Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34
35 #include "perf_event.h"
36
37 #if 0
38 #undef wrmsrl
39 #define wrmsrl(msr, val)                                        \
40 do {                                                            \
41         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42                         (unsigned long)(val));                  \
43         native_write_msr((msr), (u32)((u64)(val)),              \
44                         (u32)((u64)(val) >> 32));               \
45 } while (0)
46 #endif
47
48 struct x86_pmu x86_pmu __read_mostly;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52 };
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         s64 delta;
75
76         if (idx == X86_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdmsrl(hwc->event_base, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129
130                 reg->idx = er->idx;
131                 reg->config = event->attr.config1;
132                 reg->reg = er->msr;
133                 break;
134         }
135         return 0;
136 }
137
138 static atomic_t active_events;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145         int i;
146
147         for (i = 0; i < x86_pmu.num_counters; i++) {
148                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149                         goto perfctr_fail;
150         }
151
152         for (i = 0; i < x86_pmu.num_counters; i++) {
153                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154                         goto eventsel_fail;
155         }
156
157         return true;
158
159 eventsel_fail:
160         for (i--; i >= 0; i--)
161                 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163         i = x86_pmu.num_counters;
164
165 perfctr_fail:
166         for (i--; i >= 0; i--)
167                 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169         return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174         int i;
175
176         for (i = 0; i < x86_pmu.num_counters; i++) {
177                 release_perfctr_nmi(x86_pmu_event_addr(i));
178                 release_evntsel_nmi(x86_pmu_config_addr(i));
179         }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191         u64 val, val_new = 0;
192         int i, reg, ret = 0;
193
194         /*
195          * Check to see if the BIOS enabled any of the counters, if so
196          * complain and bail.
197          */
198         for (i = 0; i < x86_pmu.num_counters; i++) {
199                 reg = x86_pmu_config_addr(i);
200                 ret = rdmsrl_safe(reg, &val);
201                 if (ret)
202                         goto msr_fail;
203                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
204                         goto bios_fail;
205         }
206
207         if (x86_pmu.num_counters_fixed) {
208                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
209                 ret = rdmsrl_safe(reg, &val);
210                 if (ret)
211                         goto msr_fail;
212                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
213                         if (val & (0x03 << i*4))
214                                 goto bios_fail;
215                 }
216         }
217
218         /*
219          * Now write a value and read it back to see if it matches,
220          * this is needed to detect certain hardware emulators (qemu/kvm)
221          * that don't trap on the MSR access and always return 0s.
222          */
223         val = 0xabcdUL;
224         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
225         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
226         if (ret || val != val_new)
227                 goto msr_fail;
228
229         return true;
230
231 bios_fail:
232         /*
233          * We still allow the PMU driver to operate:
234          */
235         printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
237
238         return true;
239
240 msr_fail:
241         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
242
243         return false;
244 }
245
246 static void hw_perf_event_destroy(struct perf_event *event)
247 {
248         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
249                 release_pmc_hardware();
250                 release_ds_buffers();
251                 mutex_unlock(&pmc_reserve_mutex);
252         }
253 }
254
255 static inline int x86_pmu_initialized(void)
256 {
257         return x86_pmu.handle_irq != NULL;
258 }
259
260 static inline int
261 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
262 {
263         struct perf_event_attr *attr = &event->attr;
264         unsigned int cache_type, cache_op, cache_result;
265         u64 config, val;
266
267         config = attr->config;
268
269         cache_type = (config >>  0) & 0xff;
270         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
271                 return -EINVAL;
272
273         cache_op = (config >>  8) & 0xff;
274         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
275                 return -EINVAL;
276
277         cache_result = (config >> 16) & 0xff;
278         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
279                 return -EINVAL;
280
281         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
282
283         if (val == 0)
284                 return -ENOENT;
285
286         if (val == -1)
287                 return -EINVAL;
288
289         hwc->config |= val;
290         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
291         return x86_pmu_extra_regs(val, event);
292 }
293
294 int x86_setup_perfctr(struct perf_event *event)
295 {
296         struct perf_event_attr *attr = &event->attr;
297         struct hw_perf_event *hwc = &event->hw;
298         u64 config;
299
300         if (!is_sampling_event(event)) {
301                 hwc->sample_period = x86_pmu.max_period;
302                 hwc->last_period = hwc->sample_period;
303                 local64_set(&hwc->period_left, hwc->sample_period);
304         } else {
305                 /*
306                  * If we have a PMU initialized but no APIC
307                  * interrupts, we cannot sample hardware
308                  * events (user-space has to fall back and
309                  * sample via a hrtimer based software event):
310                  */
311                 if (!x86_pmu.apic)
312                         return -EOPNOTSUPP;
313         }
314
315         /*
316          * Do not allow config1 (extended registers) to propagate,
317          * there's no sane user-space generalization yet:
318          */
319         if (attr->type == PERF_TYPE_RAW)
320                 return 0;
321
322         if (attr->type == PERF_TYPE_HW_CACHE)
323                 return set_ext_hw_attr(hwc, event);
324
325         if (attr->config >= x86_pmu.max_events)
326                 return -EINVAL;
327
328         /*
329          * The generic map:
330          */
331         config = x86_pmu.event_map(attr->config);
332
333         if (config == 0)
334                 return -ENOENT;
335
336         if (config == -1LL)
337                 return -EINVAL;
338
339         /*
340          * Branch tracing:
341          */
342         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
343             !attr->freq && hwc->sample_period == 1) {
344                 /* BTS is not supported by this architecture. */
345                 if (!x86_pmu.bts_active)
346                         return -EOPNOTSUPP;
347
348                 /* BTS is currently only allowed for user-mode. */
349                 if (!attr->exclude_kernel)
350                         return -EOPNOTSUPP;
351         }
352
353         hwc->config |= config;
354
355         return 0;
356 }
357
358 int x86_pmu_hw_config(struct perf_event *event)
359 {
360         if (event->attr.precise_ip) {
361                 int precise = 0;
362
363                 /* Support for constant skid */
364                 if (x86_pmu.pebs_active) {
365                         precise++;
366
367                         /* Support for IP fixup */
368                         if (x86_pmu.lbr_nr)
369                                 precise++;
370                 }
371
372                 if (event->attr.precise_ip > precise)
373                         return -EOPNOTSUPP;
374         }
375
376         /*
377          * Generate PMC IRQs:
378          * (keep 'enabled' bit clear for now)
379          */
380         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
381
382         /*
383          * Count user and OS events unless requested not to
384          */
385         if (!event->attr.exclude_user)
386                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
387         if (!event->attr.exclude_kernel)
388                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
389
390         if (event->attr.type == PERF_TYPE_RAW)
391                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
392
393         return x86_setup_perfctr(event);
394 }
395
396 /*
397  * Setup the hardware configuration for a given attr_type
398  */
399 static int __x86_pmu_event_init(struct perf_event *event)
400 {
401         int err;
402
403         if (!x86_pmu_initialized())
404                 return -ENODEV;
405
406         err = 0;
407         if (!atomic_inc_not_zero(&active_events)) {
408                 mutex_lock(&pmc_reserve_mutex);
409                 if (atomic_read(&active_events) == 0) {
410                         if (!reserve_pmc_hardware())
411                                 err = -EBUSY;
412                         else
413                                 reserve_ds_buffers();
414                 }
415                 if (!err)
416                         atomic_inc(&active_events);
417                 mutex_unlock(&pmc_reserve_mutex);
418         }
419         if (err)
420                 return err;
421
422         event->destroy = hw_perf_event_destroy;
423
424         event->hw.idx = -1;
425         event->hw.last_cpu = -1;
426         event->hw.last_tag = ~0ULL;
427
428         /* mark unused */
429         event->hw.extra_reg.idx = EXTRA_REG_NONE;
430
431         return x86_pmu.hw_config(event);
432 }
433
434 void x86_pmu_disable_all(void)
435 {
436         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
437         int idx;
438
439         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
440                 u64 val;
441
442                 if (!test_bit(idx, cpuc->active_mask))
443                         continue;
444                 rdmsrl(x86_pmu_config_addr(idx), val);
445                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
446                         continue;
447                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
448                 wrmsrl(x86_pmu_config_addr(idx), val);
449         }
450 }
451
452 static void x86_pmu_disable(struct pmu *pmu)
453 {
454         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
455
456         if (!x86_pmu_initialized())
457                 return;
458
459         if (!cpuc->enabled)
460                 return;
461
462         cpuc->n_added = 0;
463         cpuc->enabled = 0;
464         barrier();
465
466         x86_pmu.disable_all();
467 }
468
469 void x86_pmu_enable_all(int added)
470 {
471         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
472         int idx;
473
474         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
475                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
476
477                 if (!test_bit(idx, cpuc->active_mask))
478                         continue;
479
480                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
481         }
482 }
483
484 static struct pmu pmu;
485
486 static inline int is_x86_event(struct perf_event *event)
487 {
488         return event->pmu == &pmu;
489 }
490
491 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
492 {
493         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
494         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
495         int i, j, w, wmax, num = 0;
496         struct hw_perf_event *hwc;
497
498         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
499
500         for (i = 0; i < n; i++) {
501                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
502                 constraints[i] = c;
503         }
504
505         /*
506          * fastpath, try to reuse previous register
507          */
508         for (i = 0; i < n; i++) {
509                 hwc = &cpuc->event_list[i]->hw;
510                 c = constraints[i];
511
512                 /* never assigned */
513                 if (hwc->idx == -1)
514                         break;
515
516                 /* constraint still honored */
517                 if (!test_bit(hwc->idx, c->idxmsk))
518                         break;
519
520                 /* not already used */
521                 if (test_bit(hwc->idx, used_mask))
522                         break;
523
524                 __set_bit(hwc->idx, used_mask);
525                 if (assign)
526                         assign[i] = hwc->idx;
527         }
528         if (i == n)
529                 goto done;
530
531         /*
532          * begin slow path
533          */
534
535         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
536
537         /*
538          * weight = number of possible counters
539          *
540          * 1    = most constrained, only works on one counter
541          * wmax = least constrained, works on any counter
542          *
543          * assign events to counters starting with most
544          * constrained events.
545          */
546         wmax = x86_pmu.num_counters;
547
548         /*
549          * when fixed event counters are present,
550          * wmax is incremented by 1 to account
551          * for one more choice
552          */
553         if (x86_pmu.num_counters_fixed)
554                 wmax++;
555
556         for (w = 1, num = n; num && w <= wmax; w++) {
557                 /* for each event */
558                 for (i = 0; num && i < n; i++) {
559                         c = constraints[i];
560                         hwc = &cpuc->event_list[i]->hw;
561
562                         if (c->weight != w)
563                                 continue;
564
565                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
566                                 if (!test_bit(j, used_mask))
567                                         break;
568                         }
569
570                         if (j == X86_PMC_IDX_MAX)
571                                 break;
572
573                         __set_bit(j, used_mask);
574
575                         if (assign)
576                                 assign[i] = j;
577                         num--;
578                 }
579         }
580 done:
581         /*
582          * scheduling failed or is just a simulation,
583          * free resources if necessary
584          */
585         if (!assign || num) {
586                 for (i = 0; i < n; i++) {
587                         if (x86_pmu.put_event_constraints)
588                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
589                 }
590         }
591         return num ? -ENOSPC : 0;
592 }
593
594 /*
595  * dogrp: true if must collect siblings events (group)
596  * returns total number of events and error code
597  */
598 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
599 {
600         struct perf_event *event;
601         int n, max_count;
602
603         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
604
605         /* current number of events already accepted */
606         n = cpuc->n_events;
607
608         if (is_x86_event(leader)) {
609                 if (n >= max_count)
610                         return -ENOSPC;
611                 cpuc->event_list[n] = leader;
612                 n++;
613         }
614         if (!dogrp)
615                 return n;
616
617         list_for_each_entry(event, &leader->sibling_list, group_entry) {
618                 if (!is_x86_event(event) ||
619                     event->state <= PERF_EVENT_STATE_OFF)
620                         continue;
621
622                 if (n >= max_count)
623                         return -ENOSPC;
624
625                 cpuc->event_list[n] = event;
626                 n++;
627         }
628         return n;
629 }
630
631 static inline void x86_assign_hw_event(struct perf_event *event,
632                                 struct cpu_hw_events *cpuc, int i)
633 {
634         struct hw_perf_event *hwc = &event->hw;
635
636         hwc->idx = cpuc->assign[i];
637         hwc->last_cpu = smp_processor_id();
638         hwc->last_tag = ++cpuc->tags[i];
639
640         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
641                 hwc->config_base = 0;
642                 hwc->event_base = 0;
643         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
644                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
645                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
646         } else {
647                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
648                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
649         }
650 }
651
652 static inline int match_prev_assignment(struct hw_perf_event *hwc,
653                                         struct cpu_hw_events *cpuc,
654                                         int i)
655 {
656         return hwc->idx == cpuc->assign[i] &&
657                 hwc->last_cpu == smp_processor_id() &&
658                 hwc->last_tag == cpuc->tags[i];
659 }
660
661 static void x86_pmu_start(struct perf_event *event, int flags);
662
663 static void x86_pmu_enable(struct pmu *pmu)
664 {
665         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
666         struct perf_event *event;
667         struct hw_perf_event *hwc;
668         int i, added = cpuc->n_added;
669
670         if (!x86_pmu_initialized())
671                 return;
672
673         if (cpuc->enabled)
674                 return;
675
676         if (cpuc->n_added) {
677                 int n_running = cpuc->n_events - cpuc->n_added;
678                 /*
679                  * apply assignment obtained either from
680                  * hw_perf_group_sched_in() or x86_pmu_enable()
681                  *
682                  * step1: save events moving to new counters
683                  * step2: reprogram moved events into new counters
684                  */
685                 for (i = 0; i < n_running; i++) {
686                         event = cpuc->event_list[i];
687                         hwc = &event->hw;
688
689                         /*
690                          * we can avoid reprogramming counter if:
691                          * - assigned same counter as last time
692                          * - running on same CPU as last time
693                          * - no other event has used the counter since
694                          */
695                         if (hwc->idx == -1 ||
696                             match_prev_assignment(hwc, cpuc, i))
697                                 continue;
698
699                         /*
700                          * Ensure we don't accidentally enable a stopped
701                          * counter simply because we rescheduled.
702                          */
703                         if (hwc->state & PERF_HES_STOPPED)
704                                 hwc->state |= PERF_HES_ARCH;
705
706                         x86_pmu_stop(event, PERF_EF_UPDATE);
707                 }
708
709                 for (i = 0; i < cpuc->n_events; i++) {
710                         event = cpuc->event_list[i];
711                         hwc = &event->hw;
712
713                         if (!match_prev_assignment(hwc, cpuc, i))
714                                 x86_assign_hw_event(event, cpuc, i);
715                         else if (i < n_running)
716                                 continue;
717
718                         if (hwc->state & PERF_HES_ARCH)
719                                 continue;
720
721                         x86_pmu_start(event, PERF_EF_RELOAD);
722                 }
723                 cpuc->n_added = 0;
724                 perf_events_lapic_init();
725         }
726
727         cpuc->enabled = 1;
728         barrier();
729
730         x86_pmu.enable_all(added);
731 }
732
733 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
734
735 /*
736  * Set the next IRQ period, based on the hwc->period_left value.
737  * To be called with the event disabled in hw:
738  */
739 int x86_perf_event_set_period(struct perf_event *event)
740 {
741         struct hw_perf_event *hwc = &event->hw;
742         s64 left = local64_read(&hwc->period_left);
743         s64 period = hwc->sample_period;
744         int ret = 0, idx = hwc->idx;
745
746         if (idx == X86_PMC_IDX_FIXED_BTS)
747                 return 0;
748
749         /*
750          * If we are way outside a reasonable range then just skip forward:
751          */
752         if (unlikely(left <= -period)) {
753                 left = period;
754                 local64_set(&hwc->period_left, left);
755                 hwc->last_period = period;
756                 ret = 1;
757         }
758
759         if (unlikely(left <= 0)) {
760                 left += period;
761                 local64_set(&hwc->period_left, left);
762                 hwc->last_period = period;
763                 ret = 1;
764         }
765         /*
766          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
767          */
768         if (unlikely(left < 2))
769                 left = 2;
770
771         if (left > x86_pmu.max_period)
772                 left = x86_pmu.max_period;
773
774         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
775
776         /*
777          * The hw event starts counting from this event offset,
778          * mark it to be able to extra future deltas:
779          */
780         local64_set(&hwc->prev_count, (u64)-left);
781
782         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
783
784         /*
785          * Due to erratum on certan cpu we need
786          * a second write to be sure the register
787          * is updated properly
788          */
789         if (x86_pmu.perfctr_second_write) {
790                 wrmsrl(hwc->event_base,
791                         (u64)(-left) & x86_pmu.cntval_mask);
792         }
793
794         perf_event_update_userpage(event);
795
796         return ret;
797 }
798
799 void x86_pmu_enable_event(struct perf_event *event)
800 {
801         if (__this_cpu_read(cpu_hw_events.enabled))
802                 __x86_pmu_enable_event(&event->hw,
803                                        ARCH_PERFMON_EVENTSEL_ENABLE);
804 }
805
806 /*
807  * Add a single event to the PMU.
808  *
809  * The event is added to the group of enabled events
810  * but only if it can be scehduled with existing events.
811  */
812 static int x86_pmu_add(struct perf_event *event, int flags)
813 {
814         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
815         struct hw_perf_event *hwc;
816         int assign[X86_PMC_IDX_MAX];
817         int n, n0, ret;
818
819         hwc = &event->hw;
820
821         perf_pmu_disable(event->pmu);
822         n0 = cpuc->n_events;
823         ret = n = collect_events(cpuc, event, false);
824         if (ret < 0)
825                 goto out;
826
827         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
828         if (!(flags & PERF_EF_START))
829                 hwc->state |= PERF_HES_ARCH;
830
831         /*
832          * If group events scheduling transaction was started,
833          * skip the schedulability test here, it will be performed
834          * at commit time (->commit_txn) as a whole
835          */
836         if (cpuc->group_flag & PERF_EVENT_TXN)
837                 goto done_collect;
838
839         ret = x86_pmu.schedule_events(cpuc, n, assign);
840         if (ret)
841                 goto out;
842         /*
843          * copy new assignment, now we know it is possible
844          * will be used by hw_perf_enable()
845          */
846         memcpy(cpuc->assign, assign, n*sizeof(int));
847
848 done_collect:
849         cpuc->n_events = n;
850         cpuc->n_added += n - n0;
851         cpuc->n_txn += n - n0;
852
853         ret = 0;
854 out:
855         perf_pmu_enable(event->pmu);
856         return ret;
857 }
858
859 static void x86_pmu_start(struct perf_event *event, int flags)
860 {
861         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
862         int idx = event->hw.idx;
863
864         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
865                 return;
866
867         if (WARN_ON_ONCE(idx == -1))
868                 return;
869
870         if (flags & PERF_EF_RELOAD) {
871                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
872                 x86_perf_event_set_period(event);
873         }
874
875         event->hw.state = 0;
876
877         cpuc->events[idx] = event;
878         __set_bit(idx, cpuc->active_mask);
879         __set_bit(idx, cpuc->running);
880         x86_pmu.enable(event);
881         perf_event_update_userpage(event);
882 }
883
884 void perf_event_print_debug(void)
885 {
886         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
887         u64 pebs;
888         struct cpu_hw_events *cpuc;
889         unsigned long flags;
890         int cpu, idx;
891
892         if (!x86_pmu.num_counters)
893                 return;
894
895         local_irq_save(flags);
896
897         cpu = smp_processor_id();
898         cpuc = &per_cpu(cpu_hw_events, cpu);
899
900         if (x86_pmu.version >= 2) {
901                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
902                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
903                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
904                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
905                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
906
907                 pr_info("\n");
908                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
909                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
910                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
911                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
912                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
913         }
914         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
915
916         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
917                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
918                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
919
920                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
921
922                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
923                         cpu, idx, pmc_ctrl);
924                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
925                         cpu, idx, pmc_count);
926                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
927                         cpu, idx, prev_left);
928         }
929         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
930                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
931
932                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
933                         cpu, idx, pmc_count);
934         }
935         local_irq_restore(flags);
936 }
937
938 void x86_pmu_stop(struct perf_event *event, int flags)
939 {
940         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
941         struct hw_perf_event *hwc = &event->hw;
942
943         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
944                 x86_pmu.disable(event);
945                 cpuc->events[hwc->idx] = NULL;
946                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
947                 hwc->state |= PERF_HES_STOPPED;
948         }
949
950         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
951                 /*
952                  * Drain the remaining delta count out of a event
953                  * that we are disabling:
954                  */
955                 x86_perf_event_update(event);
956                 hwc->state |= PERF_HES_UPTODATE;
957         }
958 }
959
960 static void x86_pmu_del(struct perf_event *event, int flags)
961 {
962         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
963         int i;
964
965         /*
966          * If we're called during a txn, we don't need to do anything.
967          * The events never got scheduled and ->cancel_txn will truncate
968          * the event_list.
969          */
970         if (cpuc->group_flag & PERF_EVENT_TXN)
971                 return;
972
973         x86_pmu_stop(event, PERF_EF_UPDATE);
974
975         for (i = 0; i < cpuc->n_events; i++) {
976                 if (event == cpuc->event_list[i]) {
977
978                         if (x86_pmu.put_event_constraints)
979                                 x86_pmu.put_event_constraints(cpuc, event);
980
981                         while (++i < cpuc->n_events)
982                                 cpuc->event_list[i-1] = cpuc->event_list[i];
983
984                         --cpuc->n_events;
985                         break;
986                 }
987         }
988         perf_event_update_userpage(event);
989 }
990
991 int x86_pmu_handle_irq(struct pt_regs *regs)
992 {
993         struct perf_sample_data data;
994         struct cpu_hw_events *cpuc;
995         struct perf_event *event;
996         int idx, handled = 0;
997         u64 val;
998
999         perf_sample_data_init(&data, 0);
1000
1001         cpuc = &__get_cpu_var(cpu_hw_events);
1002
1003         /*
1004          * Some chipsets need to unmask the LVTPC in a particular spot
1005          * inside the nmi handler.  As a result, the unmasking was pushed
1006          * into all the nmi handlers.
1007          *
1008          * This generic handler doesn't seem to have any issues where the
1009          * unmasking occurs so it was left at the top.
1010          */
1011         apic_write(APIC_LVTPC, APIC_DM_NMI);
1012
1013         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1014                 if (!test_bit(idx, cpuc->active_mask)) {
1015                         /*
1016                          * Though we deactivated the counter some cpus
1017                          * might still deliver spurious interrupts still
1018                          * in flight. Catch them:
1019                          */
1020                         if (__test_and_clear_bit(idx, cpuc->running))
1021                                 handled++;
1022                         continue;
1023                 }
1024
1025                 event = cpuc->events[idx];
1026
1027                 val = x86_perf_event_update(event);
1028                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1029                         continue;
1030
1031                 /*
1032                  * event overflow
1033                  */
1034                 handled++;
1035                 data.period     = event->hw.last_period;
1036
1037                 if (!x86_perf_event_set_period(event))
1038                         continue;
1039
1040                 if (perf_event_overflow(event, &data, regs))
1041                         x86_pmu_stop(event, 0);
1042         }
1043
1044         if (handled)
1045                 inc_irq_stat(apic_perf_irqs);
1046
1047         return handled;
1048 }
1049
1050 void perf_events_lapic_init(void)
1051 {
1052         if (!x86_pmu.apic || !x86_pmu_initialized())
1053                 return;
1054
1055         /*
1056          * Always use NMI for PMU
1057          */
1058         apic_write(APIC_LVTPC, APIC_DM_NMI);
1059 }
1060
1061 static int __kprobes
1062 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1063 {
1064         if (!atomic_read(&active_events))
1065                 return NMI_DONE;
1066
1067         return x86_pmu.handle_irq(regs);
1068 }
1069
1070 struct event_constraint emptyconstraint;
1071 struct event_constraint unconstrained;
1072
1073 static int __cpuinit
1074 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1075 {
1076         unsigned int cpu = (long)hcpu;
1077         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1078         int ret = NOTIFY_OK;
1079
1080         switch (action & ~CPU_TASKS_FROZEN) {
1081         case CPU_UP_PREPARE:
1082                 cpuc->kfree_on_online = NULL;
1083                 if (x86_pmu.cpu_prepare)
1084                         ret = x86_pmu.cpu_prepare(cpu);
1085                 break;
1086
1087         case CPU_STARTING:
1088                 if (x86_pmu.cpu_starting)
1089                         x86_pmu.cpu_starting(cpu);
1090                 break;
1091
1092         case CPU_ONLINE:
1093                 kfree(cpuc->kfree_on_online);
1094                 break;
1095
1096         case CPU_DYING:
1097                 if (x86_pmu.cpu_dying)
1098                         x86_pmu.cpu_dying(cpu);
1099                 break;
1100
1101         case CPU_UP_CANCELED:
1102         case CPU_DEAD:
1103                 if (x86_pmu.cpu_dead)
1104                         x86_pmu.cpu_dead(cpu);
1105                 break;
1106
1107         default:
1108                 break;
1109         }
1110
1111         return ret;
1112 }
1113
1114 static void __init pmu_check_apic(void)
1115 {
1116         if (cpu_has_apic)
1117                 return;
1118
1119         x86_pmu.apic = 0;
1120         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1121         pr_info("no hardware sampling interrupt available.\n");
1122 }
1123
1124 static int __init init_hw_perf_events(void)
1125 {
1126         struct event_constraint *c;
1127         int err;
1128
1129         pr_info("Performance Events: ");
1130
1131         switch (boot_cpu_data.x86_vendor) {
1132         case X86_VENDOR_INTEL:
1133                 err = intel_pmu_init();
1134                 break;
1135         case X86_VENDOR_AMD:
1136                 err = amd_pmu_init();
1137                 break;
1138         default:
1139                 return 0;
1140         }
1141         if (err != 0) {
1142                 pr_cont("no PMU driver, software events only.\n");
1143                 return 0;
1144         }
1145
1146         pmu_check_apic();
1147
1148         /* sanity check that the hardware exists or is emulated */
1149         if (!check_hw_exists())
1150                 return 0;
1151
1152         pr_cont("%s PMU driver.\n", x86_pmu.name);
1153
1154         if (x86_pmu.quirks)
1155                 x86_pmu.quirks();
1156
1157         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1158                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1159                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1160                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1161         }
1162         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1163
1164         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1165                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1166                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1167                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1168         }
1169
1170         x86_pmu.intel_ctrl |=
1171                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1172
1173         perf_events_lapic_init();
1174         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1175
1176         unconstrained = (struct event_constraint)
1177                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1178                                    0, x86_pmu.num_counters);
1179
1180         if (x86_pmu.event_constraints) {
1181                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1182                         if (c->cmask != X86_RAW_EVENT_MASK)
1183                                 continue;
1184
1185                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1186                         c->weight += x86_pmu.num_counters;
1187                 }
1188         }
1189
1190         pr_info("... version:                %d\n",     x86_pmu.version);
1191         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1192         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1193         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1194         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1195         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1196         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1197
1198         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1199         perf_cpu_notifier(x86_pmu_notifier);
1200
1201         return 0;
1202 }
1203 early_initcall(init_hw_perf_events);
1204
1205 static inline void x86_pmu_read(struct perf_event *event)
1206 {
1207         x86_perf_event_update(event);
1208 }
1209
1210 /*
1211  * Start group events scheduling transaction
1212  * Set the flag to make pmu::enable() not perform the
1213  * schedulability test, it will be performed at commit time
1214  */
1215 static void x86_pmu_start_txn(struct pmu *pmu)
1216 {
1217         perf_pmu_disable(pmu);
1218         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1219         __this_cpu_write(cpu_hw_events.n_txn, 0);
1220 }
1221
1222 /*
1223  * Stop group events scheduling transaction
1224  * Clear the flag and pmu::enable() will perform the
1225  * schedulability test.
1226  */
1227 static void x86_pmu_cancel_txn(struct pmu *pmu)
1228 {
1229         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1230         /*
1231          * Truncate the collected events.
1232          */
1233         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1234         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1235         perf_pmu_enable(pmu);
1236 }
1237
1238 /*
1239  * Commit group events scheduling transaction
1240  * Perform the group schedulability test as a whole
1241  * Return 0 if success
1242  */
1243 static int x86_pmu_commit_txn(struct pmu *pmu)
1244 {
1245         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1246         int assign[X86_PMC_IDX_MAX];
1247         int n, ret;
1248
1249         n = cpuc->n_events;
1250
1251         if (!x86_pmu_initialized())
1252                 return -EAGAIN;
1253
1254         ret = x86_pmu.schedule_events(cpuc, n, assign);
1255         if (ret)
1256                 return ret;
1257
1258         /*
1259          * copy new assignment, now we know it is possible
1260          * will be used by hw_perf_enable()
1261          */
1262         memcpy(cpuc->assign, assign, n*sizeof(int));
1263
1264         cpuc->group_flag &= ~PERF_EVENT_TXN;
1265         perf_pmu_enable(pmu);
1266         return 0;
1267 }
1268 /*
1269  * a fake_cpuc is used to validate event groups. Due to
1270  * the extra reg logic, we need to also allocate a fake
1271  * per_core and per_cpu structure. Otherwise, group events
1272  * using extra reg may conflict without the kernel being
1273  * able to catch this when the last event gets added to
1274  * the group.
1275  */
1276 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1277 {
1278         kfree(cpuc->shared_regs);
1279         kfree(cpuc);
1280 }
1281
1282 static struct cpu_hw_events *allocate_fake_cpuc(void)
1283 {
1284         struct cpu_hw_events *cpuc;
1285         int cpu = raw_smp_processor_id();
1286
1287         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1288         if (!cpuc)
1289                 return ERR_PTR(-ENOMEM);
1290
1291         /* only needed, if we have extra_regs */
1292         if (x86_pmu.extra_regs) {
1293                 cpuc->shared_regs = allocate_shared_regs(cpu);
1294                 if (!cpuc->shared_regs)
1295                         goto error;
1296         }
1297         return cpuc;
1298 error:
1299         free_fake_cpuc(cpuc);
1300         return ERR_PTR(-ENOMEM);
1301 }
1302
1303 /*
1304  * validate that we can schedule this event
1305  */
1306 static int validate_event(struct perf_event *event)
1307 {
1308         struct cpu_hw_events *fake_cpuc;
1309         struct event_constraint *c;
1310         int ret = 0;
1311
1312         fake_cpuc = allocate_fake_cpuc();
1313         if (IS_ERR(fake_cpuc))
1314                 return PTR_ERR(fake_cpuc);
1315
1316         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1317
1318         if (!c || !c->weight)
1319                 ret = -ENOSPC;
1320
1321         if (x86_pmu.put_event_constraints)
1322                 x86_pmu.put_event_constraints(fake_cpuc, event);
1323
1324         free_fake_cpuc(fake_cpuc);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * validate a single event group
1331  *
1332  * validation include:
1333  *      - check events are compatible which each other
1334  *      - events do not compete for the same counter
1335  *      - number of events <= number of counters
1336  *
1337  * validation ensures the group can be loaded onto the
1338  * PMU if it was the only group available.
1339  */
1340 static int validate_group(struct perf_event *event)
1341 {
1342         struct perf_event *leader = event->group_leader;
1343         struct cpu_hw_events *fake_cpuc;
1344         int ret = -ENOSPC, n;
1345
1346         fake_cpuc = allocate_fake_cpuc();
1347         if (IS_ERR(fake_cpuc))
1348                 return PTR_ERR(fake_cpuc);
1349         /*
1350          * the event is not yet connected with its
1351          * siblings therefore we must first collect
1352          * existing siblings, then add the new event
1353          * before we can simulate the scheduling
1354          */
1355         n = collect_events(fake_cpuc, leader, true);
1356         if (n < 0)
1357                 goto out;
1358
1359         fake_cpuc->n_events = n;
1360         n = collect_events(fake_cpuc, event, false);
1361         if (n < 0)
1362                 goto out;
1363
1364         fake_cpuc->n_events = n;
1365
1366         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1367
1368 out:
1369         free_fake_cpuc(fake_cpuc);
1370         return ret;
1371 }
1372
1373 static int x86_pmu_event_init(struct perf_event *event)
1374 {
1375         struct pmu *tmp;
1376         int err;
1377
1378         switch (event->attr.type) {
1379         case PERF_TYPE_RAW:
1380         case PERF_TYPE_HARDWARE:
1381         case PERF_TYPE_HW_CACHE:
1382                 break;
1383
1384         default:
1385                 return -ENOENT;
1386         }
1387
1388         err = __x86_pmu_event_init(event);
1389         if (!err) {
1390                 /*
1391                  * we temporarily connect event to its pmu
1392                  * such that validate_group() can classify
1393                  * it as an x86 event using is_x86_event()
1394                  */
1395                 tmp = event->pmu;
1396                 event->pmu = &pmu;
1397
1398                 if (event->group_leader != event)
1399                         err = validate_group(event);
1400                 else
1401                         err = validate_event(event);
1402
1403                 event->pmu = tmp;
1404         }
1405         if (err) {
1406                 if (event->destroy)
1407                         event->destroy(event);
1408         }
1409
1410         return err;
1411 }
1412
1413 static struct pmu pmu = {
1414         .pmu_enable     = x86_pmu_enable,
1415         .pmu_disable    = x86_pmu_disable,
1416
1417         .event_init     = x86_pmu_event_init,
1418
1419         .add            = x86_pmu_add,
1420         .del            = x86_pmu_del,
1421         .start          = x86_pmu_start,
1422         .stop           = x86_pmu_stop,
1423         .read           = x86_pmu_read,
1424
1425         .start_txn      = x86_pmu_start_txn,
1426         .cancel_txn     = x86_pmu_cancel_txn,
1427         .commit_txn     = x86_pmu_commit_txn,
1428 };
1429
1430 /*
1431  * callchain support
1432  */
1433
1434 static int backtrace_stack(void *data, char *name)
1435 {
1436         return 0;
1437 }
1438
1439 static void backtrace_address(void *data, unsigned long addr, int reliable)
1440 {
1441         struct perf_callchain_entry *entry = data;
1442
1443         perf_callchain_store(entry, addr);
1444 }
1445
1446 static const struct stacktrace_ops backtrace_ops = {
1447         .stack                  = backtrace_stack,
1448         .address                = backtrace_address,
1449         .walk_stack             = print_context_stack_bp,
1450 };
1451
1452 void
1453 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1454 {
1455         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1456                 /* TODO: We don't support guest os callchain now */
1457                 return;
1458         }
1459
1460         perf_callchain_store(entry, regs->ip);
1461
1462         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1463 }
1464
1465 #ifdef CONFIG_COMPAT
1466 static inline int
1467 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1468 {
1469         /* 32-bit process in 64-bit kernel. */
1470         struct stack_frame_ia32 frame;
1471         const void __user *fp;
1472
1473         if (!test_thread_flag(TIF_IA32))
1474                 return 0;
1475
1476         fp = compat_ptr(regs->bp);
1477         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1478                 unsigned long bytes;
1479                 frame.next_frame     = 0;
1480                 frame.return_address = 0;
1481
1482                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1483                 if (bytes != sizeof(frame))
1484                         break;
1485
1486                 if (fp < compat_ptr(regs->sp))
1487                         break;
1488
1489                 perf_callchain_store(entry, frame.return_address);
1490                 fp = compat_ptr(frame.next_frame);
1491         }
1492         return 1;
1493 }
1494 #else
1495 static inline int
1496 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1497 {
1498     return 0;
1499 }
1500 #endif
1501
1502 void
1503 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1504 {
1505         struct stack_frame frame;
1506         const void __user *fp;
1507
1508         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1509                 /* TODO: We don't support guest os callchain now */
1510                 return;
1511         }
1512
1513         fp = (void __user *)regs->bp;
1514
1515         perf_callchain_store(entry, regs->ip);
1516
1517         if (!current->mm)
1518                 return;
1519
1520         if (perf_callchain_user32(regs, entry))
1521                 return;
1522
1523         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1524                 unsigned long bytes;
1525                 frame.next_frame             = NULL;
1526                 frame.return_address = 0;
1527
1528                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1529                 if (bytes != sizeof(frame))
1530                         break;
1531
1532                 if ((unsigned long)fp < regs->sp)
1533                         break;
1534
1535                 perf_callchain_store(entry, frame.return_address);
1536                 fp = frame.next_frame;
1537         }
1538 }
1539
1540 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1541 {
1542         unsigned long ip;
1543
1544         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1545                 ip = perf_guest_cbs->get_guest_ip();
1546         else
1547                 ip = instruction_pointer(regs);
1548
1549         return ip;
1550 }
1551
1552 unsigned long perf_misc_flags(struct pt_regs *regs)
1553 {
1554         int misc = 0;
1555
1556         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1557                 if (perf_guest_cbs->is_user_mode())
1558                         misc |= PERF_RECORD_MISC_GUEST_USER;
1559                 else
1560                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1561         } else {
1562                 if (user_mode(regs))
1563                         misc |= PERF_RECORD_MISC_USER;
1564                 else
1565                         misc |= PERF_RECORD_MISC_KERNEL;
1566         }
1567
1568         if (regs->flags & PERF_EFLAGS_EXACT)
1569                 misc |= PERF_RECORD_MISC_EXACT_IP;
1570
1571         return misc;
1572 }