sparc32: make copy_to/from_user_page() usable from modular code
[pandora-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "srmmu.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END       }
76 #endif
77
78 int flush_page_for_dma_global = 1;
79
80 char *srmmu_name;
81
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88 static int is_hypersparc;
89
90 static int srmmu_cache_pagetables;
91
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102 void *srmmu_nocache_pool;
103 void *srmmu_nocache_bitmap;
104 static struct bit_map srmmu_nocache_map;
105
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
112
113 void pmd_set(pmd_t *pmdp, pte_t *ptep)
114 {
115         unsigned long ptp;      /* Physical address, shifted right by 4 */
116         int i;
117
118         ptp = __nocache_pa((unsigned long) ptep) >> 4;
119         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
120                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
121                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
122         }
123 }
124
125 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
126 {
127         unsigned long ptp;      /* Physical address, shifted right by 4 */
128         int i;
129
130         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
131         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
132                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
133                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
134         }
135 }
136
137 /* Find an entry in the third-level page table.. */
138 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
139 {
140         void *pte;
141
142         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
143         return (pte_t *) pte +
144             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
145 }
146
147 /*
148  * size: bytes to allocate in the nocache area.
149  * align: bytes, number to align at.
150  * Returns the virtual address of the allocated area.
151  */
152 static void *__srmmu_get_nocache(int size, int align)
153 {
154         int offset;
155         unsigned long addr;
156
157         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
158                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
159                        size);
160                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161         }
162         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
163                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
164                        size);
165                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
166         }
167         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
168
169         offset = bit_map_string_get(&srmmu_nocache_map,
170                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
171                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
172         if (offset == -1) {
173                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
174                        size, (int) srmmu_nocache_size,
175                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
176                 return 0;
177         }
178
179         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
180         return (void *)addr;
181 }
182
183 void *srmmu_get_nocache(int size, int align)
184 {
185         void *tmp;
186
187         tmp = __srmmu_get_nocache(size, align);
188
189         if (tmp)
190                 memset(tmp, 0, size);
191
192         return tmp;
193 }
194
195 void srmmu_free_nocache(void *addr, int size)
196 {
197         unsigned long vaddr;
198         int offset;
199
200         vaddr = (unsigned long)addr;
201         if (vaddr < SRMMU_NOCACHE_VADDR) {
202                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
203                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
204                 BUG();
205         }
206         if (vaddr + size > srmmu_nocache_end) {
207                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
208                     vaddr, srmmu_nocache_end);
209                 BUG();
210         }
211         if (!is_power_of_2(size)) {
212                 printk("Size 0x%x is not a power of 2\n", size);
213                 BUG();
214         }
215         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
216                 printk("Size 0x%x is too small\n", size);
217                 BUG();
218         }
219         if (vaddr & (size - 1)) {
220                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
221                 BUG();
222         }
223
224         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
225         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
226
227         bit_map_clear(&srmmu_nocache_map, offset, size);
228 }
229
230 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
231                                                  unsigned long end);
232
233 /* Return how much physical memory we have.  */
234 static unsigned long __init probe_memory(void)
235 {
236         unsigned long total = 0;
237         int i;
238
239         for (i = 0; sp_banks[i].num_bytes; i++)
240                 total += sp_banks[i].num_bytes;
241
242         return total;
243 }
244
245 /*
246  * Reserve nocache dynamically proportionally to the amount of
247  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
248  */
249 static void __init srmmu_nocache_calcsize(void)
250 {
251         unsigned long sysmemavail = probe_memory() / 1024;
252         int srmmu_nocache_npages;
253
254         srmmu_nocache_npages =
255                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
256
257  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
258         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
259         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
260                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
261
262         /* anything above 1280 blows up */
263         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
264                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
265
266         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
267         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
268 }
269
270 static void __init srmmu_nocache_init(void)
271 {
272         unsigned int bitmap_bits;
273         pgd_t *pgd;
274         pmd_t *pmd;
275         pte_t *pte;
276         unsigned long paddr, vaddr;
277         unsigned long pteval;
278
279         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285         srmmu_nocache_bitmap =
286                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287                                 SMP_CACHE_BYTES, 0UL);
288         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292         init_mm.pgd = srmmu_swapper_pg_dir;
293
294         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296         paddr = __pa((unsigned long)srmmu_nocache_pool);
297         vaddr = SRMMU_NOCACHE_VADDR;
298
299         while (vaddr < srmmu_nocache_end) {
300                 pgd = pgd_offset_k(vaddr);
301                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306                 if (srmmu_cache_pagetables)
307                         pteval |= SRMMU_CACHE;
308
309                 set_pte(__nocache_fix(pte), __pte(pteval));
310
311                 vaddr += PAGE_SIZE;
312                 paddr += PAGE_SIZE;
313         }
314
315         flush_cache_all();
316         flush_tlb_all();
317 }
318
319 pgd_t *get_pgd_fast(void)
320 {
321         pgd_t *pgd = NULL;
322
323         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324         if (pgd) {
325                 pgd_t *init = pgd_offset_k(0);
326                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329         }
330
331         return pgd;
332 }
333
334 /*
335  * Hardware needs alignment to 256 only, but we align to whole page size
336  * to reduce fragmentation problems due to the buddy principle.
337  * XXX Provide actual fragmentation statistics in /proc.
338  *
339  * Alignments up to the page size are the same for physical and virtual
340  * addresses of the nocache area.
341  */
342 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343 {
344         unsigned long pte;
345         struct page *page;
346
347         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348                 return NULL;
349         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350         if (!pgtable_page_ctor(page)) {
351                 __free_page(page);
352                 return NULL;
353         }
354         return page;
355 }
356
357 void pte_free(struct mm_struct *mm, pgtable_t pte)
358 {
359         unsigned long p;
360
361         pgtable_page_dtor(pte);
362         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
363         if (p == 0)
364                 BUG();
365         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
366
367         /* free non cached virtual address*/
368         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369 }
370
371 /* context handling - a dynamically sized pool is used */
372 #define NO_CONTEXT      -1
373
374 struct ctx_list {
375         struct ctx_list *next;
376         struct ctx_list *prev;
377         unsigned int ctx_number;
378         struct mm_struct *ctx_mm;
379 };
380
381 static struct ctx_list *ctx_list_pool;
382 static struct ctx_list ctx_free;
383 static struct ctx_list ctx_used;
384
385 /* At boot time we determine the number of contexts */
386 static int num_contexts;
387
388 static inline void remove_from_ctx_list(struct ctx_list *entry)
389 {
390         entry->next->prev = entry->prev;
391         entry->prev->next = entry->next;
392 }
393
394 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395 {
396         entry->next = head;
397         (entry->prev = head->prev)->next = entry;
398         head->prev = entry;
399 }
400 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405 {
406         struct ctx_list *ctxp;
407
408         ctxp = ctx_free.next;
409         if (ctxp != &ctx_free) {
410                 remove_from_ctx_list(ctxp);
411                 add_to_used_ctxlist(ctxp);
412                 mm->context = ctxp->ctx_number;
413                 ctxp->ctx_mm = mm;
414                 return;
415         }
416         ctxp = ctx_used.next;
417         if (ctxp->ctx_mm == old_mm)
418                 ctxp = ctxp->next;
419         if (ctxp == &ctx_used)
420                 panic("out of mmu contexts");
421         flush_cache_mm(ctxp->ctx_mm);
422         flush_tlb_mm(ctxp->ctx_mm);
423         remove_from_ctx_list(ctxp);
424         add_to_used_ctxlist(ctxp);
425         ctxp->ctx_mm->context = NO_CONTEXT;
426         ctxp->ctx_mm = mm;
427         mm->context = ctxp->ctx_number;
428 }
429
430 static inline void free_context(int context)
431 {
432         struct ctx_list *ctx_old;
433
434         ctx_old = ctx_list_pool + context;
435         remove_from_ctx_list(ctx_old);
436         add_to_free_ctxlist(ctx_old);
437 }
438
439 static void __init sparc_context_init(int numctx)
440 {
441         int ctx;
442         unsigned long size;
443
444         size = numctx * sizeof(struct ctx_list);
445         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447         for (ctx = 0; ctx < numctx; ctx++) {
448                 struct ctx_list *clist;
449
450                 clist = (ctx_list_pool + ctx);
451                 clist->ctx_number = ctx;
452                 clist->ctx_mm = NULL;
453         }
454         ctx_free.next = ctx_free.prev = &ctx_free;
455         ctx_used.next = ctx_used.prev = &ctx_used;
456         for (ctx = 0; ctx < numctx; ctx++)
457                 add_to_free_ctxlist(ctx_list_pool + ctx);
458 }
459
460 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461                struct task_struct *tsk)
462 {
463         if (mm->context == NO_CONTEXT) {
464                 spin_lock(&srmmu_context_spinlock);
465                 alloc_context(old_mm, mm);
466                 spin_unlock(&srmmu_context_spinlock);
467                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
468         }
469
470         if (sparc_cpu_model == sparc_leon)
471                 leon_switch_mm();
472
473         if (is_hypersparc)
474                 hyper_flush_whole_icache();
475
476         srmmu_set_context(mm->context);
477 }
478
479 /* Low level IO area allocation on the SRMMU. */
480 static inline void srmmu_mapioaddr(unsigned long physaddr,
481                                    unsigned long virt_addr, int bus_type)
482 {
483         pgd_t *pgdp;
484         pmd_t *pmdp;
485         pte_t *ptep;
486         unsigned long tmp;
487
488         physaddr &= PAGE_MASK;
489         pgdp = pgd_offset_k(virt_addr);
490         pmdp = pmd_offset(pgdp, virt_addr);
491         ptep = pte_offset_kernel(pmdp, virt_addr);
492         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
493
494         /* I need to test whether this is consistent over all
495          * sun4m's.  The bus_type represents the upper 4 bits of
496          * 36-bit physical address on the I/O space lines...
497          */
498         tmp |= (bus_type << 28);
499         tmp |= SRMMU_PRIV;
500         __flush_page_to_ram(virt_addr);
501         set_pte(ptep, __pte(tmp));
502 }
503
504 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
505                       unsigned long xva, unsigned int len)
506 {
507         while (len != 0) {
508                 len -= PAGE_SIZE;
509                 srmmu_mapioaddr(xpa, xva, bus);
510                 xva += PAGE_SIZE;
511                 xpa += PAGE_SIZE;
512         }
513         flush_tlb_all();
514 }
515
516 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
517 {
518         pgd_t *pgdp;
519         pmd_t *pmdp;
520         pte_t *ptep;
521
522         pgdp = pgd_offset_k(virt_addr);
523         pmdp = pmd_offset(pgdp, virt_addr);
524         ptep = pte_offset_kernel(pmdp, virt_addr);
525
526         /* No need to flush uncacheable page. */
527         __pte_clear(ptep);
528 }
529
530 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
531 {
532         while (len != 0) {
533                 len -= PAGE_SIZE;
534                 srmmu_unmapioaddr(virt_addr);
535                 virt_addr += PAGE_SIZE;
536         }
537         flush_tlb_all();
538 }
539
540 /* tsunami.S */
541 extern void tsunami_flush_cache_all(void);
542 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
543 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
545 extern void tsunami_flush_page_to_ram(unsigned long page);
546 extern void tsunami_flush_page_for_dma(unsigned long page);
547 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
548 extern void tsunami_flush_tlb_all(void);
549 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
550 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
552 extern void tsunami_setup_blockops(void);
553
554 /* swift.S */
555 extern void swift_flush_cache_all(void);
556 extern void swift_flush_cache_mm(struct mm_struct *mm);
557 extern void swift_flush_cache_range(struct vm_area_struct *vma,
558                                     unsigned long start, unsigned long end);
559 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560 extern void swift_flush_page_to_ram(unsigned long page);
561 extern void swift_flush_page_for_dma(unsigned long page);
562 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563 extern void swift_flush_tlb_all(void);
564 extern void swift_flush_tlb_mm(struct mm_struct *mm);
565 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
566                                   unsigned long start, unsigned long end);
567 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
568
569 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
570 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
571 {
572         int cctx, ctx1;
573
574         page &= PAGE_MASK;
575         if ((ctx1 = vma->vm_mm->context) != -1) {
576                 cctx = srmmu_get_context();
577 /* Is context # ever different from current context? P3 */
578                 if (cctx != ctx1) {
579                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
580                         srmmu_set_context(ctx1);
581                         swift_flush_page(page);
582                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
583                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
584                         srmmu_set_context(cctx);
585                 } else {
586                          /* Rm. prot. bits from virt. c. */
587                         /* swift_flush_cache_all(); */
588                         /* swift_flush_cache_page(vma, page); */
589                         swift_flush_page(page);
590
591                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593                         /* same as above: srmmu_flush_tlb_page() */
594                 }
595         }
596 }
597 #endif
598
599 /*
600  * The following are all MBUS based SRMMU modules, and therefore could
601  * be found in a multiprocessor configuration.  On the whole, these
602  * chips seems to be much more touchy about DVMA and page tables
603  * with respect to cache coherency.
604  */
605
606 /* viking.S */
607 extern void viking_flush_cache_all(void);
608 extern void viking_flush_cache_mm(struct mm_struct *mm);
609 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
610                                      unsigned long end);
611 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
612 extern void viking_flush_page_to_ram(unsigned long page);
613 extern void viking_flush_page_for_dma(unsigned long page);
614 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
615 extern void viking_flush_page(unsigned long page);
616 extern void viking_mxcc_flush_page(unsigned long page);
617 extern void viking_flush_tlb_all(void);
618 extern void viking_flush_tlb_mm(struct mm_struct *mm);
619 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
620                                    unsigned long end);
621 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
622                                   unsigned long page);
623 extern void sun4dsmp_flush_tlb_all(void);
624 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
625 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
626                                    unsigned long end);
627 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
628                                   unsigned long page);
629
630 /* hypersparc.S */
631 extern void hypersparc_flush_cache_all(void);
632 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
633 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635 extern void hypersparc_flush_page_to_ram(unsigned long page);
636 extern void hypersparc_flush_page_for_dma(unsigned long page);
637 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
638 extern void hypersparc_flush_tlb_all(void);
639 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
640 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
642 extern void hypersparc_setup_blockops(void);
643
644 /*
645  * NOTE: All of this startup code assumes the low 16mb (approx.) of
646  *       kernel mappings are done with one single contiguous chunk of
647  *       ram.  On small ram machines (classics mainly) we only get
648  *       around 8mb mapped for us.
649  */
650
651 static void __init early_pgtable_allocfail(char *type)
652 {
653         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
654         prom_halt();
655 }
656
657 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
658                                                         unsigned long end)
659 {
660         pgd_t *pgdp;
661         pmd_t *pmdp;
662         pte_t *ptep;
663
664         while (start < end) {
665                 pgdp = pgd_offset_k(start);
666                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
667                         pmdp = __srmmu_get_nocache(
668                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
669                         if (pmdp == NULL)
670                                 early_pgtable_allocfail("pmd");
671                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
672                         pgd_set(__nocache_fix(pgdp), pmdp);
673                 }
674                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
675                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
676                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
677                         if (ptep == NULL)
678                                 early_pgtable_allocfail("pte");
679                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
680                         pmd_set(__nocache_fix(pmdp), ptep);
681                 }
682                 if (start > (0xffffffffUL - PMD_SIZE))
683                         break;
684                 start = (start + PMD_SIZE) & PMD_MASK;
685         }
686 }
687
688 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
689                                                   unsigned long end)
690 {
691         pgd_t *pgdp;
692         pmd_t *pmdp;
693         pte_t *ptep;
694
695         while (start < end) {
696                 pgdp = pgd_offset_k(start);
697                 if (pgd_none(*pgdp)) {
698                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
699                         if (pmdp == NULL)
700                                 early_pgtable_allocfail("pmd");
701                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
702                         pgd_set(pgdp, pmdp);
703                 }
704                 pmdp = pmd_offset(pgdp, start);
705                 if (srmmu_pmd_none(*pmdp)) {
706                         ptep = __srmmu_get_nocache(PTE_SIZE,
707                                                              PTE_SIZE);
708                         if (ptep == NULL)
709                                 early_pgtable_allocfail("pte");
710                         memset(ptep, 0, PTE_SIZE);
711                         pmd_set(pmdp, ptep);
712                 }
713                 if (start > (0xffffffffUL - PMD_SIZE))
714                         break;
715                 start = (start + PMD_SIZE) & PMD_MASK;
716         }
717 }
718
719 /* These flush types are not available on all chips... */
720 static inline unsigned long srmmu_probe(unsigned long vaddr)
721 {
722         unsigned long retval;
723
724         if (sparc_cpu_model != sparc_leon) {
725
726                 vaddr &= PAGE_MASK;
727                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
728                                      "=r" (retval) :
729                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
730         } else {
731                 retval = leon_swprobe(vaddr, 0);
732         }
733         return retval;
734 }
735
736 /*
737  * This is much cleaner than poking around physical address space
738  * looking at the prom's page table directly which is what most
739  * other OS's do.  Yuck... this is much better.
740  */
741 static void __init srmmu_inherit_prom_mappings(unsigned long start,
742                                                unsigned long end)
743 {
744         unsigned long probed;
745         unsigned long addr;
746         pgd_t *pgdp;
747         pmd_t *pmdp;
748         pte_t *ptep;
749         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
750
751         while (start <= end) {
752                 if (start == 0)
753                         break; /* probably wrap around */
754                 if (start == 0xfef00000)
755                         start = KADB_DEBUGGER_BEGVM;
756                 probed = srmmu_probe(start);
757                 if (!probed) {
758                         /* continue probing until we find an entry */
759                         start += PAGE_SIZE;
760                         continue;
761                 }
762
763                 /* A red snapper, see what it really is. */
764                 what = 0;
765                 addr = start - PAGE_SIZE;
766
767                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
768                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
769                                 what = 1;
770                 }
771
772                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
773                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
774                                 what = 2;
775                 }
776
777                 pgdp = pgd_offset_k(start);
778                 if (what == 2) {
779                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
780                         start += SRMMU_PGDIR_SIZE;
781                         continue;
782                 }
783                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
784                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
785                                                    SRMMU_PMD_TABLE_SIZE);
786                         if (pmdp == NULL)
787                                 early_pgtable_allocfail("pmd");
788                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
789                         pgd_set(__nocache_fix(pgdp), pmdp);
790                 }
791                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
792                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
793                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
794                         if (ptep == NULL)
795                                 early_pgtable_allocfail("pte");
796                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
797                         pmd_set(__nocache_fix(pmdp), ptep);
798                 }
799                 if (what == 1) {
800                         /* We bend the rule where all 16 PTPs in a pmd_t point
801                          * inside the same PTE page, and we leak a perfectly
802                          * good hardware PTE piece. Alternatives seem worse.
803                          */
804                         unsigned int x; /* Index of HW PMD in soft cluster */
805                         unsigned long *val;
806                         x = (start >> PMD_SHIFT) & 15;
807                         val = &pmdp->pmdv[x];
808                         *(unsigned long *)__nocache_fix(val) = probed;
809                         start += SRMMU_REAL_PMD_SIZE;
810                         continue;
811                 }
812                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
813                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
814                 start += PAGE_SIZE;
815         }
816 }
817
818 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
819
820 /* Create a third-level SRMMU 16MB page mapping. */
821 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
822 {
823         pgd_t *pgdp = pgd_offset_k(vaddr);
824         unsigned long big_pte;
825
826         big_pte = KERNEL_PTE(phys_base >> 4);
827         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
828 }
829
830 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
831 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
832 {
833         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
834         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
835         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
836         /* Map "low" memory only */
837         const unsigned long min_vaddr = PAGE_OFFSET;
838         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
839
840         if (vstart < min_vaddr || vstart >= max_vaddr)
841                 return vstart;
842
843         if (vend > max_vaddr || vend < min_vaddr)
844                 vend = max_vaddr;
845
846         while (vstart < vend) {
847                 do_large_mapping(vstart, pstart);
848                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
849         }
850         return vstart;
851 }
852
853 static void __init map_kernel(void)
854 {
855         int i;
856
857         if (phys_base > 0) {
858                 do_large_mapping(PAGE_OFFSET, phys_base);
859         }
860
861         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
862                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
863         }
864 }
865
866 void (*poke_srmmu)(void) = NULL;
867
868 extern unsigned long bootmem_init(unsigned long *pages_avail);
869
870 void __init srmmu_paging_init(void)
871 {
872         int i;
873         phandle cpunode;
874         char node_str[128];
875         pgd_t *pgd;
876         pmd_t *pmd;
877         pte_t *pte;
878         unsigned long pages_avail;
879
880         init_mm.context = (unsigned long) NO_CONTEXT;
881         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
882
883         if (sparc_cpu_model == sun4d)
884                 num_contexts = 65536; /* We know it is Viking */
885         else {
886                 /* Find the number of contexts on the srmmu. */
887                 cpunode = prom_getchild(prom_root_node);
888                 num_contexts = 0;
889                 while (cpunode != 0) {
890                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
891                         if (!strcmp(node_str, "cpu")) {
892                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
893                                 break;
894                         }
895                         cpunode = prom_getsibling(cpunode);
896                 }
897         }
898
899         if (!num_contexts) {
900                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
901                 prom_halt();
902         }
903
904         pages_avail = 0;
905         last_valid_pfn = bootmem_init(&pages_avail);
906
907         srmmu_nocache_calcsize();
908         srmmu_nocache_init();
909         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
910         map_kernel();
911
912         /* ctx table has to be physically aligned to its size */
913         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
914         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
915
916         for (i = 0; i < num_contexts; i++)
917                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
918
919         flush_cache_all();
920         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
921 #ifdef CONFIG_SMP
922         /* Stop from hanging here... */
923         local_ops->tlb_all();
924 #else
925         flush_tlb_all();
926 #endif
927         poke_srmmu();
928
929         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
930         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
931
932         srmmu_allocate_ptable_skeleton(
933                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
934         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
935
936         pgd = pgd_offset_k(PKMAP_BASE);
937         pmd = pmd_offset(pgd, PKMAP_BASE);
938         pte = pte_offset_kernel(pmd, PKMAP_BASE);
939         pkmap_page_table = pte;
940
941         flush_cache_all();
942         flush_tlb_all();
943
944         sparc_context_init(num_contexts);
945
946         kmap_init();
947
948         {
949                 unsigned long zones_size[MAX_NR_ZONES];
950                 unsigned long zholes_size[MAX_NR_ZONES];
951                 unsigned long npages;
952                 int znum;
953
954                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
955                         zones_size[znum] = zholes_size[znum] = 0;
956
957                 npages = max_low_pfn - pfn_base;
958
959                 zones_size[ZONE_DMA] = npages;
960                 zholes_size[ZONE_DMA] = npages - pages_avail;
961
962                 npages = highend_pfn - max_low_pfn;
963                 zones_size[ZONE_HIGHMEM] = npages;
964                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
965
966                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
967         }
968 }
969
970 void mmu_info(struct seq_file *m)
971 {
972         seq_printf(m,
973                    "MMU type\t: %s\n"
974                    "contexts\t: %d\n"
975                    "nocache total\t: %ld\n"
976                    "nocache used\t: %d\n",
977                    srmmu_name,
978                    num_contexts,
979                    srmmu_nocache_size,
980                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
981 }
982
983 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
984 {
985         mm->context = NO_CONTEXT;
986         return 0;
987 }
988
989 void destroy_context(struct mm_struct *mm)
990 {
991
992         if (mm->context != NO_CONTEXT) {
993                 flush_cache_mm(mm);
994                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
995                 flush_tlb_mm(mm);
996                 spin_lock(&srmmu_context_spinlock);
997                 free_context(mm->context);
998                 spin_unlock(&srmmu_context_spinlock);
999                 mm->context = NO_CONTEXT;
1000         }
1001 }
1002
1003 /* Init various srmmu chip types. */
1004 static void __init srmmu_is_bad(void)
1005 {
1006         prom_printf("Could not determine SRMMU chip type.\n");
1007         prom_halt();
1008 }
1009
1010 static void __init init_vac_layout(void)
1011 {
1012         phandle nd;
1013         int cache_lines;
1014         char node_str[128];
1015 #ifdef CONFIG_SMP
1016         int cpu = 0;
1017         unsigned long max_size = 0;
1018         unsigned long min_line_size = 0x10000000;
1019 #endif
1020
1021         nd = prom_getchild(prom_root_node);
1022         while ((nd = prom_getsibling(nd)) != 0) {
1023                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1024                 if (!strcmp(node_str, "cpu")) {
1025                         vac_line_size = prom_getint(nd, "cache-line-size");
1026                         if (vac_line_size == -1) {
1027                                 prom_printf("can't determine cache-line-size, halting.\n");
1028                                 prom_halt();
1029                         }
1030                         cache_lines = prom_getint(nd, "cache-nlines");
1031                         if (cache_lines == -1) {
1032                                 prom_printf("can't determine cache-nlines, halting.\n");
1033                                 prom_halt();
1034                         }
1035
1036                         vac_cache_size = cache_lines * vac_line_size;
1037 #ifdef CONFIG_SMP
1038                         if (vac_cache_size > max_size)
1039                                 max_size = vac_cache_size;
1040                         if (vac_line_size < min_line_size)
1041                                 min_line_size = vac_line_size;
1042                         //FIXME: cpus not contiguous!!
1043                         cpu++;
1044                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1045                                 break;
1046 #else
1047                         break;
1048 #endif
1049                 }
1050         }
1051         if (nd == 0) {
1052                 prom_printf("No CPU nodes found, halting.\n");
1053                 prom_halt();
1054         }
1055 #ifdef CONFIG_SMP
1056         vac_cache_size = max_size;
1057         vac_line_size = min_line_size;
1058 #endif
1059         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1060                (int)vac_cache_size, (int)vac_line_size);
1061 }
1062
1063 static void poke_hypersparc(void)
1064 {
1065         volatile unsigned long clear;
1066         unsigned long mreg = srmmu_get_mmureg();
1067
1068         hyper_flush_unconditional_combined();
1069
1070         mreg &= ~(HYPERSPARC_CWENABLE);
1071         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1072         mreg |= (HYPERSPARC_CMODE);
1073
1074         srmmu_set_mmureg(mreg);
1075
1076 #if 0 /* XXX I think this is bad news... -DaveM */
1077         hyper_clear_all_tags();
1078 #endif
1079
1080         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1081         hyper_flush_whole_icache();
1082         clear = srmmu_get_faddr();
1083         clear = srmmu_get_fstatus();
1084 }
1085
1086 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1087         .cache_all      = hypersparc_flush_cache_all,
1088         .cache_mm       = hypersparc_flush_cache_mm,
1089         .cache_page     = hypersparc_flush_cache_page,
1090         .cache_range    = hypersparc_flush_cache_range,
1091         .tlb_all        = hypersparc_flush_tlb_all,
1092         .tlb_mm         = hypersparc_flush_tlb_mm,
1093         .tlb_page       = hypersparc_flush_tlb_page,
1094         .tlb_range      = hypersparc_flush_tlb_range,
1095         .page_to_ram    = hypersparc_flush_page_to_ram,
1096         .sig_insns      = hypersparc_flush_sig_insns,
1097         .page_for_dma   = hypersparc_flush_page_for_dma,
1098 };
1099
1100 static void __init init_hypersparc(void)
1101 {
1102         srmmu_name = "ROSS HyperSparc";
1103         srmmu_modtype = HyperSparc;
1104
1105         init_vac_layout();
1106
1107         is_hypersparc = 1;
1108         sparc32_cachetlb_ops = &hypersparc_ops;
1109
1110         poke_srmmu = poke_hypersparc;
1111
1112         hypersparc_setup_blockops();
1113 }
1114
1115 static void poke_swift(void)
1116 {
1117         unsigned long mreg;
1118
1119         /* Clear any crap from the cache or else... */
1120         swift_flush_cache_all();
1121
1122         /* Enable I & D caches */
1123         mreg = srmmu_get_mmureg();
1124         mreg |= (SWIFT_IE | SWIFT_DE);
1125         /*
1126          * The Swift branch folding logic is completely broken.  At
1127          * trap time, if things are just right, if can mistakenly
1128          * think that a trap is coming from kernel mode when in fact
1129          * it is coming from user mode (it mis-executes the branch in
1130          * the trap code).  So you see things like crashme completely
1131          * hosing your machine which is completely unacceptable.  Turn
1132          * this shit off... nice job Fujitsu.
1133          */
1134         mreg &= ~(SWIFT_BF);
1135         srmmu_set_mmureg(mreg);
1136 }
1137
1138 static const struct sparc32_cachetlb_ops swift_ops = {
1139         .cache_all      = swift_flush_cache_all,
1140         .cache_mm       = swift_flush_cache_mm,
1141         .cache_page     = swift_flush_cache_page,
1142         .cache_range    = swift_flush_cache_range,
1143         .tlb_all        = swift_flush_tlb_all,
1144         .tlb_mm         = swift_flush_tlb_mm,
1145         .tlb_page       = swift_flush_tlb_page,
1146         .tlb_range      = swift_flush_tlb_range,
1147         .page_to_ram    = swift_flush_page_to_ram,
1148         .sig_insns      = swift_flush_sig_insns,
1149         .page_for_dma   = swift_flush_page_for_dma,
1150 };
1151
1152 #define SWIFT_MASKID_ADDR  0x10003018
1153 static void __init init_swift(void)
1154 {
1155         unsigned long swift_rev;
1156
1157         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1158                              "srl %0, 0x18, %0\n\t" :
1159                              "=r" (swift_rev) :
1160                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1161         srmmu_name = "Fujitsu Swift";
1162         switch (swift_rev) {
1163         case 0x11:
1164         case 0x20:
1165         case 0x23:
1166         case 0x30:
1167                 srmmu_modtype = Swift_lots_o_bugs;
1168                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1169                 /*
1170                  * Gee george, I wonder why Sun is so hush hush about
1171                  * this hardware bug... really braindamage stuff going
1172                  * on here.  However I think we can find a way to avoid
1173                  * all of the workaround overhead under Linux.  Basically,
1174                  * any page fault can cause kernel pages to become user
1175                  * accessible (the mmu gets confused and clears some of
1176                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1177                  * horrible eh?  But wait, after extensive testing it appears
1178                  * that if you use pgd_t level large kernel pte's (like the
1179                  * 4MB pages on the Pentium) the bug does not get tripped
1180                  * at all.  This avoids almost all of the major overhead.
1181                  * Welcome to a world where your vendor tells you to,
1182                  * "apply this kernel patch" instead of "sorry for the
1183                  * broken hardware, send it back and we'll give you
1184                  * properly functioning parts"
1185                  */
1186                 break;
1187         case 0x25:
1188         case 0x31:
1189                 srmmu_modtype = Swift_bad_c;
1190                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1191                 /*
1192                  * You see Sun allude to this hardware bug but never
1193                  * admit things directly, they'll say things like,
1194                  * "the Swift chip cache problems" or similar.
1195                  */
1196                 break;
1197         default:
1198                 srmmu_modtype = Swift_ok;
1199                 break;
1200         }
1201
1202         sparc32_cachetlb_ops = &swift_ops;
1203         flush_page_for_dma_global = 0;
1204
1205         /*
1206          * Are you now convinced that the Swift is one of the
1207          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1208          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1209          * you examined the microcode of the Swift you'd find
1210          * XXX's all over the place.
1211          */
1212         poke_srmmu = poke_swift;
1213 }
1214
1215 static void turbosparc_flush_cache_all(void)
1216 {
1217         flush_user_windows();
1218         turbosparc_idflash_clear();
1219 }
1220
1221 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1222 {
1223         FLUSH_BEGIN(mm)
1224         flush_user_windows();
1225         turbosparc_idflash_clear();
1226         FLUSH_END
1227 }
1228
1229 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1230 {
1231         FLUSH_BEGIN(vma->vm_mm)
1232         flush_user_windows();
1233         turbosparc_idflash_clear();
1234         FLUSH_END
1235 }
1236
1237 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1238 {
1239         FLUSH_BEGIN(vma->vm_mm)
1240         flush_user_windows();
1241         if (vma->vm_flags & VM_EXEC)
1242                 turbosparc_flush_icache();
1243         turbosparc_flush_dcache();
1244         FLUSH_END
1245 }
1246
1247 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1248 static void turbosparc_flush_page_to_ram(unsigned long page)
1249 {
1250 #ifdef TURBOSPARC_WRITEBACK
1251         volatile unsigned long clear;
1252
1253         if (srmmu_probe(page))
1254                 turbosparc_flush_page_cache(page);
1255         clear = srmmu_get_fstatus();
1256 #endif
1257 }
1258
1259 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1260 {
1261 }
1262
1263 static void turbosparc_flush_page_for_dma(unsigned long page)
1264 {
1265         turbosparc_flush_dcache();
1266 }
1267
1268 static void turbosparc_flush_tlb_all(void)
1269 {
1270         srmmu_flush_whole_tlb();
1271 }
1272
1273 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1274 {
1275         FLUSH_BEGIN(mm)
1276         srmmu_flush_whole_tlb();
1277         FLUSH_END
1278 }
1279
1280 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1281 {
1282         FLUSH_BEGIN(vma->vm_mm)
1283         srmmu_flush_whole_tlb();
1284         FLUSH_END
1285 }
1286
1287 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1288 {
1289         FLUSH_BEGIN(vma->vm_mm)
1290         srmmu_flush_whole_tlb();
1291         FLUSH_END
1292 }
1293
1294
1295 static void poke_turbosparc(void)
1296 {
1297         unsigned long mreg = srmmu_get_mmureg();
1298         unsigned long ccreg;
1299
1300         /* Clear any crap from the cache or else... */
1301         turbosparc_flush_cache_all();
1302         /* Temporarily disable I & D caches */
1303         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1304         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1305         srmmu_set_mmureg(mreg);
1306
1307         ccreg = turbosparc_get_ccreg();
1308
1309 #ifdef TURBOSPARC_WRITEBACK
1310         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1311         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1312                         /* Write-back D-cache, emulate VLSI
1313                          * abortion number three, not number one */
1314 #else
1315         /* For now let's play safe, optimize later */
1316         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1317                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1318         ccreg &= ~(TURBOSPARC_uS2);
1319                         /* Emulate VLSI abortion number three, not number one */
1320 #endif
1321
1322         switch (ccreg & 7) {
1323         case 0: /* No SE cache */
1324         case 7: /* Test mode */
1325                 break;
1326         default:
1327                 ccreg |= (TURBOSPARC_SCENABLE);
1328         }
1329         turbosparc_set_ccreg(ccreg);
1330
1331         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1332         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1333         srmmu_set_mmureg(mreg);
1334 }
1335
1336 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1337         .cache_all      = turbosparc_flush_cache_all,
1338         .cache_mm       = turbosparc_flush_cache_mm,
1339         .cache_page     = turbosparc_flush_cache_page,
1340         .cache_range    = turbosparc_flush_cache_range,
1341         .tlb_all        = turbosparc_flush_tlb_all,
1342         .tlb_mm         = turbosparc_flush_tlb_mm,
1343         .tlb_page       = turbosparc_flush_tlb_page,
1344         .tlb_range      = turbosparc_flush_tlb_range,
1345         .page_to_ram    = turbosparc_flush_page_to_ram,
1346         .sig_insns      = turbosparc_flush_sig_insns,
1347         .page_for_dma   = turbosparc_flush_page_for_dma,
1348 };
1349
1350 static void __init init_turbosparc(void)
1351 {
1352         srmmu_name = "Fujitsu TurboSparc";
1353         srmmu_modtype = TurboSparc;
1354         sparc32_cachetlb_ops = &turbosparc_ops;
1355         poke_srmmu = poke_turbosparc;
1356 }
1357
1358 static void poke_tsunami(void)
1359 {
1360         unsigned long mreg = srmmu_get_mmureg();
1361
1362         tsunami_flush_icache();
1363         tsunami_flush_dcache();
1364         mreg &= ~TSUNAMI_ITD;
1365         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1366         srmmu_set_mmureg(mreg);
1367 }
1368
1369 static const struct sparc32_cachetlb_ops tsunami_ops = {
1370         .cache_all      = tsunami_flush_cache_all,
1371         .cache_mm       = tsunami_flush_cache_mm,
1372         .cache_page     = tsunami_flush_cache_page,
1373         .cache_range    = tsunami_flush_cache_range,
1374         .tlb_all        = tsunami_flush_tlb_all,
1375         .tlb_mm         = tsunami_flush_tlb_mm,
1376         .tlb_page       = tsunami_flush_tlb_page,
1377         .tlb_range      = tsunami_flush_tlb_range,
1378         .page_to_ram    = tsunami_flush_page_to_ram,
1379         .sig_insns      = tsunami_flush_sig_insns,
1380         .page_for_dma   = tsunami_flush_page_for_dma,
1381 };
1382
1383 static void __init init_tsunami(void)
1384 {
1385         /*
1386          * Tsunami's pretty sane, Sun and TI actually got it
1387          * somewhat right this time.  Fujitsu should have
1388          * taken some lessons from them.
1389          */
1390
1391         srmmu_name = "TI Tsunami";
1392         srmmu_modtype = Tsunami;
1393         sparc32_cachetlb_ops = &tsunami_ops;
1394         poke_srmmu = poke_tsunami;
1395
1396         tsunami_setup_blockops();
1397 }
1398
1399 static void poke_viking(void)
1400 {
1401         unsigned long mreg = srmmu_get_mmureg();
1402         static int smp_catch;
1403
1404         if (viking_mxcc_present) {
1405                 unsigned long mxcc_control = mxcc_get_creg();
1406
1407                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1408                 mxcc_control &= ~(MXCC_CTL_RRC);
1409                 mxcc_set_creg(mxcc_control);
1410
1411                 /*
1412                  * We don't need memory parity checks.
1413                  * XXX This is a mess, have to dig out later. ecd.
1414                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1415                  */
1416
1417                 /* We do cache ptables on MXCC. */
1418                 mreg |= VIKING_TCENABLE;
1419         } else {
1420                 unsigned long bpreg;
1421
1422                 mreg &= ~(VIKING_TCENABLE);
1423                 if (smp_catch++) {
1424                         /* Must disable mixed-cmd mode here for other cpu's. */
1425                         bpreg = viking_get_bpreg();
1426                         bpreg &= ~(VIKING_ACTION_MIX);
1427                         viking_set_bpreg(bpreg);
1428
1429                         /* Just in case PROM does something funny. */
1430                         msi_set_sync();
1431                 }
1432         }
1433
1434         mreg |= VIKING_SPENABLE;
1435         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1436         mreg |= VIKING_SBENABLE;
1437         mreg &= ~(VIKING_ACENABLE);
1438         srmmu_set_mmureg(mreg);
1439 }
1440
1441 static struct sparc32_cachetlb_ops viking_ops = {
1442         .cache_all      = viking_flush_cache_all,
1443         .cache_mm       = viking_flush_cache_mm,
1444         .cache_page     = viking_flush_cache_page,
1445         .cache_range    = viking_flush_cache_range,
1446         .tlb_all        = viking_flush_tlb_all,
1447         .tlb_mm         = viking_flush_tlb_mm,
1448         .tlb_page       = viking_flush_tlb_page,
1449         .tlb_range      = viking_flush_tlb_range,
1450         .page_to_ram    = viking_flush_page_to_ram,
1451         .sig_insns      = viking_flush_sig_insns,
1452         .page_for_dma   = viking_flush_page_for_dma,
1453 };
1454
1455 #ifdef CONFIG_SMP
1456 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1457  * perform the local TLB flush and all the other cpus will see it.
1458  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1459  * that requires that we add some synchronization to these flushes.
1460  *
1461  * The bug is that the fifo which keeps track of all the pending TLB
1462  * broadcasts in the system is an entry or two too small, so if we
1463  * have too many going at once we'll overflow that fifo and lose a TLB
1464  * flush resulting in corruption.
1465  *
1466  * Our workaround is to take a global spinlock around the TLB flushes,
1467  * which guarentees we won't ever have too many pending.  It's a big
1468  * hammer, but a semaphore like system to make sure we only have N TLB
1469  * flushes going at once will require SMP locking anyways so there's
1470  * no real value in trying any harder than this.
1471  */
1472 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1473         .cache_all      = viking_flush_cache_all,
1474         .cache_mm       = viking_flush_cache_mm,
1475         .cache_page     = viking_flush_cache_page,
1476         .cache_range    = viking_flush_cache_range,
1477         .tlb_all        = sun4dsmp_flush_tlb_all,
1478         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1479         .tlb_page       = sun4dsmp_flush_tlb_page,
1480         .tlb_range      = sun4dsmp_flush_tlb_range,
1481         .page_to_ram    = viking_flush_page_to_ram,
1482         .sig_insns      = viking_flush_sig_insns,
1483         .page_for_dma   = viking_flush_page_for_dma,
1484 };
1485 #endif
1486
1487 static void __init init_viking(void)
1488 {
1489         unsigned long mreg = srmmu_get_mmureg();
1490
1491         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1492         if (mreg & VIKING_MMODE) {
1493                 srmmu_name = "TI Viking";
1494                 viking_mxcc_present = 0;
1495                 msi_set_sync();
1496
1497                 /*
1498                  * We need this to make sure old viking takes no hits
1499                  * on it's cache for dma snoops to workaround the
1500                  * "load from non-cacheable memory" interrupt bug.
1501                  * This is only necessary because of the new way in
1502                  * which we use the IOMMU.
1503                  */
1504                 viking_ops.page_for_dma = viking_flush_page;
1505 #ifdef CONFIG_SMP
1506                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1507 #endif
1508                 flush_page_for_dma_global = 0;
1509         } else {
1510                 srmmu_name = "TI Viking/MXCC";
1511                 viking_mxcc_present = 1;
1512                 srmmu_cache_pagetables = 1;
1513         }
1514
1515         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1516                 &viking_ops;
1517 #ifdef CONFIG_SMP
1518         if (sparc_cpu_model == sun4d)
1519                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1520                         &viking_sun4d_smp_ops;
1521 #endif
1522
1523         poke_srmmu = poke_viking;
1524 }
1525
1526 /* Probe for the srmmu chip version. */
1527 static void __init get_srmmu_type(void)
1528 {
1529         unsigned long mreg, psr;
1530         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1531
1532         srmmu_modtype = SRMMU_INVAL_MOD;
1533         hwbug_bitmask = 0;
1534
1535         mreg = srmmu_get_mmureg(); psr = get_psr();
1536         mod_typ = (mreg & 0xf0000000) >> 28;
1537         mod_rev = (mreg & 0x0f000000) >> 24;
1538         psr_typ = (psr >> 28) & 0xf;
1539         psr_vers = (psr >> 24) & 0xf;
1540
1541         /* First, check for sparc-leon. */
1542         if (sparc_cpu_model == sparc_leon) {
1543                 init_leon();
1544                 return;
1545         }
1546
1547         /* Second, check for HyperSparc or Cypress. */
1548         if (mod_typ == 1) {
1549                 switch (mod_rev) {
1550                 case 7:
1551                         /* UP or MP Hypersparc */
1552                         init_hypersparc();
1553                         break;
1554                 case 0:
1555                 case 2:
1556                 case 10:
1557                 case 11:
1558                 case 12:
1559                 case 13:
1560                 case 14:
1561                 case 15:
1562                 default:
1563                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1564                         prom_halt();
1565                         break;
1566                 }
1567                 return;
1568         }
1569
1570         /* Now Fujitsu TurboSparc. It might happen that it is
1571          * in Swift emulation mode, so we will check later...
1572          */
1573         if (psr_typ == 0 && psr_vers == 5) {
1574                 init_turbosparc();
1575                 return;
1576         }
1577
1578         /* Next check for Fujitsu Swift. */
1579         if (psr_typ == 0 && psr_vers == 4) {
1580                 phandle cpunode;
1581                 char node_str[128];
1582
1583                 /* Look if it is not a TurboSparc emulating Swift... */
1584                 cpunode = prom_getchild(prom_root_node);
1585                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1586                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1587                         if (!strcmp(node_str, "cpu")) {
1588                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1589                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1590                                         init_turbosparc();
1591                                         return;
1592                                 }
1593                                 break;
1594                         }
1595                 }
1596
1597                 init_swift();
1598                 return;
1599         }
1600
1601         /* Now the Viking family of srmmu. */
1602         if (psr_typ == 4 &&
1603            ((psr_vers == 0) ||
1604             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1605                 init_viking();
1606                 return;
1607         }
1608
1609         /* Finally the Tsunami. */
1610         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1611                 init_tsunami();
1612                 return;
1613         }
1614
1615         /* Oh well */
1616         srmmu_is_bad();
1617 }
1618
1619 #ifdef CONFIG_SMP
1620 /* Local cross-calls. */
1621 static void smp_flush_page_for_dma(unsigned long page)
1622 {
1623         xc1((smpfunc_t) local_ops->page_for_dma, page);
1624         local_ops->page_for_dma(page);
1625 }
1626
1627 static void smp_flush_cache_all(void)
1628 {
1629         xc0((smpfunc_t) local_ops->cache_all);
1630         local_ops->cache_all();
1631 }
1632
1633 static void smp_flush_tlb_all(void)
1634 {
1635         xc0((smpfunc_t) local_ops->tlb_all);
1636         local_ops->tlb_all();
1637 }
1638
1639 static void smp_flush_cache_mm(struct mm_struct *mm)
1640 {
1641         if (mm->context != NO_CONTEXT) {
1642                 cpumask_t cpu_mask;
1643                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1644                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1645                 if (!cpumask_empty(&cpu_mask))
1646                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1647                 local_ops->cache_mm(mm);
1648         }
1649 }
1650
1651 static void smp_flush_tlb_mm(struct mm_struct *mm)
1652 {
1653         if (mm->context != NO_CONTEXT) {
1654                 cpumask_t cpu_mask;
1655                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1656                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1657                 if (!cpumask_empty(&cpu_mask)) {
1658                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1659                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1660                                 cpumask_copy(mm_cpumask(mm),
1661                                              cpumask_of(smp_processor_id()));
1662                 }
1663                 local_ops->tlb_mm(mm);
1664         }
1665 }
1666
1667 static void smp_flush_cache_range(struct vm_area_struct *vma,
1668                                   unsigned long start,
1669                                   unsigned long end)
1670 {
1671         struct mm_struct *mm = vma->vm_mm;
1672
1673         if (mm->context != NO_CONTEXT) {
1674                 cpumask_t cpu_mask;
1675                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1676                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1677                 if (!cpumask_empty(&cpu_mask))
1678                         xc3((smpfunc_t) local_ops->cache_range,
1679                             (unsigned long) vma, start, end);
1680                 local_ops->cache_range(vma, start, end);
1681         }
1682 }
1683
1684 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1685                                 unsigned long start,
1686                                 unsigned long end)
1687 {
1688         struct mm_struct *mm = vma->vm_mm;
1689
1690         if (mm->context != NO_CONTEXT) {
1691                 cpumask_t cpu_mask;
1692                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1693                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1694                 if (!cpumask_empty(&cpu_mask))
1695                         xc3((smpfunc_t) local_ops->tlb_range,
1696                             (unsigned long) vma, start, end);
1697                 local_ops->tlb_range(vma, start, end);
1698         }
1699 }
1700
1701 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1702 {
1703         struct mm_struct *mm = vma->vm_mm;
1704
1705         if (mm->context != NO_CONTEXT) {
1706                 cpumask_t cpu_mask;
1707                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1708                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1709                 if (!cpumask_empty(&cpu_mask))
1710                         xc2((smpfunc_t) local_ops->cache_page,
1711                             (unsigned long) vma, page);
1712                 local_ops->cache_page(vma, page);
1713         }
1714 }
1715
1716 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1717 {
1718         struct mm_struct *mm = vma->vm_mm;
1719
1720         if (mm->context != NO_CONTEXT) {
1721                 cpumask_t cpu_mask;
1722                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1723                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1724                 if (!cpumask_empty(&cpu_mask))
1725                         xc2((smpfunc_t) local_ops->tlb_page,
1726                             (unsigned long) vma, page);
1727                 local_ops->tlb_page(vma, page);
1728         }
1729 }
1730
1731 static void smp_flush_page_to_ram(unsigned long page)
1732 {
1733         /* Current theory is that those who call this are the one's
1734          * who have just dirtied their cache with the pages contents
1735          * in kernel space, therefore we only run this on local cpu.
1736          *
1737          * XXX This experiment failed, research further... -DaveM
1738          */
1739 #if 1
1740         xc1((smpfunc_t) local_ops->page_to_ram, page);
1741 #endif
1742         local_ops->page_to_ram(page);
1743 }
1744
1745 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1746 {
1747         cpumask_t cpu_mask;
1748         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750         if (!cpumask_empty(&cpu_mask))
1751                 xc2((smpfunc_t) local_ops->sig_insns,
1752                     (unsigned long) mm, insn_addr);
1753         local_ops->sig_insns(mm, insn_addr);
1754 }
1755
1756 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1757         .cache_all      = smp_flush_cache_all,
1758         .cache_mm       = smp_flush_cache_mm,
1759         .cache_page     = smp_flush_cache_page,
1760         .cache_range    = smp_flush_cache_range,
1761         .tlb_all        = smp_flush_tlb_all,
1762         .tlb_mm         = smp_flush_tlb_mm,
1763         .tlb_page       = smp_flush_tlb_page,
1764         .tlb_range      = smp_flush_tlb_range,
1765         .page_to_ram    = smp_flush_page_to_ram,
1766         .sig_insns      = smp_flush_sig_insns,
1767         .page_for_dma   = smp_flush_page_for_dma,
1768 };
1769 #endif
1770
1771 /* Load up routines and constants for sun4m and sun4d mmu */
1772 void __init load_mmu(void)
1773 {
1774         extern void ld_mmu_iommu(void);
1775         extern void ld_mmu_iounit(void);
1776
1777         /* Functions */
1778         get_srmmu_type();
1779
1780 #ifdef CONFIG_SMP
1781         /* El switcheroo... */
1782         local_ops = sparc32_cachetlb_ops;
1783
1784         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1785                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1786                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1787                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1788                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1789         }
1790
1791         if (poke_srmmu == poke_viking) {
1792                 /* Avoid unnecessary cross calls. */
1793                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1794                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1795                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1796                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1797
1798                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1799                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1800                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1801         }
1802
1803         /* It really is const after this point. */
1804         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1805                 &smp_cachetlb_ops;
1806 #endif
1807
1808         if (sparc_cpu_model == sun4d)
1809                 ld_mmu_iounit();
1810         else
1811                 ld_mmu_iommu();
1812 #ifdef CONFIG_SMP
1813         if (sparc_cpu_model == sun4d)
1814                 sun4d_init_smp();
1815         else if (sparc_cpu_model == sparc_leon)
1816                 leon_init_smp();
1817         else
1818                 sun4m_init_smp();
1819 #endif
1820 }