Merge branches 'core-fixes-for-linus' and 'irq-fixes-for-linus' of git://git.kernel...
[pandora-kernel.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159         /* Handle unaligned load/store */
160         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161                 unsigned short val_16;
162                 switch (size) {
163                 case 2:
164                         err = copy_from_user(&val_16, addr, sizeof(val_16));
165                         val = sign_ext ? ((short)val_16) : val_16;
166                         break;
167                 case 4:
168                         err = copy_from_user(&val, addr, sizeof(val));
169                         break;
170                 default:
171                         BUG();
172                 }
173                 if (err == 0) {
174                         state->update_reg = val_reg;
175                         state->update_value = val;
176                         state->update = 1;
177                 }
178         } else {
179                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180                 err = copy_to_user(addr, &val, size);
181         }
182
183         if (err) {
184                 siginfo_t info = {
185                         .si_signo = SIGSEGV,
186                         .si_code = SEGV_MAPERR,
187                         .si_addr = addr
188                 };
189                 trace_unhandled_signal("segfault", regs,
190                                        (unsigned long)addr, SIGSEGV);
191                 force_sig_info(info.si_signo, &info, current);
192                 return (tile_bundle_bits) 0;
193         }
194
195         if (unaligned_fixup == 0) {
196                 siginfo_t info = {
197                         .si_signo = SIGBUS,
198                         .si_code = BUS_ADRALN,
199                         .si_addr = addr
200                 };
201                 trace_unhandled_signal("unaligned trap", regs,
202                                        (unsigned long)addr, SIGBUS);
203                 force_sig_info(info.si_signo, &info, current);
204                 return (tile_bundle_bits) 0;
205         }
206
207         if (unaligned_printk || unaligned_fixup_count == 0) {
208                 pr_info("Process %d/%s: PC %#lx: Fixup of"
209                         " unaligned %s at %#lx.\n",
210                         current->pid, current->comm, regs->pc,
211                         (mem_op == MEMOP_LOAD ||
212                          mem_op == MEMOP_LOAD_POSTINCR) ?
213                         "load" : "store",
214                         (unsigned long)addr);
215                 if (!unaligned_printk) {
216 #define P pr_info
217 P("\n");
218 P("Unaligned fixups in the kernel will slow your application considerably.\n");
219 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
220 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
221 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
222 P("access will become a SIGBUS you can debug. No further warnings will be\n");
223 P("shown so as to avoid additional slowdown, but you can track the number\n");
224 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
225 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
226 P("\n");
227 #undef P
228                 }
229         }
230         ++unaligned_fixup_count;
231
232         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
233                 /* Convert the Y2 instruction to a prefetch. */
234                 bundle &= ~(create_SrcBDest_Y2(-1) |
235                             create_Opcode_Y2(-1));
236                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
237                            create_Opcode_Y2(LW_OPCODE_Y2));
238         /* Replace the load postincr with an addi */
239         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
240                 bundle = addi_X1(bundle, addr_reg, addr_reg,
241                                  get_Imm8_X1(bundle));
242         /* Replace the store postincr with an addi */
243         } else if (mem_op == MEMOP_STORE_POSTINCR) {
244                 bundle = addi_X1(bundle, addr_reg, addr_reg,
245                                  get_Dest_Imm8_X1(bundle));
246         } else {
247                 /* Convert the X1 instruction to a nop. */
248                 bundle &= ~(create_Opcode_X1(-1) |
249                             create_UnShOpcodeExtension_X1(-1) |
250                             create_UnOpcodeExtension_X1(-1));
251                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
252                            create_UnShOpcodeExtension_X1(
253                                    UN_0_SHUN_0_OPCODE_X1) |
254                            create_UnOpcodeExtension_X1(
255                                    NOP_UN_0_SHUN_0_OPCODE_X1));
256         }
257
258         return bundle;
259 }
260
261 /*
262  * Called after execve() has started the new image.  This allows us
263  * to reset the info state.  Note that the the mmap'ed memory, if there
264  * was any, has already been unmapped by the exec.
265  */
266 void single_step_execve(void)
267 {
268         struct thread_info *ti = current_thread_info();
269         kfree(ti->step_state);
270         ti->step_state = NULL;
271 }
272
273 /**
274  * single_step_once() - entry point when single stepping has been triggered.
275  * @regs: The machine register state
276  *
277  *  When we arrive at this routine via a trampoline, the single step
278  *  engine copies the executing bundle to the single step buffer.
279  *  If the instruction is a condition branch, then the target is
280  *  reset to one past the next instruction. If the instruction
281  *  sets the lr, then that is noted. If the instruction is a jump
282  *  or call, then the new target pc is preserved and the current
283  *  bundle instruction set to null.
284  *
285  *  The necessary post-single-step rewriting information is stored in
286  *  single_step_state->  We use data segment values because the
287  *  stack will be rewound when we run the rewritten single-stepped
288  *  instruction.
289  */
290 void single_step_once(struct pt_regs *regs)
291 {
292         extern tile_bundle_bits __single_step_ill_insn;
293         extern tile_bundle_bits __single_step_j_insn;
294         extern tile_bundle_bits __single_step_addli_insn;
295         extern tile_bundle_bits __single_step_auli_insn;
296         struct thread_info *info = (void *)current_thread_info();
297         struct single_step_state *state = info->step_state;
298         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
299         tile_bundle_bits __user *buffer, *pc;
300         tile_bundle_bits bundle;
301         int temp_reg;
302         int target_reg = TREG_LR;
303         int err;
304         enum mem_op mem_op = MEMOP_NONE;
305         int size = 0, sign_ext = 0;  /* happy compiler */
306
307         asm(
308 "    .pushsection .rodata.single_step\n"
309 "    .align 8\n"
310 "    .globl    __single_step_ill_insn\n"
311 "__single_step_ill_insn:\n"
312 "    ill\n"
313 "    .globl    __single_step_addli_insn\n"
314 "__single_step_addli_insn:\n"
315 "    { nop; addli r0, zero, 0 }\n"
316 "    .globl    __single_step_auli_insn\n"
317 "__single_step_auli_insn:\n"
318 "    { nop; auli r0, r0, 0 }\n"
319 "    .globl    __single_step_j_insn\n"
320 "__single_step_j_insn:\n"
321 "    j .\n"
322 "    .popsection\n"
323         );
324
325         /*
326          * Enable interrupts here to allow touching userspace and the like.
327          * The callers expect this: do_trap() already has interrupts
328          * enabled, and do_work_pending() handles functions that enable
329          * interrupts internally.
330          */
331         local_irq_enable();
332
333         if (state == NULL) {
334                 /* allocate a page of writable, executable memory */
335                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
336                 if (state == NULL) {
337                         pr_err("Out of kernel memory trying to single-step\n");
338                         return;
339                 }
340
341                 /* allocate a cache line of writable, executable memory */
342                 down_write(&current->mm->mmap_sem);
343                 buffer = (void __user *) do_mmap(NULL, 0, 64,
344                                           PROT_EXEC | PROT_READ | PROT_WRITE,
345                                           MAP_PRIVATE | MAP_ANONYMOUS,
346                                           0);
347                 up_write(&current->mm->mmap_sem);
348
349                 if (IS_ERR((void __force *)buffer)) {
350                         kfree(state);
351                         pr_err("Out of kernel pages trying to single-step\n");
352                         return;
353                 }
354
355                 state->buffer = buffer;
356                 state->is_enabled = 0;
357
358                 info->step_state = state;
359
360                 /* Validate our stored instruction patterns */
361                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
362                        ADDLI_OPCODE_X1);
363                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
364                        AULI_OPCODE_X1);
365                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
366                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
367                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
368         }
369
370         /*
371          * If we are returning from a syscall, we still haven't hit the
372          * "ill" for the swint1 instruction.  So back the PC up to be
373          * pointing at the swint1, but we'll actually return directly
374          * back to the "ill" so we come back in via SIGILL as if we
375          * had "executed" the swint1 without ever being in kernel space.
376          */
377         if (regs->faultnum == INT_SWINT_1)
378                 regs->pc -= 8;
379
380         pc = (tile_bundle_bits __user *)(regs->pc);
381         if (get_user(bundle, pc) != 0) {
382                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
383                 return;
384         }
385
386         /* We'll follow the instruction with 2 ill op bundles */
387         state->orig_pc = (unsigned long)pc;
388         state->next_pc = (unsigned long)(pc + 1);
389         state->branch_next_pc = 0;
390         state->update = 0;
391
392         if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
393                 /* two wide, check for control flow */
394                 int opcode = get_Opcode_X1(bundle);
395
396                 switch (opcode) {
397                 /* branches */
398                 case BRANCH_OPCODE_X1:
399                 {
400                         s32 offset = signExtend17(get_BrOff_X1(bundle));
401
402                         /*
403                          * For branches, we use a rewriting trick to let the
404                          * hardware evaluate whether the branch is taken or
405                          * untaken.  We record the target offset and then
406                          * rewrite the branch instruction to target 1 insn
407                          * ahead if the branch is taken.  We then follow the
408                          * rewritten branch with two bundles, each containing
409                          * an "ill" instruction. The supervisor examines the
410                          * pc after the single step code is executed, and if
411                          * the pc is the first ill instruction, then the
412                          * branch (if any) was not taken.  If the pc is the
413                          * second ill instruction, then the branch was
414                          * taken. The new pc is computed for these cases, and
415                          * inserted into the registers for the thread.  If
416                          * the pc is the start of the single step code, then
417                          * an exception or interrupt was taken before the
418                          * code started processing, and the same "original"
419                          * pc is restored.  This change, different from the
420                          * original implementation, has the advantage of
421                          * executing a single user instruction.
422                          */
423                         state->branch_next_pc = (unsigned long)(pc + offset);
424
425                         /* rewrite branch offset to go forward one bundle */
426                         bundle = set_BrOff_X1(bundle, 2);
427                 }
428                 break;
429
430                 /* jumps */
431                 case JALB_OPCODE_X1:
432                 case JALF_OPCODE_X1:
433                         state->update = 1;
434                         state->next_pc =
435                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
436                         break;
437
438                 case JB_OPCODE_X1:
439                 case JF_OPCODE_X1:
440                         state->next_pc =
441                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
442                         bundle = nop_X1(bundle);
443                         break;
444
445                 case SPECIAL_0_OPCODE_X1:
446                         switch (get_RRROpcodeExtension_X1(bundle)) {
447                         /* jump-register */
448                         case JALRP_SPECIAL_0_OPCODE_X1:
449                         case JALR_SPECIAL_0_OPCODE_X1:
450                                 state->update = 1;
451                                 state->next_pc =
452                                         regs->regs[get_SrcA_X1(bundle)];
453                                 break;
454
455                         case JRP_SPECIAL_0_OPCODE_X1:
456                         case JR_SPECIAL_0_OPCODE_X1:
457                                 state->next_pc =
458                                         regs->regs[get_SrcA_X1(bundle)];
459                                 bundle = nop_X1(bundle);
460                                 break;
461
462                         case LNK_SPECIAL_0_OPCODE_X1:
463                                 state->update = 1;
464                                 target_reg = get_Dest_X1(bundle);
465                                 break;
466
467                         /* stores */
468                         case SH_SPECIAL_0_OPCODE_X1:
469                                 mem_op = MEMOP_STORE;
470                                 size = 2;
471                                 break;
472
473                         case SW_SPECIAL_0_OPCODE_X1:
474                                 mem_op = MEMOP_STORE;
475                                 size = 4;
476                                 break;
477                         }
478                         break;
479
480                 /* loads and iret */
481                 case SHUN_0_OPCODE_X1:
482                         if (get_UnShOpcodeExtension_X1(bundle) ==
483                             UN_0_SHUN_0_OPCODE_X1) {
484                                 switch (get_UnOpcodeExtension_X1(bundle)) {
485                                 case LH_UN_0_SHUN_0_OPCODE_X1:
486                                         mem_op = MEMOP_LOAD;
487                                         size = 2;
488                                         sign_ext = 1;
489                                         break;
490
491                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
492                                         mem_op = MEMOP_LOAD;
493                                         size = 2;
494                                         sign_ext = 0;
495                                         break;
496
497                                 case LW_UN_0_SHUN_0_OPCODE_X1:
498                                         mem_op = MEMOP_LOAD;
499                                         size = 4;
500                                         break;
501
502                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
503                                 {
504                                         unsigned long ex0_0 = __insn_mfspr(
505                                                 SPR_EX_CONTEXT_0_0);
506                                         unsigned long ex0_1 = __insn_mfspr(
507                                                 SPR_EX_CONTEXT_0_1);
508                                         /*
509                                          * Special-case it if we're iret'ing
510                                          * to PL0 again.  Otherwise just let
511                                          * it run and it will generate SIGILL.
512                                          */
513                                         if (EX1_PL(ex0_1) == USER_PL) {
514                                                 state->next_pc = ex0_0;
515                                                 regs->ex1 = ex0_1;
516                                                 bundle = nop_X1(bundle);
517                                         }
518                                 }
519                                 }
520                         }
521                         break;
522
523 #if CHIP_HAS_WH64()
524                 /* postincrement operations */
525                 case IMM_0_OPCODE_X1:
526                         switch (get_ImmOpcodeExtension_X1(bundle)) {
527                         case LWADD_IMM_0_OPCODE_X1:
528                                 mem_op = MEMOP_LOAD_POSTINCR;
529                                 size = 4;
530                                 break;
531
532                         case LHADD_IMM_0_OPCODE_X1:
533                                 mem_op = MEMOP_LOAD_POSTINCR;
534                                 size = 2;
535                                 sign_ext = 1;
536                                 break;
537
538                         case LHADD_U_IMM_0_OPCODE_X1:
539                                 mem_op = MEMOP_LOAD_POSTINCR;
540                                 size = 2;
541                                 sign_ext = 0;
542                                 break;
543
544                         case SWADD_IMM_0_OPCODE_X1:
545                                 mem_op = MEMOP_STORE_POSTINCR;
546                                 size = 4;
547                                 break;
548
549                         case SHADD_IMM_0_OPCODE_X1:
550                                 mem_op = MEMOP_STORE_POSTINCR;
551                                 size = 2;
552                                 break;
553
554                         default:
555                                 break;
556                         }
557                         break;
558 #endif /* CHIP_HAS_WH64() */
559                 }
560
561                 if (state->update) {
562                         /*
563                          * Get an available register.  We start with a
564                          * bitmask with 1's for available registers.
565                          * We truncate to the low 32 registers since
566                          * we are guaranteed to have set bits in the
567                          * low 32 bits, then use ctz to pick the first.
568                          */
569                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
570                                            (1ULL << get_SrcA_X0(bundle)) |
571                                            (1ULL << get_SrcB_X0(bundle)) |
572                                            (1ULL << target_reg));
573                         temp_reg = __builtin_ctz(mask);
574                         state->update_reg = temp_reg;
575                         state->update_value = regs->regs[temp_reg];
576                         regs->regs[temp_reg] = (unsigned long) (pc+1);
577                         regs->flags |= PT_FLAGS_RESTORE_REGS;
578                         bundle = move_X1(bundle, target_reg, temp_reg);
579                 }
580         } else {
581                 int opcode = get_Opcode_Y2(bundle);
582
583                 switch (opcode) {
584                 /* loads */
585                 case LH_OPCODE_Y2:
586                         mem_op = MEMOP_LOAD;
587                         size = 2;
588                         sign_ext = 1;
589                         break;
590
591                 case LH_U_OPCODE_Y2:
592                         mem_op = MEMOP_LOAD;
593                         size = 2;
594                         sign_ext = 0;
595                         break;
596
597                 case LW_OPCODE_Y2:
598                         mem_op = MEMOP_LOAD;
599                         size = 4;
600                         break;
601
602                 /* stores */
603                 case SH_OPCODE_Y2:
604                         mem_op = MEMOP_STORE;
605                         size = 2;
606                         break;
607
608                 case SW_OPCODE_Y2:
609                         mem_op = MEMOP_STORE;
610                         size = 4;
611                         break;
612                 }
613         }
614
615         /*
616          * Check if we need to rewrite an unaligned load/store.
617          * Returning zero is a special value meaning we need to SIGSEGV.
618          */
619         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
620                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
621                                                       mem_op, size, sign_ext);
622                 if (bundle == 0)
623                         return;
624         }
625
626         /* write the bundle to our execution area */
627         buffer = state->buffer;
628         err = __put_user(bundle, buffer++);
629
630         /*
631          * If we're really single-stepping, we take an INT_ILL after.
632          * If we're just handling an unaligned access, we can just
633          * jump directly back to where we were in user code.
634          */
635         if (is_single_step) {
636                 err |= __put_user(__single_step_ill_insn, buffer++);
637                 err |= __put_user(__single_step_ill_insn, buffer++);
638         } else {
639                 long delta;
640
641                 if (state->update) {
642                         /* We have some state to update; do it inline */
643                         int ha16;
644                         bundle = __single_step_addli_insn;
645                         bundle |= create_Dest_X1(state->update_reg);
646                         bundle |= create_Imm16_X1(state->update_value);
647                         err |= __put_user(bundle, buffer++);
648                         bundle = __single_step_auli_insn;
649                         bundle |= create_Dest_X1(state->update_reg);
650                         bundle |= create_SrcA_X1(state->update_reg);
651                         ha16 = (state->update_value + 0x8000) >> 16;
652                         bundle |= create_Imm16_X1(ha16);
653                         err |= __put_user(bundle, buffer++);
654                         state->update = 0;
655                 }
656
657                 /* End with a jump back to the next instruction */
658                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
659                         (unsigned long)buffer) >>
660                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
661                 bundle = __single_step_j_insn;
662                 bundle |= create_JOffLong_X1(delta);
663                 err |= __put_user(bundle, buffer++);
664         }
665
666         if (err) {
667                 pr_err("Fault when writing to single-step buffer\n");
668                 return;
669         }
670
671         /*
672          * Flush the buffer.
673          * We do a local flush only, since this is a thread-specific buffer.
674          */
675         __flush_icache_range((unsigned long)state->buffer,
676                              (unsigned long)buffer);
677
678         /* Indicate enabled */
679         state->is_enabled = is_single_step;
680         regs->pc = (unsigned long)state->buffer;
681
682         /* Fault immediately if we are coming back from a syscall. */
683         if (regs->faultnum == INT_SWINT_1)
684                 regs->pc += 8;
685 }
686
687 #else
688 #include <linux/smp.h>
689 #include <linux/ptrace.h>
690 #include <arch/spr_def.h>
691
692 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
693
694
695 /*
696  * Called directly on the occasion of an interrupt.
697  *
698  * If the process doesn't have single step set, then we use this as an
699  * opportunity to turn single step off.
700  *
701  * It has been mentioned that we could conditionally turn off single stepping
702  * on each entry into the kernel and rely on single_step_once to turn it
703  * on for the processes that matter (as we already do), but this
704  * implementation is somewhat more efficient in that we muck with registers
705  * once on a bum interrupt rather than on every entry into the kernel.
706  *
707  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
708  * so we have to run through this process again before we can say that an
709  * instruction has executed.
710  *
711  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
712  * it changes the PC.  If it hasn't changed, then we know that the interrupt
713  * wasn't generated by swint and we'll need to run this process again before
714  * we can say an instruction has executed.
715  *
716  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
717  * on with our lives.
718  */
719
720 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
721 {
722         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
723         struct thread_info *info = (void *)current_thread_info();
724         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
725         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
726
727         if (is_single_step == 0) {
728                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
729
730         } else if ((*ss_pc != regs->pc) ||
731                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
732
733                 ptrace_notify(SIGTRAP);
734                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
735                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
736                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
737         }
738 }
739
740
741 /*
742  * Called from need_singlestep.  Set up the control registers and the enable
743  * register, then return back.
744  */
745
746 void single_step_once(struct pt_regs *regs)
747 {
748         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
749         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
750
751         *ss_pc = regs->pc;
752         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
753         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
754         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
755         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
756 }
757
758 void single_step_execve(void)
759 {
760         /* Nothing */
761 }
762
763 #endif /* !__tilegx__ */