) {
755                 if (!is_x86_event(event) ||
756                     event->state <= PERF_EVENT_STATE_OFF)
757                         continue;
758
759                 if (n >= max_count)
760                         return -ENOSPC;
761
762                 cpuc->event_list[n] = event;
763                 n++;
764         }
765         return n;
766 }
767
768 static inline void x86_assign_hw_event(struct perf_event *event,
769                                 struct cpu_hw_events *cpuc, int i)
770 {
771         struct hw_perf_event *hwc = &event->hw;
772
773         hwc->idx = cpuc->assign[i];
774         hwc->last_cpu = smp_processor_id();
775         hwc->last_tag = ++cpuc->tags[i];
776
777         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778                 hwc->config_base = 0;
779                 hwc->event_base = 0;
780         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
782                 /*
783                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
784                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
785                  */
786                 hwc->event_base =
787                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788         } else {
789                 hwc->config_base = x86_pmu.eventsel;
790                 hwc->event_base  = x86_pmu.perfctr;
791         }
792 }
793
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795                                         struct cpu_hw_events *cpuc,
796                                         int i)
797 {
798         return hwc->idx == cpuc->assign[i] &&
799                 hwc->last_cpu == smp_processor_id() &&
800                 hwc->last_tag == cpuc->tags[i];
801 }
802
803 static void x86_pmu_start(struct perf_event *event, int flags);
804 static void x86_pmu_stop(struct perf_event *event, int flags);
805
806 static void x86_pmu_enable(struct pmu *pmu)
807 {
808         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809         struct perf_event *event;
810         struct hw_perf_event *hwc;
811         int i, added = cpuc->n_added;
812
813         if (!x86_pmu_initialized())
814                 return;
815
816         if (cpuc->enabled)
817                 return;
818
819         if (cpuc->n_added) {
820                 int n_running = cpuc->n_events - cpuc->n_added;
821                 /*
822                  * apply assignment obtained either from
823                  * hw_perf_group_sched_in() or x86_pmu_enable()
824                  *
825                  * step1: save events moving to new counters
826                  * step2: reprogram moved events into new counters
827                  */
828                 for (i = 0; i < n_running; i++) {
829                         event = cpuc->event_list[i];
830                         hwc = &event->hw;
831
832                         /*
833                          * we can avoid reprogramming counter if:
834                          * - assigned same counter as last time
835                          * - running on same CPU as last time
836                          * - no other event has used the counter since
837                          */
838                         if (hwc->idx == -1 ||
839                             match_prev_assignment(hwc, cpuc, i))
840                                 continue;
841
842                         /*
843                          * Ensure we don't accidentally enable a stopped
844                          * counter simply because we rescheduled.
845                          */
846                         if (hwc->state & PERF_HES_STOPPED)
847                                 hwc->state |= PERF_HES_ARCH;
848
849                         x86_pmu_stop(event, PERF_EF_UPDATE);
850                 }
851
852                 for (i = 0; i < cpuc->n_events; i++) {
853                         event = cpuc->event_list[i];
854                         hwc = &event->hw;
855
856                         if (!match_prev_assignment(hwc, cpuc, i))
857                                 x86_assign_hw_event(event, cpuc, i);
858                         else if (i < n_running)
859                                 continue;
860
861                         if (hwc->state & PERF_HES_ARCH)
862                                 continue;
863
864                         x86_pmu_start(event, PERF_EF_RELOAD);
865                 }
866                 cpuc->n_added = 0;
867                 perf_events_lapic_init();
868         }
869
870         cpuc->enabled = 1;
871         barrier();
872
873         x86_pmu.enable_all(added);
874 }
875
876 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
877                                           u64 enable_mask)
878 {
879         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
880 }
881
882 static inline void x86_pmu_disable_event(struct perf_event *event)
883 {
884         struct hw_perf_event *hwc = &event->hw;
885
886         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
887 }
888
889 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
890
891 /*
892  * Set the next IRQ period, based on the hwc->period_left value.
893  * To be called with the event disabled in hw:
894  */
895 static int
896 x86_perf_event_set_period(struct perf_event *event)
897 {
898         struct hw_perf_event *hwc = &event->hw;
899         s64 left = local64_read(&hwc->period_left);
900         s64 period = hwc->sample_period;
901         int ret = 0, idx = hwc->idx;
902
903         if (idx == X86_PMC_IDX_FIXED_BTS)
904                 return 0;
905
906         /*
907          * If we are way outside a reasonable range then just skip forward:
908          */
909         if (unlikely(left <= -period)) {
910                 left = period;
911                 local64_set(&hwc->period_left, left);
912                 hwc->last_period = period;
913                 ret = 1;
914         }
915
916         if (unlikely(left <= 0)) {
917                 left += period;
918                 local64_set(&hwc->period_left, left);
919                 hwc->last_period = period;
920                 ret = 1;
921         }
922         /*
923          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
924          */
925         if (unlikely(left < 2))
926                 left = 2;
927
928         if (left > x86_pmu.max_period)
929                 left = x86_pmu.max_period;
930
931         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
932
933         /*
934          * The hw event starts counting from this event offset,
935          * mark it to be able to extra future deltas:
936          */
937         local64_set(&hwc->prev_count, (u64)-left);
938
939         wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
940
941         /*
942          * Due to erratum on certan cpu we need
943          * a second write to be sure the register
944          * is updated properly
945          */
946         if (x86_pmu.perfctr_second_write) {
947                 wrmsrl(hwc->event_base + idx,
948                         (u64)(-left) & x86_pmu.cntval_mask);
949         }
950
951         perf_event_update_userpage(event);
952
953         return ret;
954 }
955
956 static void x86_pmu_enable_event(struct perf_event *event)
957 {
958         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
959         if (cpuc->enabled)
960                 __x86_pmu_enable_event(&event->hw,
961                                        ARCH_PERFMON_EVENTSEL_ENABLE);
962 }
963
964 /*
965  * Add a single event to the PMU.
966  *
967  * The event is added to the group of enabled events
968  * but only if it can be scehduled with existing events.
969  */
970 static int x86_pmu_add(struct perf_event *event, int flags)
971 {
972         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
973         struct hw_perf_event *hwc;
974         int assign[X86_PMC_IDX_MAX];
975         int n, n0, ret;
976
977         hwc = &event->hw;
978
979         perf_pmu_disable(event->pmu);
980         n0 = cpuc->n_events;
981         ret = n = collect_events(cpuc, event, false);
982         if (ret < 0)
983                 goto out;
984
985         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
986         if (!(flags & PERF_EF_START))
987                 hwc->state |= PERF_HES_ARCH;
988
989         /*
990          * If group events scheduling transaction was started,
991          * skip the schedulability test here, it will be peformed
992          * at commit time (->commit_txn) as a whole
993          */
994         if (cpuc->group_flag & PERF_EVENT_TXN)
995                 goto done_collect;
996
997         ret = x86_pmu.schedule_events(cpuc, n, assign);
998         if (ret)
999                 goto out;
1000         /*
1001          * copy new assignment, now we know it is possible
1002          * will be used by hw_perf_enable()
1003          */
1004         memcpy(cpuc->assign, assign, n*sizeof(int));
1005
1006 done_collect:
1007         cpuc->n_events = n;
1008         cpuc->n_added += n - n0;
1009         cpuc->n_txn += n - n0;
1010
1011         ret = 0;
1012 out:
1013         perf_pmu_enable(event->pmu);
1014         return ret;
1015 }
1016
1017 static void x86_pmu_start(struct perf_event *event, int flags)
1018 {
1019         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1020         int idx = event->hw.idx;
1021
1022         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1023                 return;
1024
1025         if (WARN_ON_ONCE(idx == -1))
1026                 return;
1027
1028         if (flags & PERF_EF_RELOAD) {
1029                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1030                 x86_perf_event_set_period(event);
1031         }
1032
1033         event->hw.state = 0;
1034
1035         cpuc->events[idx] = event;
1036         __set_bit(idx, cpuc->active_mask);
1037         __set_bit(idx, cpuc->running);
1038         x86_pmu.enable(event);
1039         perf_event_update_userpage(event);
1040 }
1041
1042 void perf_event_print_debug(void)
1043 {
1044         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1045         u64 pebs;
1046         struct cpu_hw_events *cpuc;
1047         unsigned long flags;
1048         int cpu, idx;
1049
1050         if (!x86_pmu.num_counters)
1051                 return;
1052
1053         local_irq_save(flags);
1054
1055         cpu = smp_processor_id();
1056         cpuc = &per_cpu(cpu_hw_events, cpu);
1057
1058         if (x86_pmu.version >= 2) {
1059                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1060                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1061                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1062                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1063                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1064
1065                 pr_info("\n");
1066                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1067                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1068                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1069                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1070                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1071         }
1072         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1073
1074         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1075                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1076                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1077
1078                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1079
1080                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1081                         cpu, idx, pmc_ctrl);
1082                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1083                         cpu, idx, pmc_count);
1084                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1085                         cpu, idx, prev_left);
1086         }
1087         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1088                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1089
1090                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1091                         cpu, idx, pmc_count);
1092         }
1093         local_irq_restore(flags);
1094 }
1095
1096 static void x86_pmu_stop(struct perf_event *event, int flags)
1097 {
1098         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1099         struct hw_perf_event *hwc = &event->hw;
1100
1101         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1102                 x86_pmu.disable(event);
1103                 cpuc->events[hwc->idx] = NULL;
1104                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1105                 hwc->state |= PERF_HES_STOPPED;
1106         }
1107
1108         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1109                 /*
1110                  * Drain the remaining delta count out of a event
1111                  * that we are disabling:
1112                  */
1113                 x86_perf_event_update(event);
1114                 hwc->state |= PERF_HES_UPTODATE;
1115         }
1116 }
1117
1118 static void x86_pmu_del(struct perf_event *event, int flags)
1119 {
1120         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1121         int i;
1122
1123         /*
1124          * If we're called during a txn, we don't need to do anything.
1125          * The events never got scheduled and ->cancel_txn will truncate
1126          * the event_list.
1127          */
1128         if (cpuc->group_flag & PERF_EVENT_TXN)
1129                 return;
1130
1131         x86_pmu_stop(event, PERF_EF_UPDATE);
1132
1133         for (i = 0; i < cpuc->n_events; i++) {
1134                 if (event == cpuc->event_list[i]) {
1135
1136                         if (x86_pmu.put_event_constraints)
1137                                 x86_pmu.put_event_constraints(cpuc, event);
1138
1139                         while (++i < cpuc->n_events)
1140                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1141
1142                         --cpuc->n_events;
1143                         break;
1144                 }
1145         }
1146         perf_event_update_userpage(event);
1147 }
1148
1149 static int x86_pmu_handle_irq(struct pt_regs *regs)
1150 {
1151         struct perf_sample_data data;
1152         struct cpu_hw_events *cpuc;
1153         struct perf_event *event;
1154         int idx, handled = 0;
1155         u64 val;
1156
1157         perf_sample_data_init(&data, 0);
1158
1159         cpuc = &__get_cpu_var(cpu_hw_events);
1160
1161         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1162                 if (!test_bit(idx, cpuc->active_mask)) {
1163                         /*
1164                          * Though we deactivated the counter some cpus
1165                          * might still deliver spurious interrupts still
1166                          * in flight. Catch them:
1167                          */
1168                         if (__test_and_clear_bit(idx, cpuc->running))
1169                                 handled++;
1170                         continue;
1171                 }
1172
1173                 event = cpuc->events[idx];
1174
1175                 val = x86_perf_event_update(event);
1176                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1177                         continue;
1178
1179                 /*
1180                  * event overflow
1181                  */
1182                 handled++;
1183                 data.period     = event->hw.last_period;
1184
1185                 if (!x86_perf_event_set_period(event))
1186                         continue;
1187
1188                 if (perf_event_overflow(event, 1, &data, regs))
1189                         x86_pmu_stop(event, 0);
1190         }
1191
1192         if (handled)
1193                 inc_irq_stat(apic_perf_irqs);
1194
1195         return handled;
1196 }
1197
1198 void perf_events_lapic_init(void)
1199 {
1200         if (!x86_pmu.apic || !x86_pmu_initialized())
1201                 return;
1202
1203         /*
1204          * Always use NMI for PMU
1205          */
1206         apic_write(APIC_LVTPC, APIC_DM_NMI);
1207 }
1208
1209 struct pmu_nmi_state {
1210         unsigned int    marked;
1211         int             handled;
1212 };
1213
1214 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1215
1216 static int __kprobes
1217 perf_event_nmi_handler(struct notifier_block *self,
1218                          unsigned long cmd, void *__args)
1219 {
1220         struct die_args *args = __args;
1221         unsigned int this_nmi;
1222         int handled;
1223
1224         if (!atomic_read(&active_events))
1225                 return NOTIFY_DONE;
1226
1227         switch (cmd) {
1228         case DIE_NMI:
1229         case DIE_NMI_IPI:
1230                 break;
1231         case DIE_NMIUNKNOWN:
1232                 this_nmi = percpu_read(irq_stat.__nmi_count);
1233                 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1234                         /* let the kernel handle the unknown nmi */
1235                         return NOTIFY_DONE;
1236                 /*
1237                  * This one is a PMU back-to-back nmi. Two events
1238                  * trigger 'simultaneously' raising two back-to-back
1239                  * NMIs. If the first NMI handles both, the latter
1240                  * will be empty and daze the CPU. So, we drop it to
1241                  * avoid false-positive 'unknown nmi' messages.
1242                  */
1243                 return NOTIFY_STOP;
1244         default:
1245                 return NOTIFY_DONE;
1246         }
1247
1248         apic_write(APIC_LVTPC, APIC_DM_NMI);
1249
1250         handled = x86_pmu.handle_irq(args->regs);
1251         if (!handled)
1252                 return NOTIFY_DONE;
1253
1254         this_nmi = percpu_read(irq_stat.__nmi_count);
1255         if ((handled > 1) ||
1256                 /* the next nmi could be a back-to-back nmi */
1257             ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1258              (__get_cpu_var(pmu_nmi).handled > 1))) {
1259                 /*
1260                  * We could have two subsequent back-to-back nmis: The
1261                  * first handles more than one counter, the 2nd
1262                  * handles only one counter and the 3rd handles no
1263                  * counter.
1264                  *
1265                  * This is the 2nd nmi because the previous was
1266                  * handling more than one counter. We will mark the
1267                  * next (3rd) and then drop it if unhandled.
1268                  */
1269                 __get_cpu_var(pmu_nmi).marked   = this_nmi + 1;
1270                 __get_cpu_var(pmu_nmi).handled  = handled;
1271         }
1272
1273         return NOTIFY_STOP;
1274 }
1275
1276 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1277         .notifier_call          = perf_event_nmi_handler,
1278         .next                   = NULL,
1279         .priority               = 1
1280 };
1281
1282 static struct event_constraint unconstrained;
1283 static struct event_constraint emptyconstraint;
1284
1285 static struct event_constraint *
1286 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1287 {
1288         struct event_constraint *c;
1289
1290         if (x86_pmu.event_constraints) {
1291                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1292                         if ((event->hw.config & c->cmask) == c->code)
1293                                 return c;
1294                 }
1295         }
1296
1297         return &unconstrained;
1298 }
1299
1300 #include "perf_event_amd.c"
1301 #include "perf_event_p6.c"
1302 #include "perf_event_p4.c"
1303 #include "perf_event_intel_lbr.c"
1304 #include "perf_event_intel_ds.c"
1305 #include "perf_event_intel.c"
1306
1307 static int __cpuinit
1308 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1309 {
1310         unsigned int cpu = (long)hcpu;
1311         int ret = NOTIFY_OK;
1312
1313         switch (action & ~CPU_TASKS_FROZEN) {
1314         case CPU_UP_PREPARE:
1315                 if (x86_pmu.cpu_prepare)
1316                         ret = x86_pmu.cpu_prepare(cpu);
1317                 break;
1318
1319         case CPU_STARTING:
1320                 if (x86_pmu.cpu_starting)
1321                         x86_pmu.cpu_starting(cpu);
1322                 break;
1323
1324         case CPU_DYING:
1325                 if (x86_pmu.cpu_dying)
1326                         x86_pmu.cpu_dying(cpu);
1327                 break;
1328
1329         case CPU_UP_CANCELED:
1330         case CPU_DEAD:
1331                 if (x86_pmu.cpu_dead)
1332                         x86_pmu.cpu_dead(cpu);
1333                 break;
1334
1335         default:
1336                 break;
1337         }
1338
1339         return ret;
1340 }
1341
1342 static void __init pmu_check_apic(void)
1343 {
1344         if (cpu_has_apic)
1345                 return;
1346
1347         x86_pmu.apic = 0;
1348         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1349         pr_info("no hardware sampling interrupt available.\n");
1350 }
1351
1352 void __init init_hw_perf_events(void)
1353 {
1354         struct event_constraint *c;
1355         int err;
1356
1357         pr_info("Performance Events: ");
1358
1359         switch (boot_cpu_data.x86_vendor) {
1360         case X86_VENDOR_INTEL:
1361                 err = intel_pmu_init();
1362                 break;
1363         case X86_VENDOR_AMD:
1364                 err = amd_pmu_init();
1365                 break;
1366         default:
1367                 return;
1368         }
1369         if (err != 0) {
1370                 pr_cont("no PMU driver, software events only.\n");
1371                 return;
1372         }
1373
1374         pmu_check_apic();
1375
1376         pr_cont("%s PMU driver.\n", x86_pmu.name);
1377
1378         if (x86_pmu.quirks)
1379                 x86_pmu.quirks();
1380
1381         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1382                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1383                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1384                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1385         }
1386         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1387
1388         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1389                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1390                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1391                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1392         }
1393
1394         x86_pmu.intel_ctrl |=
1395                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1396
1397         perf_events_lapic_init();
1398         register_die_notifier(&perf_event_nmi_notifier);
1399
1400         unconstrained = (struct event_constraint)
1401                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1402                                    0, x86_pmu.num_counters);
1403
1404         if (x86_pmu.event_constraints) {
1405                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1406                         if (c->cmask != X86_RAW_EVENT_MASK)
1407                                 continue;
1408
1409                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1410                         c->weight += x86_pmu.num_counters;
1411                 }
1412         }
1413
1414         pr_info("... version:                %d\n",     x86_pmu.version);
1415         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1416         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1417         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1418         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1419         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1420         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1421
1422         perf_pmu_register(&pmu);
1423         perf_cpu_notifier(x86_pmu_notifier);
1424 }
1425
1426 static inline void x86_pmu_read(struct perf_event *event)
1427 {
1428         x86_perf_event_update(event);
1429 }
1430
1431 /*
1432  * Start group events scheduling transaction
1433  * Set the flag to make pmu::enable() not perform the
1434  * schedulability test, it will be performed at commit time
1435  */
1436 static void x86_pmu_start_txn(struct pmu *pmu)
1437 {
1438         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1439
1440         perf_pmu_disable(pmu);
1441         cpuc->group_flag |= PERF_EVENT_TXN;
1442         cpuc->n_txn = 0;
1443 }
1444
1445 /*
1446  * Stop group events scheduling transaction
1447  * Clear the flag and pmu::enable() will perform the
1448  * schedulability test.
1449  */
1450 static void x86_pmu_cancel_txn(struct pmu *pmu)
1451 {
1452         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1453
1454         cpuc->group_flag &= ~PERF_EVENT_TXN;
1455         /*
1456          * Truncate the collected events.
1457          */
1458         cpuc->n_added -= cpuc->n_txn;
1459         cpuc->n_events -= cpuc->n_txn;
1460         perf_pmu_enable(pmu);
1461 }
1462
1463 /*
1464  * Commit group events scheduling transaction
1465  * Perform the group schedulability test as a whole
1466  * Return 0 if success
1467  */
1468 static int x86_pmu_commit_txn(struct pmu *pmu)
1469 {
1470         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1471         int assign[X86_PMC_IDX_MAX];
1472         int n, ret;
1473
1474         n = cpuc->n_events;
1475
1476         if (!x86_pmu_initialized())
1477                 return -EAGAIN;
1478
1479         ret = x86_pmu.schedule_events(cpuc, n, assign);
1480         if (ret)
1481                 return ret;
1482
1483         /*
1484          * copy new assignment, now we know it is possible
1485          * will be used by hw_perf_enable()
1486          */
1487         memcpy(cpuc->assign, assign, n*sizeof(int));
1488
1489         cpuc->group_flag &= ~PERF_EVENT_TXN;
1490         perf_pmu_enable(pmu);
1491         return 0;
1492 }
1493
1494 /*
1495  * validate that we can schedule this event
1496  */
1497 static int validate_event(struct perf_event *event)
1498 {
1499         struct cpu_hw_events *fake_cpuc;
1500         struct event_constraint *c;
1501         int ret = 0;
1502
1503         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1504         if (!fake_cpuc)
1505                 return -ENOMEM;
1506
1507         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1508
1509         if (!c || !c->weight)
1510                 ret = -ENOSPC;
1511
1512         if (x86_pmu.put_event_constraints)
1513                 x86_pmu.put_event_constraints(fake_cpuc, event);
1514
1515         kfree(fake_cpuc);
1516
1517         return ret;
1518 }
1519
1520 /*
1521  * validate a single event group
1522  *
1523  * validation include:
1524  *      - check events are compatible which each other
1525  *      - events do not compete for the same counter
1526  *      - number of events <= number of counters
1527  *
1528  * validation ensures the group can be loaded onto the
1529  * PMU if it was the only group available.
1530  */
1531 static int validate_group(struct perf_event *event)
1532 {
1533         struct perf_event *leader = event->group_leader;
1534         struct cpu_hw_events *fake_cpuc;
1535         int ret, n;
1536
1537         ret = -ENOMEM;
1538         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1539         if (!fake_cpuc)
1540                 goto out;
1541
1542         /*
1543          * the event is not yet connected with its
1544          * siblings therefore we must first collect
1545          * existing siblings, then add the new event
1546          * before we can simulate the scheduling
1547          */
1548         ret = -ENOSPC;
1549         n = collect_events(fake_cpuc, leader, true);
1550         if (n < 0)
1551                 goto out_free;
1552
1553         fake_cpuc->n_events = n;
1554         n = collect_events(fake_cpuc, event, false);
1555         if (n < 0)
1556                 goto out_free;
1557
1558         fake_cpuc->n_events = n;
1559
1560         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1561
1562 out_free:
1563         kfree(fake_cpuc);
1564 out:
1565         return ret;
1566 }
1567
1568 int x86_pmu_event_init(struct perf_event *event)
1569 {
1570         struct pmu *tmp;
1571         int err;
1572
1573         switch (event->attr.type) {
1574         case PERF_TYPE_RAW:
1575         case PERF_TYPE_HARDWARE:
1576         case PERF_TYPE_HW_CACHE:
1577                 break;
1578
1579         default:
1580                 return -ENOENT;
1581         }
1582
1583         err = __x86_pmu_event_init(event);
1584         if (!err) {
1585                 /*
1586                  * we temporarily connect event to its pmu
1587                  * such that validate_group() can classify
1588                  * it as an x86 event using is_x86_event()
1589                  */
1590                 tmp = event->pmu;
1591                 event->pmu = &pmu;
1592
1593                 if (event->group_leader != event)
1594                         err = validate_group(event);
1595                 else
1596                         err = validate_event(event);
1597
1598                 event->pmu = tmp;
1599         }
1600         if (err) {
1601                 if (event->destroy)
1602                         event->destroy(event);
1603         }
1604
1605         return err;
1606 }
1607
1608 static struct pmu pmu = {
1609         .pmu_enable     = x86_pmu_enable,
1610         .pmu_disable    = x86_pmu_disable,
1611
1612         .event_init     = x86_pmu_event_init,
1613
1614         .add            = x86_pmu_add,
1615         .del            = x86_pmu_del,
1616         .start          = x86_pmu_start,
1617         .stop           = x86_pmu_stop,
1618         .read           = x86_pmu_read,
1619
1620         .start_txn      = x86_pmu_start_txn,
1621         .cancel_txn     = x86_pmu_cancel_txn,
1622         .commit_txn     = x86_pmu_commit_txn,
1623 };
1624
1625 /*
1626  * callchain support
1627  */
1628
1629 static void
1630 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1631 {
1632         /* Ignore warnings */
1633 }
1634
1635 static void backtrace_warning(void *data, char *msg)
1636 {
1637         /* Ignore warnings */
1638 }
1639
1640 static int backtrace_stack(void *data, char *name)
1641 {
1642         return 0;
1643 }
1644
1645 static void backtrace_address(void *data, unsigned long addr, int reliable)
1646 {
1647         struct perf_callchain_entry *entry = data;
1648
1649         perf_callchain_store(entry, addr);
1650 }
1651
1652 static const struct stacktrace_ops backtrace_ops = {
1653         .warning                = backtrace_warning,
1654         .warning_symbol         = backtrace_warning_symbol,
1655         .stack                  = backtrace_stack,
1656         .address                = backtrace_address,
1657         .walk_stack             = print_context_stack_bp,
1658 };
1659
1660 void
1661 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1662 {
1663         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1664                 /* TODO: We don't support guest os callchain now */
1665                 return;
1666         }
1667
1668         perf_callchain_store(entry, regs->ip);
1669
1670         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1671 }
1672
1673 #ifdef CONFIG_COMPAT
1674 static inline int
1675 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1676 {
1677         /* 32-bit process in 64-bit kernel. */
1678         struct stack_frame_ia32 frame;
1679         const void __user *fp;
1680
1681         if (!test_thread_flag(TIF_IA32))
1682                 return 0;
1683
1684         fp = compat_ptr(regs->bp);
1685         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1686                 unsigned long bytes;
1687                 frame.next_frame     = 0;
1688                 frame.return_address = 0;
1689
1690                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1691                 if (bytes != sizeof(frame))
1692                         break;
1693
1694                 if (fp < compat_ptr(regs->sp))
1695                         break;
1696
1697                 perf_callchain_store(entry, frame.return_address);
1698                 fp = compat_ptr(frame.next_frame);
1699         }
1700         return 1;
1701 }
1702 #else
1703 static inline int
1704 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1705 {
1706     return 0;
1707 }
1708 #endif
1709
1710 void
1711 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1712 {
1713         struct stack_frame frame;
1714         const void __user *fp;
1715
1716         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1717                 /* TODO: We don't support guest os callchain now */
1718                 return;
1719         }
1720
1721         fp = (void __user *)regs->bp;
1722
1723         perf_callchain_store(entry, regs->ip);
1724
1725         if (perf_callchain_user32(regs, entry))
1726                 return;
1727
1728         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1729                 unsigned long bytes;
1730                 frame.next_frame             = NULL;
1731                 frame.return_address = 0;
1732
1733                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1734                 if (bytes != sizeof(frame))
1735                         break;
1736
1737                 if ((unsigned long)fp < regs->sp)
1738                         break;
1739
1740                 perf_callchain_store(entry, frame.return_address);
1741                 fp = frame.next_frame;
1742         }
1743 }
1744
1745 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1746 {
1747         unsigned long ip;
1748
1749         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1750                 ip = perf_guest_cbs->get_guest_ip();
1751         else
1752                 ip = instruction_pointer(regs);
1753
1754         return ip;
1755 }
1756
1757 unsigned long perf_misc_flags(struct pt_regs *regs)
1758 {
1759         int misc = 0;
1760
1761         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1762                 if (perf_guest_cbs->is_user_mode())
1763                         misc |= PERF_RECORD_MISC_GUEST_USER;
1764                 else
1765                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1766         } else {
1767                 if (user_mode(regs))
1768                         misc |= PERF_RECORD_MISC_USER;
1769                 else
1770                         misc |= PERF_RECORD_MISC_KERNEL;
1771         }
1772
1773         if (regs->flags & PERF_EFLAGS_EXACT)
1774                 misc |= PERF_RECORD_MISC_EXACT_IP;
1775
1776         return misc;
1777 }