Merge branch 'for-2.6.33' of git://linux-nfs.org/~bfields/linux
[pandora-kernel.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/events/power.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50                 "acpi-cpufreq", msg)
51
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
55
56 enum {
57         UNDEFINED_CAPABLE = 0,
58         SYSTEM_INTEL_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63
64 struct acpi_cpufreq_data {
65         struct acpi_processor_performance *acpi_data;
66         struct cpufreq_frequency_table *freq_table;
67         unsigned int resume;
68         unsigned int cpu_feature;
69 };
70
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
72
73 static DEFINE_PER_CPU(struct aperfmperf, acfreq_old_perf);
74
75 /* acpi_perf_data is a pointer to percpu data. */
76 static struct acpi_processor_performance *acpi_perf_data;
77
78 static struct cpufreq_driver acpi_cpufreq_driver;
79
80 static unsigned int acpi_pstate_strict;
81
82 static int check_est_cpu(unsigned int cpuid)
83 {
84         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
85
86         return cpu_has(cpu, X86_FEATURE_EST);
87 }
88
89 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
90 {
91         struct acpi_processor_performance *perf;
92         int i;
93
94         perf = data->acpi_data;
95
96         for (i = 0; i < perf->state_count; i++) {
97                 if (value == perf->states[i].status)
98                         return data->freq_table[i].frequency;
99         }
100         return 0;
101 }
102
103 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
104 {
105         int i;
106         struct acpi_processor_performance *perf;
107
108         msr &= INTEL_MSR_RANGE;
109         perf = data->acpi_data;
110
111         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
112                 if (msr == perf->states[data->freq_table[i].index].status)
113                         return data->freq_table[i].frequency;
114         }
115         return data->freq_table[0].frequency;
116 }
117
118 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
119 {
120         switch (data->cpu_feature) {
121         case SYSTEM_INTEL_MSR_CAPABLE:
122                 return extract_msr(val, data);
123         case SYSTEM_IO_CAPABLE:
124                 return extract_io(val, data);
125         default:
126                 return 0;
127         }
128 }
129
130 struct msr_addr {
131         u32 reg;
132 };
133
134 struct io_addr {
135         u16 port;
136         u8 bit_width;
137 };
138
139 struct drv_cmd {
140         unsigned int type;
141         const struct cpumask *mask;
142         union {
143                 struct msr_addr msr;
144                 struct io_addr io;
145         } addr;
146         u32 val;
147 };
148
149 /* Called via smp_call_function_single(), on the target CPU */
150 static void do_drv_read(void *_cmd)
151 {
152         struct drv_cmd *cmd = _cmd;
153         u32 h;
154
155         switch (cmd->type) {
156         case SYSTEM_INTEL_MSR_CAPABLE:
157                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
158                 break;
159         case SYSTEM_IO_CAPABLE:
160                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
161                                 &cmd->val,
162                                 (u32)cmd->addr.io.bit_width);
163                 break;
164         default:
165                 break;
166         }
167 }
168
169 /* Called via smp_call_function_many(), on the target CPUs */
170 static void do_drv_write(void *_cmd)
171 {
172         struct drv_cmd *cmd = _cmd;
173         u32 lo, hi;
174
175         switch (cmd->type) {
176         case SYSTEM_INTEL_MSR_CAPABLE:
177                 rdmsr(cmd->addr.msr.reg, lo, hi);
178                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179                 wrmsr(cmd->addr.msr.reg, lo, hi);
180                 break;
181         case SYSTEM_IO_CAPABLE:
182                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183                                 cmd->val,
184                                 (u32)cmd->addr.io.bit_width);
185                 break;
186         default:
187                 break;
188         }
189 }
190
191 static void drv_read(struct drv_cmd *cmd)
192 {
193         int err;
194         cmd->val = 0;
195
196         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
197         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
198 }
199
200 static void drv_write(struct drv_cmd *cmd)
201 {
202         int this_cpu;
203
204         this_cpu = get_cpu();
205         if (cpumask_test_cpu(this_cpu, cmd->mask))
206                 do_drv_write(cmd);
207         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
208         put_cpu();
209 }
210
211 static u32 get_cur_val(const struct cpumask *mask)
212 {
213         struct acpi_processor_performance *perf;
214         struct drv_cmd cmd;
215
216         if (unlikely(cpumask_empty(mask)))
217                 return 0;
218
219         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
220         case SYSTEM_INTEL_MSR_CAPABLE:
221                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
222                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
223                 break;
224         case SYSTEM_IO_CAPABLE:
225                 cmd.type = SYSTEM_IO_CAPABLE;
226                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
227                 cmd.addr.io.port = perf->control_register.address;
228                 cmd.addr.io.bit_width = perf->control_register.bit_width;
229                 break;
230         default:
231                 return 0;
232         }
233
234         cmd.mask = mask;
235         drv_read(&cmd);
236
237         dprintk("get_cur_val = %u\n", cmd.val);
238
239         return cmd.val;
240 }
241
242 /* Called via smp_call_function_single(), on the target CPU */
243 static void read_measured_perf_ctrs(void *_cur)
244 {
245         struct aperfmperf *am = _cur;
246
247         get_aperfmperf(am);
248 }
249
250 /*
251  * Return the measured active (C0) frequency on this CPU since last call
252  * to this function.
253  * Input: cpu number
254  * Return: Average CPU frequency in terms of max frequency (zero on error)
255  *
256  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
257  * over a period of time, while CPU is in C0 state.
258  * IA32_MPERF counts at the rate of max advertised frequency
259  * IA32_APERF counts at the rate of actual CPU frequency
260  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
261  * no meaning should be associated with absolute values of these MSRs.
262  */
263 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
264                                       unsigned int cpu)
265 {
266         struct aperfmperf perf;
267         unsigned long ratio;
268         unsigned int retval;
269
270         if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
271                 return 0;
272
273         ratio = calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf, cpu), &perf);
274         per_cpu(acfreq_old_perf, cpu) = perf;
275
276         retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
277
278         return retval;
279 }
280
281 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
282 {
283         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
284         unsigned int freq;
285         unsigned int cached_freq;
286
287         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
288
289         if (unlikely(data == NULL ||
290                      data->acpi_data == NULL || data->freq_table == NULL)) {
291                 return 0;
292         }
293
294         cached_freq = data->freq_table[data->acpi_data->state].frequency;
295         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
296         if (freq != cached_freq) {
297                 /*
298                  * The dreaded BIOS frequency change behind our back.
299                  * Force set the frequency on next target call.
300                  */
301                 data->resume = 1;
302         }
303
304         dprintk("cur freq = %u\n", freq);
305
306         return freq;
307 }
308
309 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
310                                 struct acpi_cpufreq_data *data)
311 {
312         unsigned int cur_freq;
313         unsigned int i;
314
315         for (i = 0; i < 100; i++) {
316                 cur_freq = extract_freq(get_cur_val(mask), data);
317                 if (cur_freq == freq)
318                         return 1;
319                 udelay(10);
320         }
321         return 0;
322 }
323
324 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
325                                unsigned int target_freq, unsigned int relation)
326 {
327         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
328         struct acpi_processor_performance *perf;
329         struct cpufreq_freqs freqs;
330         struct drv_cmd cmd;
331         unsigned int next_state = 0; /* Index into freq_table */
332         unsigned int next_perf_state = 0; /* Index into perf table */
333         unsigned int i;
334         int result = 0;
335
336         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
337
338         if (unlikely(data == NULL ||
339              data->acpi_data == NULL || data->freq_table == NULL)) {
340                 return -ENODEV;
341         }
342
343         perf = data->acpi_data;
344         result = cpufreq_frequency_table_target(policy,
345                                                 data->freq_table,
346                                                 target_freq,
347                                                 relation, &next_state);
348         if (unlikely(result)) {
349                 result = -ENODEV;
350                 goto out;
351         }
352
353         next_perf_state = data->freq_table[next_state].index;
354         if (perf->state == next_perf_state) {
355                 if (unlikely(data->resume)) {
356                         dprintk("Called after resume, resetting to P%d\n",
357                                 next_perf_state);
358                         data->resume = 0;
359                 } else {
360                         dprintk("Already at target state (P%d)\n",
361                                 next_perf_state);
362                         goto out;
363                 }
364         }
365
366         trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
367
368         switch (data->cpu_feature) {
369         case SYSTEM_INTEL_MSR_CAPABLE:
370                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
371                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
372                 cmd.val = (u32) perf->states[next_perf_state].control;
373                 break;
374         case SYSTEM_IO_CAPABLE:
375                 cmd.type = SYSTEM_IO_CAPABLE;
376                 cmd.addr.io.port = perf->control_register.address;
377                 cmd.addr.io.bit_width = perf->control_register.bit_width;
378                 cmd.val = (u32) perf->states[next_perf_state].control;
379                 break;
380         default:
381                 result = -ENODEV;
382                 goto out;
383         }
384
385         /* cpufreq holds the hotplug lock, so we are safe from here on */
386         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
387                 cmd.mask = policy->cpus;
388         else
389                 cmd.mask = cpumask_of(policy->cpu);
390
391         freqs.old = perf->states[perf->state].core_frequency * 1000;
392         freqs.new = data->freq_table[next_state].frequency;
393         for_each_cpu(i, cmd.mask) {
394                 freqs.cpu = i;
395                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
396         }
397
398         drv_write(&cmd);
399
400         if (acpi_pstate_strict) {
401                 if (!check_freqs(cmd.mask, freqs.new, data)) {
402                         dprintk("acpi_cpufreq_target failed (%d)\n",
403                                 policy->cpu);
404                         result = -EAGAIN;
405                         goto out;
406                 }
407         }
408
409         for_each_cpu(i, cmd.mask) {
410                 freqs.cpu = i;
411                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
412         }
413         perf->state = next_perf_state;
414
415 out:
416         return result;
417 }
418
419 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
420 {
421         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
422
423         dprintk("acpi_cpufreq_verify\n");
424
425         return cpufreq_frequency_table_verify(policy, data->freq_table);
426 }
427
428 static unsigned long
429 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
430 {
431         struct acpi_processor_performance *perf = data->acpi_data;
432
433         if (cpu_khz) {
434                 /* search the closest match to cpu_khz */
435                 unsigned int i;
436                 unsigned long freq;
437                 unsigned long freqn = perf->states[0].core_frequency * 1000;
438
439                 for (i = 0; i < (perf->state_count-1); i++) {
440                         freq = freqn;
441                         freqn = perf->states[i+1].core_frequency * 1000;
442                         if ((2 * cpu_khz) > (freqn + freq)) {
443                                 perf->state = i;
444                                 return freq;
445                         }
446                 }
447                 perf->state = perf->state_count-1;
448                 return freqn;
449         } else {
450                 /* assume CPU is at P0... */
451                 perf->state = 0;
452                 return perf->states[0].core_frequency * 1000;
453         }
454 }
455
456 static void free_acpi_perf_data(void)
457 {
458         unsigned int i;
459
460         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
461         for_each_possible_cpu(i)
462                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
463                                  ->shared_cpu_map);
464         free_percpu(acpi_perf_data);
465 }
466
467 /*
468  * acpi_cpufreq_early_init - initialize ACPI P-States library
469  *
470  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
471  * in order to determine correct frequency and voltage pairings. We can
472  * do _PDC and _PSD and find out the processor dependency for the
473  * actual init that will happen later...
474  */
475 static int __init acpi_cpufreq_early_init(void)
476 {
477         unsigned int i;
478         dprintk("acpi_cpufreq_early_init\n");
479
480         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
481         if (!acpi_perf_data) {
482                 dprintk("Memory allocation error for acpi_perf_data.\n");
483                 return -ENOMEM;
484         }
485         for_each_possible_cpu(i) {
486                 if (!zalloc_cpumask_var_node(
487                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
488                         GFP_KERNEL, cpu_to_node(i))) {
489
490                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
491                         free_acpi_perf_data();
492                         return -ENOMEM;
493                 }
494         }
495
496         /* Do initialization in ACPI core */
497         acpi_processor_preregister_performance(acpi_perf_data);
498         return 0;
499 }
500
501 #ifdef CONFIG_SMP
502 /*
503  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
504  * or do it in BIOS firmware and won't inform about it to OS. If not
505  * detected, this has a side effect of making CPU run at a different speed
506  * than OS intended it to run at. Detect it and handle it cleanly.
507  */
508 static int bios_with_sw_any_bug;
509
510 static int sw_any_bug_found(const struct dmi_system_id *d)
511 {
512         bios_with_sw_any_bug = 1;
513         return 0;
514 }
515
516 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
517         {
518                 .callback = sw_any_bug_found,
519                 .ident = "Supermicro Server X6DLP",
520                 .matches = {
521                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
522                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
523                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
524                 },
525         },
526         { }
527 };
528
529 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
530 {
531         /* Intel Xeon Processor 7100 Series Specification Update
532          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
533          * AL30: A Machine Check Exception (MCE) Occurring during an
534          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
535          * Both Processor Cores to Lock Up. */
536         if (c->x86_vendor == X86_VENDOR_INTEL) {
537                 if ((c->x86 == 15) &&
538                     (c->x86_model == 6) &&
539                     (c->x86_mask == 8)) {
540                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
541                             "Xeon(R) 7100 Errata AL30, processors may "
542                             "lock up on frequency changes: disabling "
543                             "acpi-cpufreq.\n");
544                         return -ENODEV;
545                     }
546                 }
547         return 0;
548 }
549 #endif
550
551 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
552 {
553         unsigned int i;
554         unsigned int valid_states = 0;
555         unsigned int cpu = policy->cpu;
556         struct acpi_cpufreq_data *data;
557         unsigned int result = 0;
558         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
559         struct acpi_processor_performance *perf;
560 #ifdef CONFIG_SMP
561         static int blacklisted;
562 #endif
563
564         dprintk("acpi_cpufreq_cpu_init\n");
565
566 #ifdef CONFIG_SMP
567         if (blacklisted)
568                 return blacklisted;
569         blacklisted = acpi_cpufreq_blacklist(c);
570         if (blacklisted)
571                 return blacklisted;
572 #endif
573
574         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
575         if (!data)
576                 return -ENOMEM;
577
578         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
579         per_cpu(acfreq_data, cpu) = data;
580
581         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
582                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
583
584         result = acpi_processor_register_performance(data->acpi_data, cpu);
585         if (result)
586                 goto err_free;
587
588         perf = data->acpi_data;
589         policy->shared_type = perf->shared_type;
590
591         /*
592          * Will let policy->cpus know about dependency only when software
593          * coordination is required.
594          */
595         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
596             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
597                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
598         }
599         cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
600
601 #ifdef CONFIG_SMP
602         dmi_check_system(sw_any_bug_dmi_table);
603         if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
604                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
605                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
606         }
607 #endif
608
609         /* capability check */
610         if (perf->state_count <= 1) {
611                 dprintk("No P-States\n");
612                 result = -ENODEV;
613                 goto err_unreg;
614         }
615
616         if (perf->control_register.space_id != perf->status_register.space_id) {
617                 result = -ENODEV;
618                 goto err_unreg;
619         }
620
621         switch (perf->control_register.space_id) {
622         case ACPI_ADR_SPACE_SYSTEM_IO:
623                 dprintk("SYSTEM IO addr space\n");
624                 data->cpu_feature = SYSTEM_IO_CAPABLE;
625                 break;
626         case ACPI_ADR_SPACE_FIXED_HARDWARE:
627                 dprintk("HARDWARE addr space\n");
628                 if (!check_est_cpu(cpu)) {
629                         result = -ENODEV;
630                         goto err_unreg;
631                 }
632                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
633                 break;
634         default:
635                 dprintk("Unknown addr space %d\n",
636                         (u32) (perf->control_register.space_id));
637                 result = -ENODEV;
638                 goto err_unreg;
639         }
640
641         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
642                     (perf->state_count+1), GFP_KERNEL);
643         if (!data->freq_table) {
644                 result = -ENOMEM;
645                 goto err_unreg;
646         }
647
648         /* detect transition latency */
649         policy->cpuinfo.transition_latency = 0;
650         for (i = 0; i < perf->state_count; i++) {
651                 if ((perf->states[i].transition_latency * 1000) >
652                     policy->cpuinfo.transition_latency)
653                         policy->cpuinfo.transition_latency =
654                             perf->states[i].transition_latency * 1000;
655         }
656
657         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
658         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
659             policy->cpuinfo.transition_latency > 20 * 1000) {
660                 policy->cpuinfo.transition_latency = 20 * 1000;
661                 printk_once(KERN_INFO
662                             "P-state transition latency capped at 20 uS\n");
663         }
664
665         /* table init */
666         for (i = 0; i < perf->state_count; i++) {
667                 if (i > 0 && perf->states[i].core_frequency >=
668                     data->freq_table[valid_states-1].frequency / 1000)
669                         continue;
670
671                 data->freq_table[valid_states].index = i;
672                 data->freq_table[valid_states].frequency =
673                     perf->states[i].core_frequency * 1000;
674                 valid_states++;
675         }
676         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
677         perf->state = 0;
678
679         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
680         if (result)
681                 goto err_freqfree;
682
683         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
684                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
685
686         switch (perf->control_register.space_id) {
687         case ACPI_ADR_SPACE_SYSTEM_IO:
688                 /* Current speed is unknown and not detectable by IO port */
689                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
690                 break;
691         case ACPI_ADR_SPACE_FIXED_HARDWARE:
692                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
693                 policy->cur = get_cur_freq_on_cpu(cpu);
694                 break;
695         default:
696                 break;
697         }
698
699         /* notify BIOS that we exist */
700         acpi_processor_notify_smm(THIS_MODULE);
701
702         /* Check for APERF/MPERF support in hardware */
703         if (cpu_has(c, X86_FEATURE_APERFMPERF))
704                 acpi_cpufreq_driver.getavg = get_measured_perf;
705
706         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
707         for (i = 0; i < perf->state_count; i++)
708                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
709                         (i == perf->state ? '*' : ' '), i,
710                         (u32) perf->states[i].core_frequency,
711                         (u32) perf->states[i].power,
712                         (u32) perf->states[i].transition_latency);
713
714         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
715
716         /*
717          * the first call to ->target() should result in us actually
718          * writing something to the appropriate registers.
719          */
720         data->resume = 1;
721
722         return result;
723
724 err_freqfree:
725         kfree(data->freq_table);
726 err_unreg:
727         acpi_processor_unregister_performance(perf, cpu);
728 err_free:
729         kfree(data);
730         per_cpu(acfreq_data, cpu) = NULL;
731
732         return result;
733 }
734
735 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
736 {
737         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
738
739         dprintk("acpi_cpufreq_cpu_exit\n");
740
741         if (data) {
742                 cpufreq_frequency_table_put_attr(policy->cpu);
743                 per_cpu(acfreq_data, policy->cpu) = NULL;
744                 acpi_processor_unregister_performance(data->acpi_data,
745                                                       policy->cpu);
746                 kfree(data);
747         }
748
749         return 0;
750 }
751
752 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
753 {
754         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
755
756         dprintk("acpi_cpufreq_resume\n");
757
758         data->resume = 1;
759
760         return 0;
761 }
762
763 static struct freq_attr *acpi_cpufreq_attr[] = {
764         &cpufreq_freq_attr_scaling_available_freqs,
765         NULL,
766 };
767
768 static struct cpufreq_driver acpi_cpufreq_driver = {
769         .verify         = acpi_cpufreq_verify,
770         .target         = acpi_cpufreq_target,
771         .bios_limit     = acpi_processor_get_bios_limit,
772         .init           = acpi_cpufreq_cpu_init,
773         .exit           = acpi_cpufreq_cpu_exit,
774         .resume         = acpi_cpufreq_resume,
775         .name           = "acpi-cpufreq",
776         .owner          = THIS_MODULE,
777         .attr           = acpi_cpufreq_attr,
778 };
779
780 static int __init acpi_cpufreq_init(void)
781 {
782         int ret;
783
784         if (acpi_disabled)
785                 return 0;
786
787         dprintk("acpi_cpufreq_init\n");
788
789         ret = acpi_cpufreq_early_init();
790         if (ret)
791                 return ret;
792
793         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
794         if (ret)
795                 free_acpi_perf_data();
796
797         return ret;
798 }
799
800 static void __exit acpi_cpufreq_exit(void)
801 {
802         dprintk("acpi_cpufreq_exit\n");
803
804         cpufreq_unregister_driver(&acpi_cpufreq_driver);
805
806         free_percpu(acpi_perf_data);
807 }
808
809 module_param(acpi_pstate_strict, uint, 0644);
810 MODULE_PARM_DESC(acpi_pstate_strict,
811         "value 0 or non-zero. non-zero -> strict ACPI checks are "
812         "performed during frequency changes.");
813
814 late_initcall(acpi_cpufreq_init);
815 module_exit(acpi_cpufreq_exit);
816
817 MODULE_ALIAS("acpi");