x86: Remove the ancient and deprecated disable_hlt() and enable_hlt() facility
[pandora-kernel.git] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64)
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else /* else it's non-compat x86-64 */
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22                                 struct task_struct *next);
23 struct tss_struct;
24 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
25                       struct tss_struct *tss);
26 extern void show_regs_common(void);
27
28 #ifdef CONFIG_X86_32
29
30 #ifdef CONFIG_CC_STACKPROTECTOR
31 #define __switch_canary                                                 \
32         "movl %P[task_canary](%[next]), %%ebx\n\t"                      \
33         "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
34 #define __switch_canary_oparam                                          \
35         , [stack_canary] "=m" (stack_canary.canary)
36 #define __switch_canary_iparam                                          \
37         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
38 #else   /* CC_STACKPROTECTOR */
39 #define __switch_canary
40 #define __switch_canary_oparam
41 #define __switch_canary_iparam
42 #endif  /* CC_STACKPROTECTOR */
43
44 /*
45  * Saving eflags is important. It switches not only IOPL between tasks,
46  * it also protects other tasks from NT leaking through sysenter etc.
47  */
48 #define switch_to(prev, next, last)                                     \
49 do {                                                                    \
50         /*                                                              \
51          * Context-switching clobbers all registers, so we clobber      \
52          * them explicitly, via unused output variables.                \
53          * (EAX and EBP is not listed because EBP is saved/restored     \
54          * explicitly for wchan access and EAX is the return value of   \
55          * __switch_to())                                               \
56          */                                                             \
57         unsigned long ebx, ecx, edx, esi, edi;                          \
58                                                                         \
59         asm volatile("pushfl\n\t"               /* save    flags */     \
60                      "pushl %%ebp\n\t"          /* save    EBP   */     \
61                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
62                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
63                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
64                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
65                      __switch_canary                                    \
66                      "jmp __switch_to\n"        /* regparm call  */     \
67                      "1:\t"                                             \
68                      "popl %%ebp\n\t"           /* restore EBP   */     \
69                      "popfl\n"                  /* restore flags */     \
70                                                                         \
71                      /* output parameters */                            \
72                      : [prev_sp] "=m" (prev->thread.sp),                \
73                        [prev_ip] "=m" (prev->thread.ip),                \
74                        "=a" (last),                                     \
75                                                                         \
76                        /* clobbered output registers: */                \
77                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
78                        "=S" (esi), "=D" (edi)                           \
79                                                                         \
80                        __switch_canary_oparam                           \
81                                                                         \
82                        /* input parameters: */                          \
83                      : [next_sp]  "m" (next->thread.sp),                \
84                        [next_ip]  "m" (next->thread.ip),                \
85                                                                         \
86                        /* regparm parameters for __switch_to(): */      \
87                        [prev]     "a" (prev),                           \
88                        [next]     "d" (next)                            \
89                                                                         \
90                        __switch_canary_iparam                           \
91                                                                         \
92                      : /* reloaded segment registers */                 \
93                         "memory");                                      \
94 } while (0)
95
96 #else
97
98 /* frame pointer must be last for get_wchan */
99 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
100 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
101
102 #define __EXTRA_CLOBBER  \
103         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
104           "r12", "r13", "r14", "r15"
105
106 #ifdef CONFIG_CC_STACKPROTECTOR
107 #define __switch_canary                                                   \
108         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
109         "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
110 #define __switch_canary_oparam                                            \
111         , [gs_canary] "=m" (irq_stack_union.stack_canary)
112 #define __switch_canary_iparam                                            \
113         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
114 #else   /* CC_STACKPROTECTOR */
115 #define __switch_canary
116 #define __switch_canary_oparam
117 #define __switch_canary_iparam
118 #endif  /* CC_STACKPROTECTOR */
119
120 /* Save restore flags to clear handle leaking NT */
121 #define switch_to(prev, next, last) \
122         asm volatile(SAVE_CONTEXT                                         \
123              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
124              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
125              "call __switch_to\n\t"                                       \
126              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
127              __switch_canary                                              \
128              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
129              "movq %%rax,%%rdi\n\t"                                       \
130              "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"                 \
131              "jnz   ret_from_fork\n\t"                                    \
132              RESTORE_CONTEXT                                              \
133              : "=a" (last)                                                \
134                __switch_canary_oparam                                     \
135              : [next] "S" (next), [prev] "D" (prev),                      \
136                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
137                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
138                [_tif_fork] "i" (_TIF_FORK),                               \
139                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
140                [current_task] "m" (current_task)                          \
141                __switch_canary_iparam                                     \
142              : "memory", "cc" __EXTRA_CLOBBER)
143 #endif
144
145 #ifdef __KERNEL__
146
147 extern void native_load_gs_index(unsigned);
148
149 /*
150  * Load a segment. Fall back on loading the zero
151  * segment if something goes wrong..
152  */
153 #define loadsegment(seg, value)                                         \
154 do {                                                                    \
155         unsigned short __val = (value);                                 \
156                                                                         \
157         asm volatile("                                          \n"     \
158                      "1:        movl %k0,%%" #seg "             \n"     \
159                                                                         \
160                      ".section .fixup,\"ax\"                    \n"     \
161                      "2:        xorl %k0,%k0                    \n"     \
162                      "          jmp 1b                          \n"     \
163                      ".previous                                 \n"     \
164                                                                         \
165                      _ASM_EXTABLE(1b, 2b)                               \
166                                                                         \
167                      : "+r" (__val) : : "memory");                      \
168 } while (0)
169
170 /*
171  * Save a segment register away
172  */
173 #define savesegment(seg, value)                         \
174         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
175
176 /*
177  * x86_32 user gs accessors.
178  */
179 #ifdef CONFIG_X86_32
180 #ifdef CONFIG_X86_32_LAZY_GS
181 #define get_user_gs(regs)       (u16)({unsigned long v; savesegment(gs, v); v;})
182 #define set_user_gs(regs, v)    loadsegment(gs, (unsigned long)(v))
183 #define task_user_gs(tsk)       ((tsk)->thread.gs)
184 #define lazy_save_gs(v)         savesegment(gs, (v))
185 #define lazy_load_gs(v)         loadsegment(gs, (v))
186 #else   /* X86_32_LAZY_GS */
187 #define get_user_gs(regs)       (u16)((regs)->gs)
188 #define set_user_gs(regs, v)    do { (regs)->gs = (v); } while (0)
189 #define task_user_gs(tsk)       (task_pt_regs(tsk)->gs)
190 #define lazy_save_gs(v)         do { } while (0)
191 #define lazy_load_gs(v)         do { } while (0)
192 #endif  /* X86_32_LAZY_GS */
193 #endif  /* X86_32 */
194
195 static inline unsigned long get_limit(unsigned long segment)
196 {
197         unsigned long __limit;
198         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
199         return __limit + 1;
200 }
201
202 static inline void native_clts(void)
203 {
204         asm volatile("clts");
205 }
206
207 /*
208  * Volatile isn't enough to prevent the compiler from reordering the
209  * read/write functions for the control registers and messing everything up.
210  * A memory clobber would solve the problem, but would prevent reordering of
211  * all loads stores around it, which can hurt performance. Solution is to
212  * use a variable and mimic reads and writes to it to enforce serialization
213  */
214 static unsigned long __force_order;
215
216 static inline unsigned long native_read_cr0(void)
217 {
218         unsigned long val;
219         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
220         return val;
221 }
222
223 static inline void native_write_cr0(unsigned long val)
224 {
225         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
226 }
227
228 static inline unsigned long native_read_cr2(void)
229 {
230         unsigned long val;
231         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
232         return val;
233 }
234
235 static inline void native_write_cr2(unsigned long val)
236 {
237         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
238 }
239
240 static inline unsigned long native_read_cr3(void)
241 {
242         unsigned long val;
243         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
244         return val;
245 }
246
247 static inline void native_write_cr3(unsigned long val)
248 {
249         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
250 }
251
252 static inline unsigned long native_read_cr4(void)
253 {
254         unsigned long val;
255         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
256         return val;
257 }
258
259 static inline unsigned long native_read_cr4_safe(void)
260 {
261         unsigned long val;
262         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
263          * exists, so it will never fail. */
264 #ifdef CONFIG_X86_32
265         asm volatile("1: mov %%cr4, %0\n"
266                      "2:\n"
267                      _ASM_EXTABLE(1b, 2b)
268                      : "=r" (val), "=m" (__force_order) : "0" (0));
269 #else
270         val = native_read_cr4();
271 #endif
272         return val;
273 }
274
275 static inline void native_write_cr4(unsigned long val)
276 {
277         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
278 }
279
280 #ifdef CONFIG_X86_64
281 static inline unsigned long native_read_cr8(void)
282 {
283         unsigned long cr8;
284         asm volatile("movq %%cr8,%0" : "=r" (cr8));
285         return cr8;
286 }
287
288 static inline void native_write_cr8(unsigned long val)
289 {
290         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
291 }
292 #endif
293
294 static inline void native_wbinvd(void)
295 {
296         asm volatile("wbinvd": : :"memory");
297 }
298
299 #ifdef CONFIG_PARAVIRT
300 #include <asm/paravirt.h>
301 #else
302
303 static inline unsigned long read_cr0(void)
304 {
305         return native_read_cr0();
306 }
307
308 static inline void write_cr0(unsigned long x)
309 {
310         native_write_cr0(x);
311 }
312
313 static inline unsigned long read_cr2(void)
314 {
315         return native_read_cr2();
316 }
317
318 static inline void write_cr2(unsigned long x)
319 {
320         native_write_cr2(x);
321 }
322
323 static inline unsigned long read_cr3(void)
324 {
325         return native_read_cr3();
326 }
327
328 static inline void write_cr3(unsigned long x)
329 {
330         native_write_cr3(x);
331 }
332
333 static inline unsigned long read_cr4(void)
334 {
335         return native_read_cr4();
336 }
337
338 static inline unsigned long read_cr4_safe(void)
339 {
340         return native_read_cr4_safe();
341 }
342
343 static inline void write_cr4(unsigned long x)
344 {
345         native_write_cr4(x);
346 }
347
348 static inline void wbinvd(void)
349 {
350         native_wbinvd();
351 }
352
353 #ifdef CONFIG_X86_64
354
355 static inline unsigned long read_cr8(void)
356 {
357         return native_read_cr8();
358 }
359
360 static inline void write_cr8(unsigned long x)
361 {
362         native_write_cr8(x);
363 }
364
365 static inline void load_gs_index(unsigned selector)
366 {
367         native_load_gs_index(selector);
368 }
369
370 #endif
371
372 /* Clear the 'TS' bit */
373 static inline void clts(void)
374 {
375         native_clts();
376 }
377
378 #endif/* CONFIG_PARAVIRT */
379
380 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
381
382 #endif /* __KERNEL__ */
383
384 static inline void clflush(volatile void *__p)
385 {
386         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
387 }
388
389 #define nop() asm volatile ("nop")
390
391 void cpu_idle_wait(void);
392
393 extern unsigned long arch_align_stack(unsigned long sp);
394 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
395
396 void default_idle(void);
397 bool set_pm_idle_to_default(void);
398
399 void stop_this_cpu(void *dummy);
400
401 /*
402  * Force strict CPU ordering.
403  * And yes, this is required on UP too when we're talking
404  * to devices.
405  */
406 #ifdef CONFIG_X86_32
407 /*
408  * Some non-Intel clones support out of order store. wmb() ceases to be a
409  * nop for these.
410  */
411 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
412 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
413 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
414 #else
415 #define mb()    asm volatile("mfence":::"memory")
416 #define rmb()   asm volatile("lfence":::"memory")
417 #define wmb()   asm volatile("sfence" ::: "memory")
418 #endif
419
420 /**
421  * read_barrier_depends - Flush all pending reads that subsequents reads
422  * depend on.
423  *
424  * No data-dependent reads from memory-like regions are ever reordered
425  * over this barrier.  All reads preceding this primitive are guaranteed
426  * to access memory (but not necessarily other CPUs' caches) before any
427  * reads following this primitive that depend on the data return by
428  * any of the preceding reads.  This primitive is much lighter weight than
429  * rmb() on most CPUs, and is never heavier weight than is
430  * rmb().
431  *
432  * These ordering constraints are respected by both the local CPU
433  * and the compiler.
434  *
435  * Ordering is not guaranteed by anything other than these primitives,
436  * not even by data dependencies.  See the documentation for
437  * memory_barrier() for examples and URLs to more information.
438  *
439  * For example, the following code would force ordering (the initial
440  * value of "a" is zero, "b" is one, and "p" is "&a"):
441  *
442  * <programlisting>
443  *      CPU 0                           CPU 1
444  *
445  *      b = 2;
446  *      memory_barrier();
447  *      p = &b;                         q = p;
448  *                                      read_barrier_depends();
449  *                                      d = *q;
450  * </programlisting>
451  *
452  * because the read of "*q" depends on the read of "p" and these
453  * two reads are separated by a read_barrier_depends().  However,
454  * the following code, with the same initial values for "a" and "b":
455  *
456  * <programlisting>
457  *      CPU 0                           CPU 1
458  *
459  *      a = 2;
460  *      memory_barrier();
461  *      b = 3;                          y = b;
462  *                                      read_barrier_depends();
463  *                                      x = a;
464  * </programlisting>
465  *
466  * does not enforce ordering, since there is no data dependency between
467  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
468  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
469  * in cases like this where there are no data dependencies.
470  **/
471
472 #define read_barrier_depends()  do { } while (0)
473
474 #ifdef CONFIG_SMP
475 #define smp_mb()        mb()
476 #ifdef CONFIG_X86_PPRO_FENCE
477 # define smp_rmb()      rmb()
478 #else
479 # define smp_rmb()      barrier()
480 #endif
481 #ifdef CONFIG_X86_OOSTORE
482 # define smp_wmb()      wmb()
483 #else
484 # define smp_wmb()      barrier()
485 #endif
486 #define smp_read_barrier_depends()      read_barrier_depends()
487 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
488 #else
489 #define smp_mb()        barrier()
490 #define smp_rmb()       barrier()
491 #define smp_wmb()       barrier()
492 #define smp_read_barrier_depends()      do { } while (0)
493 #define set_mb(var, value) do { var = value; barrier(); } while (0)
494 #endif
495
496 /*
497  * Stop RDTSC speculation. This is needed when you need to use RDTSC
498  * (or get_cycles or vread that possibly accesses the TSC) in a defined
499  * code region.
500  *
501  * (Could use an alternative three way for this if there was one.)
502  */
503 static __always_inline void rdtsc_barrier(void)
504 {
505         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
506         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
507 }
508
509 /*
510  * We handle most unaligned accesses in hardware.  On the other hand
511  * unaligned DMA can be quite expensive on some Nehalem processors.
512  *
513  * Based on this we disable the IP header alignment in network drivers.
514  */
515 #define NET_IP_ALIGN    0
516 #endif /* _ASM_X86_SYSTEM_H */