Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <asm/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which are currently limited to 256
16  * CPUs.
17  *
18  * (the type definitions are in asm/spinlock_types.h)
19  */
20
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
28
29 #if defined(CONFIG_X86_32) && \
30         (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
31 /*
32  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33  * (PPro errata 66, 92)
34  */
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
39
40 /*
41  * Ticket locks are conceptually two parts, one indicating the current head of
42  * the queue, and the other indicating the current tail. The lock is acquired
43  * by atomically noting the tail and incrementing it by one (thus adding
44  * ourself to the queue and noting our position), then waiting until the head
45  * becomes equal to the the initial value of the tail.
46  *
47  * We use an xadd covering *both* parts of the lock, to increment the tail and
48  * also load the position of the head, which takes care of memory ordering
49  * issues and should be optimal for the uncontended case. Note the tail must be
50  * in the high part, because a wide xadd increment of the low part would carry
51  * up and contaminate the high part.
52  *
53  * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
54  * save some instructions and make the code more elegant. There really isn't
55  * much between them in performance though, especially as locks are out of line.
56  */
57 #if (NR_CPUS < 256)
58 #define TICKET_SHIFT 8
59
60 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
61 {
62         short inc = 0x0100;
63
64         asm volatile (
65                 LOCK_PREFIX "xaddw %w0, %1\n"
66                 "1:\t"
67                 "cmpb %h0, %b0\n\t"
68                 "je 2f\n\t"
69                 "rep ; nop\n\t"
70                 "movb %1, %b0\n\t"
71                 /* don't need lfence here, because loads are in-order */
72                 "jmp 1b\n"
73                 "2:"
74                 : "+Q" (inc), "+m" (lock->slock)
75                 :
76                 : "memory", "cc");
77 }
78
79 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
80 {
81         int tmp, new;
82
83         asm volatile("movzwl %2, %0\n\t"
84                      "cmpb %h0,%b0\n\t"
85                      "leal 0x100(%" REG_PTR_MODE "0), %1\n\t"
86                      "jne 1f\n\t"
87                      LOCK_PREFIX "cmpxchgw %w1,%2\n\t"
88                      "1:"
89                      "sete %b1\n\t"
90                      "movzbl %b1,%0\n\t"
91                      : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
92                      :
93                      : "memory", "cc");
94
95         return tmp;
96 }
97
98 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
99 {
100         asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
101                      : "+m" (lock->slock)
102                      :
103                      : "memory", "cc");
104 }
105 #else
106 #define TICKET_SHIFT 16
107
108 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
109 {
110         int inc = 0x00010000;
111         int tmp;
112
113         asm volatile(LOCK_PREFIX "xaddl %0, %1\n"
114                      "movzwl %w0, %2\n\t"
115                      "shrl $16, %0\n\t"
116                      "1:\t"
117                      "cmpl %0, %2\n\t"
118                      "je 2f\n\t"
119                      "rep ; nop\n\t"
120                      "movzwl %1, %2\n\t"
121                      /* don't need lfence here, because loads are in-order */
122                      "jmp 1b\n"
123                      "2:"
124                      : "+r" (inc), "+m" (lock->slock), "=&r" (tmp)
125                      :
126                      : "memory", "cc");
127 }
128
129 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
130 {
131         int tmp;
132         int new;
133
134         asm volatile("movl %2,%0\n\t"
135                      "movl %0,%1\n\t"
136                      "roll $16, %0\n\t"
137                      "cmpl %0,%1\n\t"
138                      "leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t"
139                      "jne 1f\n\t"
140                      LOCK_PREFIX "cmpxchgl %1,%2\n\t"
141                      "1:"
142                      "sete %b1\n\t"
143                      "movzbl %b1,%0\n\t"
144                      : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
145                      :
146                      : "memory", "cc");
147
148         return tmp;
149 }
150
151 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
152 {
153         asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
154                      : "+m" (lock->slock)
155                      :
156                      : "memory", "cc");
157 }
158 #endif
159
160 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
161 {
162         int tmp = ACCESS_ONCE(lock->slock);
163
164         return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1));
165 }
166
167 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
168 {
169         int tmp = ACCESS_ONCE(lock->slock);
170
171         return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1;
172 }
173
174 #ifndef CONFIG_PARAVIRT_SPINLOCKS
175
176 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
177 {
178         return __ticket_spin_is_locked(lock);
179 }
180
181 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
182 {
183         return __ticket_spin_is_contended(lock);
184 }
185 #define arch_spin_is_contended  arch_spin_is_contended
186
187 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
188 {
189         __ticket_spin_lock(lock);
190 }
191
192 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
193 {
194         return __ticket_spin_trylock(lock);
195 }
196
197 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
198 {
199         __ticket_spin_unlock(lock);
200 }
201
202 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
203                                                   unsigned long flags)
204 {
205         arch_spin_lock(lock);
206 }
207
208 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
209
210 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
211 {
212         while (arch_spin_is_locked(lock))
213                 cpu_relax();
214 }
215
216 /*
217  * Read-write spinlocks, allowing multiple readers
218  * but only one writer.
219  *
220  * NOTE! it is quite common to have readers in interrupts
221  * but no interrupt writers. For those circumstances we
222  * can "mix" irq-safe locks - any writer needs to get a
223  * irq-safe write-lock, but readers can get non-irqsafe
224  * read-locks.
225  *
226  * On x86, we implement read-write locks as a 32-bit counter
227  * with the high bit (sign) being the "contended" bit.
228  */
229
230 /**
231  * read_can_lock - would read_trylock() succeed?
232  * @lock: the rwlock in question.
233  */
234 static inline int arch_read_can_lock(arch_rwlock_t *lock)
235 {
236         return lock->lock > 0;
237 }
238
239 /**
240  * write_can_lock - would write_trylock() succeed?
241  * @lock: the rwlock in question.
242  */
243 static inline int arch_write_can_lock(arch_rwlock_t *lock)
244 {
245         return lock->write == WRITE_LOCK_CMP;
246 }
247
248 static inline void arch_read_lock(arch_rwlock_t *rw)
249 {
250         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
251                      "jns 1f\n"
252                      "call __read_lock_failed\n\t"
253                      "1:\n"
254                      ::LOCK_PTR_REG (rw) : "memory");
255 }
256
257 static inline void arch_write_lock(arch_rwlock_t *rw)
258 {
259         asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
260                      "jz 1f\n"
261                      "call __write_lock_failed\n\t"
262                      "1:\n"
263                      ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
264                      : "memory");
265 }
266
267 static inline int arch_read_trylock(arch_rwlock_t *lock)
268 {
269         READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
270
271         if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
272                 return 1;
273         READ_LOCK_ATOMIC(inc)(count);
274         return 0;
275 }
276
277 static inline int arch_write_trylock(arch_rwlock_t *lock)
278 {
279         atomic_t *count = (atomic_t *)&lock->write;
280
281         if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
282                 return 1;
283         atomic_add(WRITE_LOCK_CMP, count);
284         return 0;
285 }
286
287 static inline void arch_read_unlock(arch_rwlock_t *rw)
288 {
289         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
290                      :"+m" (rw->lock) : : "memory");
291 }
292
293 static inline void arch_write_unlock(arch_rwlock_t *rw)
294 {
295         asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
296                      : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
297 }
298
299 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
300 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
301
302 #undef READ_LOCK_SIZE
303 #undef READ_LOCK_ATOMIC
304 #undef WRITE_LOCK_ADD
305 #undef WRITE_LOCK_SUB
306 #undef WRITE_LOCK_CMP
307
308 #define arch_spin_relax(lock)   cpu_relax()
309 #define arch_read_relax(lock)   cpu_relax()
310 #define arch_write_relax(lock)  cpu_relax()
311
312 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
313 static inline void smp_mb__after_lock(void) { }
314 #define ARCH_HAS_SMP_MB_AFTER_LOCK
315
316 #endif /* _ASM_X86_SPINLOCK_H */