[SPARC64]: Initial LDOM cpu hotplug support.
[pandora-kernel.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31
32 #include <asm/irq.h>
33 #include <asm/irq_regs.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42 #include <asm/prom.h>
43 #include <asm/mdesc.h>
44 #include <asm/ldc.h>
45
46 extern void calibrate_delay(void);
47
48 int sparc64_multi_core __read_mostly;
49
50 /* Please don't make this stuff initdata!!!  --DaveM */
51 unsigned char boot_cpu_id;
52
53 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
54 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
55 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
56         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
58         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
59
60 EXPORT_SYMBOL(cpu_possible_map);
61 EXPORT_SYMBOL(cpu_online_map);
62 EXPORT_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66 static cpumask_t cpu_callout_map;
67
68 void smp_info(struct seq_file *m)
69 {
70         int i;
71         
72         seq_printf(m, "State:\n");
73         for_each_online_cpu(i)
74                 seq_printf(m, "CPU%d:\t\tonline\n", i);
75 }
76
77 void smp_bogo(struct seq_file *m)
78 {
79         int i;
80         
81         for_each_online_cpu(i)
82                 seq_printf(m,
83                            "Cpu%dBogo\t: %lu.%02lu\n"
84                            "Cpu%dClkTck\t: %016lx\n",
85                            i, cpu_data(i).udelay_val / (500000/HZ),
86                            (cpu_data(i).udelay_val / (5000/HZ)) % 100,
87                            i, cpu_data(i).clock_tick);
88 }
89
90 extern void setup_sparc64_timer(void);
91
92 static volatile unsigned long callin_flag = 0;
93
94 void __devinit smp_callin(void)
95 {
96         int cpuid = hard_smp_processor_id();
97         struct trap_per_cpu *tb = &trap_block[cpuid];;
98
99         __local_per_cpu_offset = __per_cpu_offset(cpuid);
100
101         if (tlb_type == hypervisor)
102                 sun4v_ktsb_register();
103
104         __flush_tlb_all();
105
106         setup_sparc64_timer();
107
108         if (cheetah_pcache_forced_on)
109                 cheetah_enable_pcache();
110
111         local_irq_enable();
112
113         calibrate_delay();
114         cpu_data(cpuid).udelay_val = loops_per_jiffy;
115         callin_flag = 1;
116         __asm__ __volatile__("membar #Sync\n\t"
117                              "flush  %%g6" : : : "memory");
118
119         /* Clear this or we will die instantly when we
120          * schedule back to this idler...
121          */
122         current_thread_info()->new_child = 0;
123
124         /* Attach to the address space of init_task. */
125         atomic_inc(&init_mm.mm_count);
126         current->active_mm = &init_mm;
127
128         if (tb->hdesc) {
129                 kfree(tb->hdesc);
130                 tb->hdesc = NULL;
131         }
132
133         while (!cpu_isset(cpuid, smp_commenced_mask))
134                 rmb();
135
136         cpu_set(cpuid, cpu_online_map);
137
138         /* idle thread is expected to have preempt disabled */
139         preempt_disable();
140 }
141
142 void cpu_panic(void)
143 {
144         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
145         panic("SMP bolixed\n");
146 }
147
148 /* This tick register synchronization scheme is taken entirely from
149  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
150  *
151  * The only change I've made is to rework it so that the master
152  * initiates the synchonization instead of the slave. -DaveM
153  */
154
155 #define MASTER  0
156 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
157
158 #define NUM_ROUNDS      64      /* magic value */
159 #define NUM_ITERS       5       /* likewise */
160
161 static DEFINE_SPINLOCK(itc_sync_lock);
162 static unsigned long go[SLAVE + 1];
163
164 #define DEBUG_TICK_SYNC 0
165
166 static inline long get_delta (long *rt, long *master)
167 {
168         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
169         unsigned long tcenter, t0, t1, tm;
170         unsigned long i;
171
172         for (i = 0; i < NUM_ITERS; i++) {
173                 t0 = tick_ops->get_tick();
174                 go[MASTER] = 1;
175                 membar_storeload();
176                 while (!(tm = go[SLAVE]))
177                         rmb();
178                 go[SLAVE] = 0;
179                 wmb();
180                 t1 = tick_ops->get_tick();
181
182                 if (t1 - t0 < best_t1 - best_t0)
183                         best_t0 = t0, best_t1 = t1, best_tm = tm;
184         }
185
186         *rt = best_t1 - best_t0;
187         *master = best_tm - best_t0;
188
189         /* average best_t0 and best_t1 without overflow: */
190         tcenter = (best_t0/2 + best_t1/2);
191         if (best_t0 % 2 + best_t1 % 2 == 2)
192                 tcenter++;
193         return tcenter - best_tm;
194 }
195
196 void smp_synchronize_tick_client(void)
197 {
198         long i, delta, adj, adjust_latency = 0, done = 0;
199         unsigned long flags, rt, master_time_stamp, bound;
200 #if DEBUG_TICK_SYNC
201         struct {
202                 long rt;        /* roundtrip time */
203                 long master;    /* master's timestamp */
204                 long diff;      /* difference between midpoint and master's timestamp */
205                 long lat;       /* estimate of itc adjustment latency */
206         } t[NUM_ROUNDS];
207 #endif
208
209         go[MASTER] = 1;
210
211         while (go[MASTER])
212                 rmb();
213
214         local_irq_save(flags);
215         {
216                 for (i = 0; i < NUM_ROUNDS; i++) {
217                         delta = get_delta(&rt, &master_time_stamp);
218                         if (delta == 0) {
219                                 done = 1;       /* let's lock on to this... */
220                                 bound = rt;
221                         }
222
223                         if (!done) {
224                                 if (i > 0) {
225                                         adjust_latency += -delta;
226                                         adj = -delta + adjust_latency/4;
227                                 } else
228                                         adj = -delta;
229
230                                 tick_ops->add_tick(adj);
231                         }
232 #if DEBUG_TICK_SYNC
233                         t[i].rt = rt;
234                         t[i].master = master_time_stamp;
235                         t[i].diff = delta;
236                         t[i].lat = adjust_latency/4;
237 #endif
238                 }
239         }
240         local_irq_restore(flags);
241
242 #if DEBUG_TICK_SYNC
243         for (i = 0; i < NUM_ROUNDS; i++)
244                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
246 #endif
247
248         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
249                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
250 }
251
252 static void smp_start_sync_tick_client(int cpu);
253
254 static void smp_synchronize_one_tick(int cpu)
255 {
256         unsigned long flags, i;
257
258         go[MASTER] = 0;
259
260         smp_start_sync_tick_client(cpu);
261
262         /* wait for client to be ready */
263         while (!go[MASTER])
264                 rmb();
265
266         /* now let the client proceed into his loop */
267         go[MASTER] = 0;
268         membar_storeload();
269
270         spin_lock_irqsave(&itc_sync_lock, flags);
271         {
272                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
273                         while (!go[MASTER])
274                                 rmb();
275                         go[MASTER] = 0;
276                         wmb();
277                         go[SLAVE] = tick_ops->get_tick();
278                         membar_storeload();
279                 }
280         }
281         spin_unlock_irqrestore(&itc_sync_lock, flags);
282 }
283
284 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
285
286 extern unsigned long sparc64_cpu_startup;
287
288 /* The OBP cpu startup callback truncates the 3rd arg cookie to
289  * 32-bits (I think) so to be safe we have it read the pointer
290  * contained here so we work on >4GB machines. -DaveM
291  */
292 static struct thread_info *cpu_new_thread = NULL;
293
294 static int __devinit smp_boot_one_cpu(unsigned int cpu)
295 {
296         unsigned long entry =
297                 (unsigned long)(&sparc64_cpu_startup);
298         unsigned long cookie =
299                 (unsigned long)(&cpu_new_thread);
300         struct task_struct *p;
301         int timeout, ret;
302
303         p = fork_idle(cpu);
304         callin_flag = 0;
305         cpu_new_thread = task_thread_info(p);
306         cpu_set(cpu, cpu_callout_map);
307
308         if (tlb_type == hypervisor) {
309                 /* Alloc the mondo queues, cpu will load them.  */
310                 sun4v_init_mondo_queues(0, cpu, 1, 0);
311
312 #ifdef CONFIG_SUN_LDOMS
313                 if (ldom_domaining_enabled)
314                         ldom_startcpu_cpuid(cpu,
315                                             (unsigned long) cpu_new_thread);
316                 else
317 #endif
318                         prom_startcpu_cpuid(cpu, entry, cookie);
319         } else {
320                 struct device_node *dp = of_find_node_by_cpuid(cpu);
321
322                 prom_startcpu(dp->node, entry, cookie);
323         }
324
325         for (timeout = 0; timeout < 50000; timeout++) {
326                 if (callin_flag)
327                         break;
328                 udelay(100);
329         }
330
331         if (callin_flag) {
332                 ret = 0;
333         } else {
334                 printk("Processor %d is stuck.\n", cpu);
335                 cpu_clear(cpu, cpu_callout_map);
336                 ret = -ENODEV;
337         }
338         cpu_new_thread = NULL;
339
340         return ret;
341 }
342
343 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
344 {
345         u64 result, target;
346         int stuck, tmp;
347
348         if (this_is_starfire) {
349                 /* map to real upaid */
350                 cpu = (((cpu & 0x3c) << 1) |
351                         ((cpu & 0x40) >> 4) |
352                         (cpu & 0x3));
353         }
354
355         target = (cpu << 14) | 0x70;
356 again:
357         /* Ok, this is the real Spitfire Errata #54.
358          * One must read back from a UDB internal register
359          * after writes to the UDB interrupt dispatch, but
360          * before the membar Sync for that write.
361          * So we use the high UDB control register (ASI 0x7f,
362          * ADDR 0x20) for the dummy read. -DaveM
363          */
364         tmp = 0x40;
365         __asm__ __volatile__(
366         "wrpr   %1, %2, %%pstate\n\t"
367         "stxa   %4, [%0] %3\n\t"
368         "stxa   %5, [%0+%8] %3\n\t"
369         "add    %0, %8, %0\n\t"
370         "stxa   %6, [%0+%8] %3\n\t"
371         "membar #Sync\n\t"
372         "stxa   %%g0, [%7] %3\n\t"
373         "membar #Sync\n\t"
374         "mov    0x20, %%g1\n\t"
375         "ldxa   [%%g1] 0x7f, %%g0\n\t"
376         "membar #Sync"
377         : "=r" (tmp)
378         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
379           "r" (data0), "r" (data1), "r" (data2), "r" (target),
380           "r" (0x10), "0" (tmp)
381         : "g1");
382
383         /* NOTE: PSTATE_IE is still clear. */
384         stuck = 100000;
385         do {
386                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
387                         : "=r" (result)
388                         : "i" (ASI_INTR_DISPATCH_STAT));
389                 if (result == 0) {
390                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
391                                              : : "r" (pstate));
392                         return;
393                 }
394                 stuck -= 1;
395                 if (stuck == 0)
396                         break;
397         } while (result & 0x1);
398         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
399                              : : "r" (pstate));
400         if (stuck == 0) {
401                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
402                        smp_processor_id(), result);
403         } else {
404                 udelay(2);
405                 goto again;
406         }
407 }
408
409 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
410 {
411         u64 pstate;
412         int i;
413
414         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
415         for_each_cpu_mask(i, mask)
416                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
417 }
418
419 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
420  * packet, but we have no use for that.  However we do take advantage of
421  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
422  */
423 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
424 {
425         u64 pstate, ver;
426         int nack_busy_id, is_jbus, need_more;
427
428         if (cpus_empty(mask))
429                 return;
430
431         /* Unfortunately, someone at Sun had the brilliant idea to make the
432          * busy/nack fields hard-coded by ITID number for this Ultra-III
433          * derivative processor.
434          */
435         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
436         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
437                    (ver >> 32) == __SERRANO_ID);
438
439         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
440
441 retry:
442         need_more = 0;
443         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
444                              : : "r" (pstate), "i" (PSTATE_IE));
445
446         /* Setup the dispatch data registers. */
447         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
448                              "stxa      %1, [%4] %6\n\t"
449                              "stxa      %2, [%5] %6\n\t"
450                              "membar    #Sync\n\t"
451                              : /* no outputs */
452                              : "r" (data0), "r" (data1), "r" (data2),
453                                "r" (0x40), "r" (0x50), "r" (0x60),
454                                "i" (ASI_INTR_W));
455
456         nack_busy_id = 0;
457         {
458                 int i;
459
460                 for_each_cpu_mask(i, mask) {
461                         u64 target = (i << 14) | 0x70;
462
463                         if (!is_jbus)
464                                 target |= (nack_busy_id << 24);
465                         __asm__ __volatile__(
466                                 "stxa   %%g0, [%0] %1\n\t"
467                                 "membar #Sync\n\t"
468                                 : /* no outputs */
469                                 : "r" (target), "i" (ASI_INTR_W));
470                         nack_busy_id++;
471                         if (nack_busy_id == 32) {
472                                 need_more = 1;
473                                 break;
474                         }
475                 }
476         }
477
478         /* Now, poll for completion. */
479         {
480                 u64 dispatch_stat;
481                 long stuck;
482
483                 stuck = 100000 * nack_busy_id;
484                 do {
485                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
486                                              : "=r" (dispatch_stat)
487                                              : "i" (ASI_INTR_DISPATCH_STAT));
488                         if (dispatch_stat == 0UL) {
489                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
490                                                      : : "r" (pstate));
491                                 if (unlikely(need_more)) {
492                                         int i, cnt = 0;
493                                         for_each_cpu_mask(i, mask) {
494                                                 cpu_clear(i, mask);
495                                                 cnt++;
496                                                 if (cnt == 32)
497                                                         break;
498                                         }
499                                         goto retry;
500                                 }
501                                 return;
502                         }
503                         if (!--stuck)
504                                 break;
505                 } while (dispatch_stat & 0x5555555555555555UL);
506
507                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
508                                      : : "r" (pstate));
509
510                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
511                         /* Busy bits will not clear, continue instead
512                          * of freezing up on this cpu.
513                          */
514                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
515                                smp_processor_id(), dispatch_stat);
516                 } else {
517                         int i, this_busy_nack = 0;
518
519                         /* Delay some random time with interrupts enabled
520                          * to prevent deadlock.
521                          */
522                         udelay(2 * nack_busy_id);
523
524                         /* Clear out the mask bits for cpus which did not
525                          * NACK us.
526                          */
527                         for_each_cpu_mask(i, mask) {
528                                 u64 check_mask;
529
530                                 if (is_jbus)
531                                         check_mask = (0x2UL << (2*i));
532                                 else
533                                         check_mask = (0x2UL <<
534                                                       this_busy_nack);
535                                 if ((dispatch_stat & check_mask) == 0)
536                                         cpu_clear(i, mask);
537                                 this_busy_nack += 2;
538                                 if (this_busy_nack == 64)
539                                         break;
540                         }
541
542                         goto retry;
543                 }
544         }
545 }
546
547 /* Multi-cpu list version.  */
548 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
549 {
550         struct trap_per_cpu *tb;
551         u16 *cpu_list;
552         u64 *mondo;
553         cpumask_t error_mask;
554         unsigned long flags, status;
555         int cnt, retries, this_cpu, prev_sent, i;
556
557         if (cpus_empty(mask))
558                 return;
559
560         /* We have to do this whole thing with interrupts fully disabled.
561          * Otherwise if we send an xcall from interrupt context it will
562          * corrupt both our mondo block and cpu list state.
563          *
564          * One consequence of this is that we cannot use timeout mechanisms
565          * that depend upon interrupts being delivered locally.  So, for
566          * example, we cannot sample jiffies and expect it to advance.
567          *
568          * Fortunately, udelay() uses %stick/%tick so we can use that.
569          */
570         local_irq_save(flags);
571
572         this_cpu = smp_processor_id();
573         tb = &trap_block[this_cpu];
574
575         mondo = __va(tb->cpu_mondo_block_pa);
576         mondo[0] = data0;
577         mondo[1] = data1;
578         mondo[2] = data2;
579         wmb();
580
581         cpu_list = __va(tb->cpu_list_pa);
582
583         /* Setup the initial cpu list.  */
584         cnt = 0;
585         for_each_cpu_mask(i, mask)
586                 cpu_list[cnt++] = i;
587
588         cpus_clear(error_mask);
589         retries = 0;
590         prev_sent = 0;
591         do {
592                 int forward_progress, n_sent;
593
594                 status = sun4v_cpu_mondo_send(cnt,
595                                               tb->cpu_list_pa,
596                                               tb->cpu_mondo_block_pa);
597
598                 /* HV_EOK means all cpus received the xcall, we're done.  */
599                 if (likely(status == HV_EOK))
600                         break;
601
602                 /* First, see if we made any forward progress.
603                  *
604                  * The hypervisor indicates successful sends by setting
605                  * cpu list entries to the value 0xffff.
606                  */
607                 n_sent = 0;
608                 for (i = 0; i < cnt; i++) {
609                         if (likely(cpu_list[i] == 0xffff))
610                                 n_sent++;
611                 }
612
613                 forward_progress = 0;
614                 if (n_sent > prev_sent)
615                         forward_progress = 1;
616
617                 prev_sent = n_sent;
618
619                 /* If we get a HV_ECPUERROR, then one or more of the cpus
620                  * in the list are in error state.  Use the cpu_state()
621                  * hypervisor call to find out which cpus are in error state.
622                  */
623                 if (unlikely(status == HV_ECPUERROR)) {
624                         for (i = 0; i < cnt; i++) {
625                                 long err;
626                                 u16 cpu;
627
628                                 cpu = cpu_list[i];
629                                 if (cpu == 0xffff)
630                                         continue;
631
632                                 err = sun4v_cpu_state(cpu);
633                                 if (err >= 0 &&
634                                     err == HV_CPU_STATE_ERROR) {
635                                         cpu_list[i] = 0xffff;
636                                         cpu_set(cpu, error_mask);
637                                 }
638                         }
639                 } else if (unlikely(status != HV_EWOULDBLOCK))
640                         goto fatal_mondo_error;
641
642                 /* Don't bother rewriting the CPU list, just leave the
643                  * 0xffff and non-0xffff entries in there and the
644                  * hypervisor will do the right thing.
645                  *
646                  * Only advance timeout state if we didn't make any
647                  * forward progress.
648                  */
649                 if (unlikely(!forward_progress)) {
650                         if (unlikely(++retries > 10000))
651                                 goto fatal_mondo_timeout;
652
653                         /* Delay a little bit to let other cpus catch up
654                          * on their cpu mondo queue work.
655                          */
656                         udelay(2 * cnt);
657                 }
658         } while (1);
659
660         local_irq_restore(flags);
661
662         if (unlikely(!cpus_empty(error_mask)))
663                 goto fatal_mondo_cpu_error;
664
665         return;
666
667 fatal_mondo_cpu_error:
668         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
669                "were in error state\n",
670                this_cpu);
671         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
672         for_each_cpu_mask(i, error_mask)
673                 printk("%d ", i);
674         printk("]\n");
675         return;
676
677 fatal_mondo_timeout:
678         local_irq_restore(flags);
679         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
680                " progress after %d retries.\n",
681                this_cpu, retries);
682         goto dump_cpu_list_and_out;
683
684 fatal_mondo_error:
685         local_irq_restore(flags);
686         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
687                this_cpu, status);
688         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
689                "mondo_block_pa(%lx)\n",
690                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
691
692 dump_cpu_list_and_out:
693         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
694         for (i = 0; i < cnt; i++)
695                 printk("%u ", cpu_list[i]);
696         printk("]\n");
697 }
698
699 /* Send cross call to all processors mentioned in MASK
700  * except self.
701  */
702 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
703 {
704         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
705         int this_cpu = get_cpu();
706
707         cpus_and(mask, mask, cpu_online_map);
708         cpu_clear(this_cpu, mask);
709
710         if (tlb_type == spitfire)
711                 spitfire_xcall_deliver(data0, data1, data2, mask);
712         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
713                 cheetah_xcall_deliver(data0, data1, data2, mask);
714         else
715                 hypervisor_xcall_deliver(data0, data1, data2, mask);
716         /* NOTE: Caller runs local copy on master. */
717
718         put_cpu();
719 }
720
721 extern unsigned long xcall_sync_tick;
722
723 static void smp_start_sync_tick_client(int cpu)
724 {
725         cpumask_t mask = cpumask_of_cpu(cpu);
726
727         smp_cross_call_masked(&xcall_sync_tick,
728                               0, 0, 0, mask);
729 }
730
731 /* Send cross call to all processors except self. */
732 #define smp_cross_call(func, ctx, data1, data2) \
733         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
734
735 struct call_data_struct {
736         void (*func) (void *info);
737         void *info;
738         atomic_t finished;
739         int wait;
740 };
741
742 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
743 static struct call_data_struct *call_data;
744
745 extern unsigned long xcall_call_function;
746
747 /**
748  * smp_call_function(): Run a function on all other CPUs.
749  * @func: The function to run. This must be fast and non-blocking.
750  * @info: An arbitrary pointer to pass to the function.
751  * @nonatomic: currently unused.
752  * @wait: If true, wait (atomically) until function has completed on other CPUs.
753  *
754  * Returns 0 on success, else a negative status code. Does not return until
755  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
756  *
757  * You must not call this function with disabled interrupts or from a
758  * hardware interrupt handler or from a bottom half handler.
759  */
760 static int smp_call_function_mask(void (*func)(void *info), void *info,
761                                   int nonatomic, int wait, cpumask_t mask)
762 {
763         struct call_data_struct data;
764         int cpus;
765
766         /* Can deadlock when called with interrupts disabled */
767         WARN_ON(irqs_disabled());
768
769         data.func = func;
770         data.info = info;
771         atomic_set(&data.finished, 0);
772         data.wait = wait;
773
774         spin_lock(&call_lock);
775
776         cpu_clear(smp_processor_id(), mask);
777         cpus = cpus_weight(mask);
778         if (!cpus)
779                 goto out_unlock;
780
781         call_data = &data;
782         mb();
783
784         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
785
786         /* Wait for response */
787         while (atomic_read(&data.finished) != cpus)
788                 cpu_relax();
789
790 out_unlock:
791         spin_unlock(&call_lock);
792
793         return 0;
794 }
795
796 int smp_call_function(void (*func)(void *info), void *info,
797                       int nonatomic, int wait)
798 {
799         return smp_call_function_mask(func, info, nonatomic, wait,
800                                       cpu_online_map);
801 }
802
803 void smp_call_function_client(int irq, struct pt_regs *regs)
804 {
805         void (*func) (void *info) = call_data->func;
806         void *info = call_data->info;
807
808         clear_softint(1 << irq);
809         if (call_data->wait) {
810                 /* let initiator proceed only after completion */
811                 func(info);
812                 atomic_inc(&call_data->finished);
813         } else {
814                 /* let initiator proceed after getting data */
815                 atomic_inc(&call_data->finished);
816                 func(info);
817         }
818 }
819
820 static void tsb_sync(void *info)
821 {
822         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
823         struct mm_struct *mm = info;
824
825         /* It is not valid to test "currrent->active_mm == mm" here.
826          *
827          * The value of "current" is not changed atomically with
828          * switch_mm().  But that's OK, we just need to check the
829          * current cpu's trap block PGD physical address.
830          */
831         if (tp->pgd_paddr == __pa(mm->pgd))
832                 tsb_context_switch(mm);
833 }
834
835 void smp_tsb_sync(struct mm_struct *mm)
836 {
837         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
838 }
839
840 extern unsigned long xcall_flush_tlb_mm;
841 extern unsigned long xcall_flush_tlb_pending;
842 extern unsigned long xcall_flush_tlb_kernel_range;
843 extern unsigned long xcall_report_regs;
844 extern unsigned long xcall_receive_signal;
845 extern unsigned long xcall_new_mmu_context_version;
846
847 #ifdef DCACHE_ALIASING_POSSIBLE
848 extern unsigned long xcall_flush_dcache_page_cheetah;
849 #endif
850 extern unsigned long xcall_flush_dcache_page_spitfire;
851
852 #ifdef CONFIG_DEBUG_DCFLUSH
853 extern atomic_t dcpage_flushes;
854 extern atomic_t dcpage_flushes_xcall;
855 #endif
856
857 static __inline__ void __local_flush_dcache_page(struct page *page)
858 {
859 #ifdef DCACHE_ALIASING_POSSIBLE
860         __flush_dcache_page(page_address(page),
861                             ((tlb_type == spitfire) &&
862                              page_mapping(page) != NULL));
863 #else
864         if (page_mapping(page) != NULL &&
865             tlb_type == spitfire)
866                 __flush_icache_page(__pa(page_address(page)));
867 #endif
868 }
869
870 void smp_flush_dcache_page_impl(struct page *page, int cpu)
871 {
872         cpumask_t mask = cpumask_of_cpu(cpu);
873         int this_cpu;
874
875         if (tlb_type == hypervisor)
876                 return;
877
878 #ifdef CONFIG_DEBUG_DCFLUSH
879         atomic_inc(&dcpage_flushes);
880 #endif
881
882         this_cpu = get_cpu();
883
884         if (cpu == this_cpu) {
885                 __local_flush_dcache_page(page);
886         } else if (cpu_online(cpu)) {
887                 void *pg_addr = page_address(page);
888                 u64 data0;
889
890                 if (tlb_type == spitfire) {
891                         data0 =
892                                 ((u64)&xcall_flush_dcache_page_spitfire);
893                         if (page_mapping(page) != NULL)
894                                 data0 |= ((u64)1 << 32);
895                         spitfire_xcall_deliver(data0,
896                                                __pa(pg_addr),
897                                                (u64) pg_addr,
898                                                mask);
899                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
900 #ifdef DCACHE_ALIASING_POSSIBLE
901                         data0 =
902                                 ((u64)&xcall_flush_dcache_page_cheetah);
903                         cheetah_xcall_deliver(data0,
904                                               __pa(pg_addr),
905                                               0, mask);
906 #endif
907                 }
908 #ifdef CONFIG_DEBUG_DCFLUSH
909                 atomic_inc(&dcpage_flushes_xcall);
910 #endif
911         }
912
913         put_cpu();
914 }
915
916 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
917 {
918         void *pg_addr = page_address(page);
919         cpumask_t mask = cpu_online_map;
920         u64 data0;
921         int this_cpu;
922
923         if (tlb_type == hypervisor)
924                 return;
925
926         this_cpu = get_cpu();
927
928         cpu_clear(this_cpu, mask);
929
930 #ifdef CONFIG_DEBUG_DCFLUSH
931         atomic_inc(&dcpage_flushes);
932 #endif
933         if (cpus_empty(mask))
934                 goto flush_self;
935         if (tlb_type == spitfire) {
936                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
937                 if (page_mapping(page) != NULL)
938                         data0 |= ((u64)1 << 32);
939                 spitfire_xcall_deliver(data0,
940                                        __pa(pg_addr),
941                                        (u64) pg_addr,
942                                        mask);
943         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
944 #ifdef DCACHE_ALIASING_POSSIBLE
945                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
946                 cheetah_xcall_deliver(data0,
947                                       __pa(pg_addr),
948                                       0, mask);
949 #endif
950         }
951 #ifdef CONFIG_DEBUG_DCFLUSH
952         atomic_inc(&dcpage_flushes_xcall);
953 #endif
954  flush_self:
955         __local_flush_dcache_page(page);
956
957         put_cpu();
958 }
959
960 static void __smp_receive_signal_mask(cpumask_t mask)
961 {
962         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
963 }
964
965 void smp_receive_signal(int cpu)
966 {
967         cpumask_t mask = cpumask_of_cpu(cpu);
968
969         if (cpu_online(cpu))
970                 __smp_receive_signal_mask(mask);
971 }
972
973 void smp_receive_signal_client(int irq, struct pt_regs *regs)
974 {
975         clear_softint(1 << irq);
976 }
977
978 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
979 {
980         struct mm_struct *mm;
981         unsigned long flags;
982
983         clear_softint(1 << irq);
984
985         /* See if we need to allocate a new TLB context because
986          * the version of the one we are using is now out of date.
987          */
988         mm = current->active_mm;
989         if (unlikely(!mm || (mm == &init_mm)))
990                 return;
991
992         spin_lock_irqsave(&mm->context.lock, flags);
993
994         if (unlikely(!CTX_VALID(mm->context)))
995                 get_new_mmu_context(mm);
996
997         spin_unlock_irqrestore(&mm->context.lock, flags);
998
999         load_secondary_context(mm);
1000         __flush_tlb_mm(CTX_HWBITS(mm->context),
1001                        SECONDARY_CONTEXT);
1002 }
1003
1004 void smp_new_mmu_context_version(void)
1005 {
1006         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1007 }
1008
1009 void smp_report_regs(void)
1010 {
1011         smp_cross_call(&xcall_report_regs, 0, 0, 0);
1012 }
1013
1014 /* We know that the window frames of the user have been flushed
1015  * to the stack before we get here because all callers of us
1016  * are flush_tlb_*() routines, and these run after flush_cache_*()
1017  * which performs the flushw.
1018  *
1019  * The SMP TLB coherency scheme we use works as follows:
1020  *
1021  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022  *    space has (potentially) executed on, this is the heuristic
1023  *    we use to avoid doing cross calls.
1024  *
1025  *    Also, for flushing from kswapd and also for clones, we
1026  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027  *
1028  * 2) TLB context numbers are shared globally across all processors
1029  *    in the system, this allows us to play several games to avoid
1030  *    cross calls.
1031  *
1032  *    One invariant is that when a cpu switches to a process, and
1033  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034  *    current cpu's bit set, that tlb context is flushed locally.
1035  *
1036  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037  *    cross calls when we want to flush the currently running process's
1038  *    tlb state.  This is done by clearing all cpu bits except the current
1039  *    processor's in current->active_mm->cpu_vm_mask and performing the
1040  *    flush locally only.  This will force any subsequent cpus which run
1041  *    this task to flush the context from the local tlb if the process
1042  *    migrates to another cpu (again).
1043  *
1044  * 3) For shared address spaces (threads) and swapping we bite the
1045  *    bullet for most cases and perform the cross call (but only to
1046  *    the cpus listed in cpu_vm_mask).
1047  *
1048  *    The performance gain from "optimizing" away the cross call for threads is
1049  *    questionable (in theory the big win for threads is the massive sharing of
1050  *    address space state across processors).
1051  */
1052
1053 /* This currently is only used by the hugetlb arch pre-fault
1054  * hook on UltraSPARC-III+ and later when changing the pagesize
1055  * bits of the context register for an address space.
1056  */
1057 void smp_flush_tlb_mm(struct mm_struct *mm)
1058 {
1059         u32 ctx = CTX_HWBITS(mm->context);
1060         int cpu = get_cpu();
1061
1062         if (atomic_read(&mm->mm_users) == 1) {
1063                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1064                 goto local_flush_and_out;
1065         }
1066
1067         smp_cross_call_masked(&xcall_flush_tlb_mm,
1068                               ctx, 0, 0,
1069                               mm->cpu_vm_mask);
1070
1071 local_flush_and_out:
1072         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074         put_cpu();
1075 }
1076
1077 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1078 {
1079         u32 ctx = CTX_HWBITS(mm->context);
1080         int cpu = get_cpu();
1081
1082         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1083                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1084         else
1085                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1086                                       ctx, nr, (unsigned long) vaddrs,
1087                                       mm->cpu_vm_mask);
1088
1089         __flush_tlb_pending(ctx, nr, vaddrs);
1090
1091         put_cpu();
1092 }
1093
1094 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1095 {
1096         start &= PAGE_MASK;
1097         end    = PAGE_ALIGN(end);
1098         if (start != end) {
1099                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1100                                0, start, end);
1101
1102                 __flush_tlb_kernel_range(start, end);
1103         }
1104 }
1105
1106 /* CPU capture. */
1107 /* #define CAPTURE_DEBUG */
1108 extern unsigned long xcall_capture;
1109
1110 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1111 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1112 static unsigned long penguins_are_doing_time;
1113
1114 void smp_capture(void)
1115 {
1116         int result = atomic_add_ret(1, &smp_capture_depth);
1117
1118         if (result == 1) {
1119                 int ncpus = num_online_cpus();
1120
1121 #ifdef CAPTURE_DEBUG
1122                 printk("CPU[%d]: Sending penguins to jail...",
1123                        smp_processor_id());
1124 #endif
1125                 penguins_are_doing_time = 1;
1126                 membar_storestore_loadstore();
1127                 atomic_inc(&smp_capture_registry);
1128                 smp_cross_call(&xcall_capture, 0, 0, 0);
1129                 while (atomic_read(&smp_capture_registry) != ncpus)
1130                         rmb();
1131 #ifdef CAPTURE_DEBUG
1132                 printk("done\n");
1133 #endif
1134         }
1135 }
1136
1137 void smp_release(void)
1138 {
1139         if (atomic_dec_and_test(&smp_capture_depth)) {
1140 #ifdef CAPTURE_DEBUG
1141                 printk("CPU[%d]: Giving pardon to "
1142                        "imprisoned penguins\n",
1143                        smp_processor_id());
1144 #endif
1145                 penguins_are_doing_time = 0;
1146                 membar_storeload_storestore();
1147                 atomic_dec(&smp_capture_registry);
1148         }
1149 }
1150
1151 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1152  * can service tlb flush xcalls...
1153  */
1154 extern void prom_world(int);
1155
1156 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1157 {
1158         clear_softint(1 << irq);
1159
1160         preempt_disable();
1161
1162         __asm__ __volatile__("flushw");
1163         prom_world(1);
1164         atomic_inc(&smp_capture_registry);
1165         membar_storeload_storestore();
1166         while (penguins_are_doing_time)
1167                 rmb();
1168         atomic_dec(&smp_capture_registry);
1169         prom_world(0);
1170
1171         preempt_enable();
1172 }
1173
1174 void __init smp_tick_init(void)
1175 {
1176         boot_cpu_id = hard_smp_processor_id();
1177 }
1178
1179 /* /proc/profile writes can call this, don't __init it please. */
1180 int setup_profiling_timer(unsigned int multiplier)
1181 {
1182         return -EINVAL;
1183 }
1184
1185 void __init smp_prepare_cpus(unsigned int max_cpus)
1186 {
1187         cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
1188 }
1189
1190 void __devinit smp_prepare_boot_cpu(void)
1191 {
1192 }
1193
1194 void __devinit smp_fill_in_sib_core_maps(void)
1195 {
1196         unsigned int i;
1197
1198         for_each_possible_cpu(i) {
1199                 unsigned int j;
1200
1201                 if (cpu_data(i).core_id == 0) {
1202                         cpu_set(i, cpu_core_map[i]);
1203                         continue;
1204                 }
1205
1206                 for_each_possible_cpu(j) {
1207                         if (cpu_data(i).core_id ==
1208                             cpu_data(j).core_id)
1209                                 cpu_set(j, cpu_core_map[i]);
1210                 }
1211         }
1212
1213         for_each_possible_cpu(i) {
1214                 unsigned int j;
1215
1216                 if (cpu_data(i).proc_id == -1) {
1217                         cpu_set(i, cpu_sibling_map[i]);
1218                         continue;
1219                 }
1220
1221                 for_each_possible_cpu(j) {
1222                         if (cpu_data(i).proc_id ==
1223                             cpu_data(j).proc_id)
1224                                 cpu_set(j, cpu_sibling_map[i]);
1225                 }
1226         }
1227 }
1228
1229 int __cpuinit __cpu_up(unsigned int cpu)
1230 {
1231         int ret = smp_boot_one_cpu(cpu);
1232
1233         if (!ret) {
1234                 cpu_set(cpu, smp_commenced_mask);
1235                 while (!cpu_isset(cpu, cpu_online_map))
1236                         mb();
1237                 if (!cpu_isset(cpu, cpu_online_map)) {
1238                         ret = -ENODEV;
1239                 } else {
1240                         /* On SUN4V, writes to %tick and %stick are
1241                          * not allowed.
1242                          */
1243                         if (tlb_type != hypervisor)
1244                                 smp_synchronize_one_tick(cpu);
1245                 }
1246         }
1247         return ret;
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 int __cpu_disable(void)
1252 {
1253         printk(KERN_ERR "SMP: __cpu_disable() on cpu %d\n",
1254                smp_processor_id());
1255         return -ENODEV;
1256 }
1257
1258 void __cpu_die(unsigned int cpu)
1259 {
1260         printk(KERN_ERR "SMP: __cpu_die(%u)\n", cpu);
1261 }
1262 #endif
1263
1264 void __init smp_cpus_done(unsigned int max_cpus)
1265 {
1266         unsigned long bogosum = 0;
1267         int i;
1268
1269         for_each_online_cpu(i)
1270                 bogosum += cpu_data(i).udelay_val;
1271         printk("Total of %ld processors activated "
1272                "(%lu.%02lu BogoMIPS).\n",
1273                (long) num_online_cpus(),
1274                bogosum/(500000/HZ),
1275                (bogosum/(5000/HZ))%100);
1276 }
1277
1278 void smp_send_reschedule(int cpu)
1279 {
1280         smp_receive_signal(cpu);
1281 }
1282
1283 /* This is a nop because we capture all other cpus
1284  * anyways when making the PROM active.
1285  */
1286 void smp_send_stop(void)
1287 {
1288 }
1289
1290 unsigned long __per_cpu_base __read_mostly;
1291 unsigned long __per_cpu_shift __read_mostly;
1292
1293 EXPORT_SYMBOL(__per_cpu_base);
1294 EXPORT_SYMBOL(__per_cpu_shift);
1295
1296 void __init real_setup_per_cpu_areas(void)
1297 {
1298         unsigned long goal, size, i;
1299         char *ptr;
1300
1301         /* Copy section for each CPU (we discard the original) */
1302         goal = PERCPU_ENOUGH_ROOM;
1303
1304         __per_cpu_shift = PAGE_SHIFT;
1305         for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1306                 __per_cpu_shift++;
1307
1308         ptr = alloc_bootmem_pages(size * NR_CPUS);
1309
1310         __per_cpu_base = ptr - __per_cpu_start;
1311
1312         for (i = 0; i < NR_CPUS; i++, ptr += size)
1313                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1314
1315         /* Setup %g5 for the boot cpu.  */
1316         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1317 }