Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28
29 #include "kernel.h"
30 #include "kstack.h"
31
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33  * overflow interrupts generated on transition from 0xffffffff to 0.
34  * The counters are accessed in one go using a 64-bit register.
35  *
36  * Both counters are controlled using a single control register.  The
37  * only way to stop all sampling is to clear all of the context (user,
38  * supervisor, hypervisor) sampling enable bits.  But these bits apply
39  * to both counters, thus the two counters can't be enabled/disabled
40  * individually.
41  *
42  * The control register has two event fields, one for each of the two
43  * counters.  It's thus nearly impossible to have one counter going
44  * while keeping the other one stopped.  Therefore it is possible to
45  * get overflow interrupts for counters not currently "in use" and
46  * that condition must be checked in the overflow interrupt handler.
47  *
48  * So we use a hack, in that we program inactive counters with the
49  * "sw_count0" and "sw_count1" events.  These count how many times
50  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
51  * unusual way to encode a NOP and therefore will not trigger in
52  * normal code.
53  */
54
55 #define MAX_HWEVENTS                    2
56 #define MAX_PERIOD                      ((1UL << 32) - 1)
57
58 #define PIC_UPPER_INDEX                 0
59 #define PIC_LOWER_INDEX                 1
60 #define PIC_NO_INDEX                    -1
61
62 struct cpu_hw_events {
63         /* Number of events currently scheduled onto this cpu.
64          * This tells how many entries in the arrays below
65          * are valid.
66          */
67         int                     n_events;
68
69         /* Number of new events added since the last hw_perf_disable().
70          * This works because the perf event layer always adds new
71          * events inside of a perf_{disable,enable}() sequence.
72          */
73         int                     n_added;
74
75         /* Array of events current scheduled on this cpu.  */
76         struct perf_event       *event[MAX_HWEVENTS];
77
78         /* Array of encoded longs, specifying the %pcr register
79          * encoding and the mask of PIC counters this even can
80          * be scheduled on.  See perf_event_encode() et al.
81          */
82         unsigned long           events[MAX_HWEVENTS];
83
84         /* The current counter index assigned to an event.  When the
85          * event hasn't been programmed into the cpu yet, this will
86          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
87          * we ought to schedule the event.
88          */
89         int                     current_idx[MAX_HWEVENTS];
90
91         /* Software copy of %pcr register on this cpu.  */
92         u64                     pcr;
93
94         /* Enabled/disable state.  */
95         int                     enabled;
96
97         unsigned int            group_flag;
98 };
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100
101 /* An event map describes the characteristics of a performance
102  * counter event.  In particular it gives the encoding as well as
103  * a mask telling which counters the event can be measured on.
104  */
105 struct perf_event_map {
106         u16     encoding;
107         u8      pic_mask;
108 #define PIC_NONE        0x00
109 #define PIC_UPPER       0x01
110 #define PIC_LOWER       0x02
111 };
112
113 /* Encode a perf_event_map entry into a long.  */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 {
116         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 }
118
119 static u8 perf_event_get_msk(unsigned long val)
120 {
121         return val & 0xff;
122 }
123
124 static u64 perf_event_get_enc(unsigned long val)
125 {
126         return val >> 16;
127 }
128
129 #define C(x) PERF_COUNT_HW_CACHE_##x
130
131 #define CACHE_OP_UNSUPPORTED    0xfffe
132 #define CACHE_OP_NONSENSE       0xffff
133
134 typedef struct perf_event_map cache_map_t
135                                 [PERF_COUNT_HW_CACHE_MAX]
136                                 [PERF_COUNT_HW_CACHE_OP_MAX]
137                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138
139 struct sparc_pmu {
140         const struct perf_event_map     *(*event_map)(int);
141         const cache_map_t               *cache_map;
142         int                             max_events;
143         int                             upper_shift;
144         int                             lower_shift;
145         int                             event_mask;
146         int                             hv_bit;
147         int                             irq_bit;
148         int                             upper_nop;
149         int                             lower_nop;
150 };
151
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 };
158
159 static const struct perf_event_map *ultra3_event_map(int event_id)
160 {
161         return &ultra3_perfmon_event_map[event_id];
162 }
163
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166         [C(OP_READ)] = {
167                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169         },
170         [C(OP_WRITE)] = {
171                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173         },
174         [C(OP_PREFETCH)] = {
175                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177         },
178 },
179 [C(L1I)] = {
180         [C(OP_READ)] = {
181                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183         },
184         [ C(OP_WRITE) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
187         },
188         [ C(OP_PREFETCH) ] = {
189                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
191         },
192 },
193 [C(LL)] = {
194         [C(OP_READ)] = {
195                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197         },
198         [C(OP_WRITE)] = {
199                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201         },
202         [C(OP_PREFETCH)] = {
203                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205         },
206 },
207 [C(DTLB)] = {
208         [C(OP_READ)] = {
209                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211         },
212         [ C(OP_WRITE) ] = {
213                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215         },
216         [ C(OP_PREFETCH) ] = {
217                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
219         },
220 },
221 [C(ITLB)] = {
222         [C(OP_READ)] = {
223                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225         },
226         [ C(OP_WRITE) ] = {
227                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229         },
230         [ C(OP_PREFETCH) ] = {
231                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
233         },
234 },
235 [C(BPU)] = {
236         [C(OP_READ)] = {
237                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239         },
240         [ C(OP_WRITE) ] = {
241                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243         },
244         [ C(OP_PREFETCH) ] = {
245                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247         },
248 },
249 };
250
251 static const struct sparc_pmu ultra3_pmu = {
252         .event_map      = ultra3_event_map,
253         .cache_map      = &ultra3_cache_map,
254         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
255         .upper_shift    = 11,
256         .lower_shift    = 4,
257         .event_mask     = 0x3f,
258         .upper_nop      = 0x1c,
259         .lower_nop      = 0x14,
260 };
261
262 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
263  * only instructions, so it is free running which creates all kinds of
264  * problems.  Some hardware designs make one wonder if the creator
265  * even looked at how this stuff gets used by software.
266  */
267 static const struct perf_event_map niagara1_perfmon_event_map[] = {
268         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
269         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
270         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
271         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
272 };
273
274 static const struct perf_event_map *niagara1_event_map(int event_id)
275 {
276         return &niagara1_perfmon_event_map[event_id];
277 }
278
279 static const cache_map_t niagara1_cache_map = {
280 [C(L1D)] = {
281         [C(OP_READ)] = {
282                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284         },
285         [C(OP_WRITE)] = {
286                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
288         },
289         [C(OP_PREFETCH)] = {
290                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
291                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
292         },
293 },
294 [C(L1I)] = {
295         [C(OP_READ)] = {
296                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
297                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
298         },
299         [ C(OP_WRITE) ] = {
300                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
301                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
302         },
303         [ C(OP_PREFETCH) ] = {
304                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
305                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
306         },
307 },
308 [C(LL)] = {
309         [C(OP_READ)] = {
310                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312         },
313         [C(OP_WRITE)] = {
314                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
316         },
317         [C(OP_PREFETCH)] = {
318                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
319                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
320         },
321 },
322 [C(DTLB)] = {
323         [C(OP_READ)] = {
324                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
326         },
327         [ C(OP_WRITE) ] = {
328                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
330         },
331         [ C(OP_PREFETCH) ] = {
332                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
333                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
334         },
335 },
336 [C(ITLB)] = {
337         [C(OP_READ)] = {
338                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
348         },
349 },
350 [C(BPU)] = {
351         [C(OP_READ)] = {
352                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
362         },
363 },
364 };
365
366 static const struct sparc_pmu niagara1_pmu = {
367         .event_map      = niagara1_event_map,
368         .cache_map      = &niagara1_cache_map,
369         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
370         .upper_shift    = 0,
371         .lower_shift    = 4,
372         .event_mask     = 0x7,
373         .upper_nop      = 0x0,
374         .lower_nop      = 0x0,
375 };
376
377 static const struct perf_event_map niagara2_perfmon_event_map[] = {
378         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
380         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
381         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
382         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
383         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
384 };
385
386 static const struct perf_event_map *niagara2_event_map(int event_id)
387 {
388         return &niagara2_perfmon_event_map[event_id];
389 }
390
391 static const cache_map_t niagara2_cache_map = {
392 [C(L1D)] = {
393         [C(OP_READ)] = {
394                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
395                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396         },
397         [C(OP_WRITE)] = {
398                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
399                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
400         },
401         [C(OP_PREFETCH)] = {
402                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
404         },
405 },
406 [C(L1I)] = {
407         [C(OP_READ)] = {
408                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
409                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
413                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
417                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
418         },
419 },
420 [C(LL)] = {
421         [C(OP_READ)] = {
422                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
424         },
425         [C(OP_WRITE)] = {
426                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
428         },
429         [C(OP_PREFETCH)] = {
430                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432         },
433 },
434 [C(DTLB)] = {
435         [C(OP_READ)] = {
436                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
437                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
438         },
439         [ C(OP_WRITE) ] = {
440                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
442         },
443         [ C(OP_PREFETCH) ] = {
444                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
446         },
447 },
448 [C(ITLB)] = {
449         [C(OP_READ)] = {
450                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
451                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
452         },
453         [ C(OP_WRITE) ] = {
454                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
456         },
457         [ C(OP_PREFETCH) ] = {
458                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
459                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
460         },
461 },
462 [C(BPU)] = {
463         [C(OP_READ)] = {
464                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
466         },
467         [ C(OP_WRITE) ] = {
468                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470         },
471         [ C(OP_PREFETCH) ] = {
472                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
474         },
475 },
476 };
477
478 static const struct sparc_pmu niagara2_pmu = {
479         .event_map      = niagara2_event_map,
480         .cache_map      = &niagara2_cache_map,
481         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
482         .upper_shift    = 19,
483         .lower_shift    = 6,
484         .event_mask     = 0xfff,
485         .hv_bit         = 0x8,
486         .irq_bit        = 0x30,
487         .upper_nop      = 0x220,
488         .lower_nop      = 0x220,
489 };
490
491 static const struct sparc_pmu *sparc_pmu __read_mostly;
492
493 static u64 event_encoding(u64 event_id, int idx)
494 {
495         if (idx == PIC_UPPER_INDEX)
496                 event_id <<= sparc_pmu->upper_shift;
497         else
498                 event_id <<= sparc_pmu->lower_shift;
499         return event_id;
500 }
501
502 static u64 mask_for_index(int idx)
503 {
504         return event_encoding(sparc_pmu->event_mask, idx);
505 }
506
507 static u64 nop_for_index(int idx)
508 {
509         return event_encoding(idx == PIC_UPPER_INDEX ?
510                               sparc_pmu->upper_nop :
511                               sparc_pmu->lower_nop, idx);
512 }
513
514 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
515 {
516         u64 val, mask = mask_for_index(idx);
517
518         val = cpuc->pcr;
519         val &= ~mask;
520         val |= hwc->config;
521         cpuc->pcr = val;
522
523         pcr_ops->write(cpuc->pcr);
524 }
525
526 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
527 {
528         u64 mask = mask_for_index(idx);
529         u64 nop = nop_for_index(idx);
530         u64 val;
531
532         val = cpuc->pcr;
533         val &= ~mask;
534         val |= nop;
535         cpuc->pcr = val;
536
537         pcr_ops->write(cpuc->pcr);
538 }
539
540 static u32 read_pmc(int idx)
541 {
542         u64 val;
543
544         read_pic(val);
545         if (idx == PIC_UPPER_INDEX)
546                 val >>= 32;
547
548         return val & 0xffffffff;
549 }
550
551 static void write_pmc(int idx, u64 val)
552 {
553         u64 shift, mask, pic;
554
555         shift = 0;
556         if (idx == PIC_UPPER_INDEX)
557                 shift = 32;
558
559         mask = ((u64) 0xffffffff) << shift;
560         val <<= shift;
561
562         read_pic(pic);
563         pic &= ~mask;
564         pic |= val;
565         write_pic(pic);
566 }
567
568 static u64 sparc_perf_event_update(struct perf_event *event,
569                                    struct hw_perf_event *hwc, int idx)
570 {
571         int shift = 64 - 32;
572         u64 prev_raw_count, new_raw_count;
573         s64 delta;
574
575 again:
576         prev_raw_count = local64_read(&hwc->prev_count);
577         new_raw_count = read_pmc(idx);
578
579         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
580                              new_raw_count) != prev_raw_count)
581                 goto again;
582
583         delta = (new_raw_count << shift) - (prev_raw_count << shift);
584         delta >>= shift;
585
586         local64_add(delta, &event->count);
587         local64_sub(delta, &hwc->period_left);
588
589         return new_raw_count;
590 }
591
592 static int sparc_perf_event_set_period(struct perf_event *event,
593                                        struct hw_perf_event *hwc, int idx)
594 {
595         s64 left = local64_read(&hwc->period_left);
596         s64 period = hwc->sample_period;
597         int ret = 0;
598
599         if (unlikely(left <= -period)) {
600                 left = period;
601                 local64_set(&hwc->period_left, left);
602                 hwc->last_period = period;
603                 ret = 1;
604         }
605
606         if (unlikely(left <= 0)) {
607                 left += period;
608                 local64_set(&hwc->period_left, left);
609                 hwc->last_period = period;
610                 ret = 1;
611         }
612         if (left > MAX_PERIOD)
613                 left = MAX_PERIOD;
614
615         local64_set(&hwc->prev_count, (u64)-left);
616
617         write_pmc(idx, (u64)(-left) & 0xffffffff);
618
619         perf_event_update_userpage(event);
620
621         return ret;
622 }
623
624 /* If performance event entries have been added, move existing
625  * events around (if necessary) and then assign new entries to
626  * counters.
627  */
628 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
629 {
630         int i;
631
632         if (!cpuc->n_added)
633                 goto out;
634
635         /* Read in the counters which are moving.  */
636         for (i = 0; i < cpuc->n_events; i++) {
637                 struct perf_event *cp = cpuc->event[i];
638
639                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
640                     cpuc->current_idx[i] != cp->hw.idx) {
641                         sparc_perf_event_update(cp, &cp->hw,
642                                                 cpuc->current_idx[i]);
643                         cpuc->current_idx[i] = PIC_NO_INDEX;
644                 }
645         }
646
647         /* Assign to counters all unassigned events.  */
648         for (i = 0; i < cpuc->n_events; i++) {
649                 struct perf_event *cp = cpuc->event[i];
650                 struct hw_perf_event *hwc = &cp->hw;
651                 int idx = hwc->idx;
652                 u64 enc;
653
654                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
655                         continue;
656
657                 sparc_perf_event_set_period(cp, hwc, idx);
658                 cpuc->current_idx[i] = idx;
659
660                 enc = perf_event_get_enc(cpuc->events[i]);
661                 pcr &= ~mask_for_index(idx);
662                 if (hwc->state & PERF_HES_STOPPED)
663                         pcr |= nop_for_index(idx);
664                 else
665                         pcr |= event_encoding(enc, idx);
666         }
667 out:
668         return pcr;
669 }
670
671 static void sparc_pmu_enable(struct pmu *pmu)
672 {
673         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
674         u64 pcr;
675
676         if (cpuc->enabled)
677                 return;
678
679         cpuc->enabled = 1;
680         barrier();
681
682         pcr = cpuc->pcr;
683         if (!cpuc->n_events) {
684                 pcr = 0;
685         } else {
686                 pcr = maybe_change_configuration(cpuc, pcr);
687
688                 /* We require that all of the events have the same
689                  * configuration, so just fetch the settings from the
690                  * first entry.
691                  */
692                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
693         }
694
695         pcr_ops->write(cpuc->pcr);
696 }
697
698 static void sparc_pmu_disable(struct pmu *pmu)
699 {
700         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
701         u64 val;
702
703         if (!cpuc->enabled)
704                 return;
705
706         cpuc->enabled = 0;
707         cpuc->n_added = 0;
708
709         val = cpuc->pcr;
710         val &= ~(PCR_UTRACE | PCR_STRACE |
711                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
712         cpuc->pcr = val;
713
714         pcr_ops->write(cpuc->pcr);
715 }
716
717 static int active_event_index(struct cpu_hw_events *cpuc,
718                               struct perf_event *event)
719 {
720         int i;
721
722         for (i = 0; i < cpuc->n_events; i++) {
723                 if (cpuc->event[i] == event)
724                         break;
725         }
726         BUG_ON(i == cpuc->n_events);
727         return cpuc->current_idx[i];
728 }
729
730 static void sparc_pmu_start(struct perf_event *event, int flags)
731 {
732         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
733         int idx = active_event_index(cpuc, event);
734
735         if (flags & PERF_EF_RELOAD) {
736                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
737                 sparc_perf_event_set_period(event, &event->hw, idx);
738         }
739
740         event->hw.state = 0;
741
742         sparc_pmu_enable_event(cpuc, &event->hw, idx);
743 }
744
745 static void sparc_pmu_stop(struct perf_event *event, int flags)
746 {
747         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
748         int idx = active_event_index(cpuc, event);
749
750         if (!(event->hw.state & PERF_HES_STOPPED)) {
751                 sparc_pmu_disable_event(cpuc, &event->hw, idx);
752                 event->hw.state |= PERF_HES_STOPPED;
753         }
754
755         if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
756                 sparc_perf_event_update(event, &event->hw, idx);
757                 event->hw.state |= PERF_HES_UPTODATE;
758         }
759 }
760
761 static void sparc_pmu_del(struct perf_event *event, int _flags)
762 {
763         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
764         unsigned long flags;
765         int i;
766
767         local_irq_save(flags);
768         perf_pmu_disable(event->pmu);
769
770         for (i = 0; i < cpuc->n_events; i++) {
771                 if (event == cpuc->event[i]) {
772                         /* Absorb the final count and turn off the
773                          * event.
774                          */
775                         sparc_pmu_stop(event, PERF_EF_UPDATE);
776
777                         /* Shift remaining entries down into
778                          * the existing slot.
779                          */
780                         while (++i < cpuc->n_events) {
781                                 cpuc->event[i - 1] = cpuc->event[i];
782                                 cpuc->events[i - 1] = cpuc->events[i];
783                                 cpuc->current_idx[i - 1] =
784                                         cpuc->current_idx[i];
785                         }
786
787                         perf_event_update_userpage(event);
788
789                         cpuc->n_events--;
790                         break;
791                 }
792         }
793
794         perf_pmu_enable(event->pmu);
795         local_irq_restore(flags);
796 }
797
798 static void sparc_pmu_read(struct perf_event *event)
799 {
800         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
801         int idx = active_event_index(cpuc, event);
802         struct hw_perf_event *hwc = &event->hw;
803
804         sparc_perf_event_update(event, hwc, idx);
805 }
806
807 static atomic_t active_events = ATOMIC_INIT(0);
808 static DEFINE_MUTEX(pmc_grab_mutex);
809
810 static void perf_stop_nmi_watchdog(void *unused)
811 {
812         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
813
814         stop_nmi_watchdog(NULL);
815         cpuc->pcr = pcr_ops->read();
816 }
817
818 void perf_event_grab_pmc(void)
819 {
820         if (atomic_inc_not_zero(&active_events))
821                 return;
822
823         mutex_lock(&pmc_grab_mutex);
824         if (atomic_read(&active_events) == 0) {
825                 if (atomic_read(&nmi_active) > 0) {
826                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
827                         BUG_ON(atomic_read(&nmi_active) != 0);
828                 }
829                 atomic_inc(&active_events);
830         }
831         mutex_unlock(&pmc_grab_mutex);
832 }
833
834 void perf_event_release_pmc(void)
835 {
836         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
837                 if (atomic_read(&nmi_active) == 0)
838                         on_each_cpu(start_nmi_watchdog, NULL, 1);
839                 mutex_unlock(&pmc_grab_mutex);
840         }
841 }
842
843 static const struct perf_event_map *sparc_map_cache_event(u64 config)
844 {
845         unsigned int cache_type, cache_op, cache_result;
846         const struct perf_event_map *pmap;
847
848         if (!sparc_pmu->cache_map)
849                 return ERR_PTR(-ENOENT);
850
851         cache_type = (config >>  0) & 0xff;
852         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
853                 return ERR_PTR(-EINVAL);
854
855         cache_op = (config >>  8) & 0xff;
856         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
857                 return ERR_PTR(-EINVAL);
858
859         cache_result = (config >> 16) & 0xff;
860         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
861                 return ERR_PTR(-EINVAL);
862
863         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
864
865         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
866                 return ERR_PTR(-ENOENT);
867
868         if (pmap->encoding == CACHE_OP_NONSENSE)
869                 return ERR_PTR(-EINVAL);
870
871         return pmap;
872 }
873
874 static void hw_perf_event_destroy(struct perf_event *event)
875 {
876         perf_event_release_pmc();
877 }
878
879 /* Make sure all events can be scheduled into the hardware at
880  * the same time.  This is simplified by the fact that we only
881  * need to support 2 simultaneous HW events.
882  *
883  * As a side effect, the evts[]->hw.idx values will be assigned
884  * on success.  These are pending indexes.  When the events are
885  * actually programmed into the chip, these values will propagate
886  * to the per-cpu cpuc->current_idx[] slots, see the code in
887  * maybe_change_configuration() for details.
888  */
889 static int sparc_check_constraints(struct perf_event **evts,
890                                    unsigned long *events, int n_ev)
891 {
892         u8 msk0 = 0, msk1 = 0;
893         int idx0 = 0;
894
895         /* This case is possible when we are invoked from
896          * hw_perf_group_sched_in().
897          */
898         if (!n_ev)
899                 return 0;
900
901         if (n_ev > MAX_HWEVENTS)
902                 return -1;
903
904         msk0 = perf_event_get_msk(events[0]);
905         if (n_ev == 1) {
906                 if (msk0 & PIC_LOWER)
907                         idx0 = 1;
908                 goto success;
909         }
910         BUG_ON(n_ev != 2);
911         msk1 = perf_event_get_msk(events[1]);
912
913         /* If both events can go on any counter, OK.  */
914         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
915             msk1 == (PIC_UPPER | PIC_LOWER))
916                 goto success;
917
918         /* If one event is limited to a specific counter,
919          * and the other can go on both, OK.
920          */
921         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
922             msk1 == (PIC_UPPER | PIC_LOWER)) {
923                 if (msk0 & PIC_LOWER)
924                         idx0 = 1;
925                 goto success;
926         }
927
928         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
929             msk0 == (PIC_UPPER | PIC_LOWER)) {
930                 if (msk1 & PIC_UPPER)
931                         idx0 = 1;
932                 goto success;
933         }
934
935         /* If the events are fixed to different counters, OK.  */
936         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
937             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
938                 if (msk0 & PIC_LOWER)
939                         idx0 = 1;
940                 goto success;
941         }
942
943         /* Otherwise, there is a conflict.  */
944         return -1;
945
946 success:
947         evts[0]->hw.idx = idx0;
948         if (n_ev == 2)
949                 evts[1]->hw.idx = idx0 ^ 1;
950         return 0;
951 }
952
953 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
954 {
955         int eu = 0, ek = 0, eh = 0;
956         struct perf_event *event;
957         int i, n, first;
958
959         n = n_prev + n_new;
960         if (n <= 1)
961                 return 0;
962
963         first = 1;
964         for (i = 0; i < n; i++) {
965                 event = evts[i];
966                 if (first) {
967                         eu = event->attr.exclude_user;
968                         ek = event->attr.exclude_kernel;
969                         eh = event->attr.exclude_hv;
970                         first = 0;
971                 } else if (event->attr.exclude_user != eu ||
972                            event->attr.exclude_kernel != ek ||
973                            event->attr.exclude_hv != eh) {
974                         return -EAGAIN;
975                 }
976         }
977
978         return 0;
979 }
980
981 static int collect_events(struct perf_event *group, int max_count,
982                           struct perf_event *evts[], unsigned long *events,
983                           int *current_idx)
984 {
985         struct perf_event *event;
986         int n = 0;
987
988         if (!is_software_event(group)) {
989                 if (n >= max_count)
990                         return -1;
991                 evts[n] = group;
992                 events[n] = group->hw.event_base;
993                 current_idx[n++] = PIC_NO_INDEX;
994         }
995         list_for_each_entry(event, &group->sibling_list, group_entry) {
996                 if (!is_software_event(event) &&
997                     event->state != PERF_EVENT_STATE_OFF) {
998                         if (n >= max_count)
999                                 return -1;
1000                         evts[n] = event;
1001                         events[n] = event->hw.event_base;
1002                         current_idx[n++] = PIC_NO_INDEX;
1003                 }
1004         }
1005         return n;
1006 }
1007
1008 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1009 {
1010         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1011         int n0, ret = -EAGAIN;
1012         unsigned long flags;
1013
1014         local_irq_save(flags);
1015         perf_pmu_disable(event->pmu);
1016
1017         n0 = cpuc->n_events;
1018         if (n0 >= MAX_HWEVENTS)
1019                 goto out;
1020
1021         cpuc->event[n0] = event;
1022         cpuc->events[n0] = event->hw.event_base;
1023         cpuc->current_idx[n0] = PIC_NO_INDEX;
1024
1025         event->hw.state = PERF_HES_UPTODATE;
1026         if (!(ef_flags & PERF_EF_START))
1027                 event->hw.state |= PERF_HES_STOPPED;
1028
1029         /*
1030          * If group events scheduling transaction was started,
1031          * skip the schedulability test here, it will be performed
1032          * at commit time(->commit_txn) as a whole
1033          */
1034         if (cpuc->group_flag & PERF_EVENT_TXN)
1035                 goto nocheck;
1036
1037         if (check_excludes(cpuc->event, n0, 1))
1038                 goto out;
1039         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1040                 goto out;
1041
1042 nocheck:
1043         cpuc->n_events++;
1044         cpuc->n_added++;
1045
1046         ret = 0;
1047 out:
1048         perf_pmu_enable(event->pmu);
1049         local_irq_restore(flags);
1050         return ret;
1051 }
1052
1053 static int sparc_pmu_event_init(struct perf_event *event)
1054 {
1055         struct perf_event_attr *attr = &event->attr;
1056         struct perf_event *evts[MAX_HWEVENTS];
1057         struct hw_perf_event *hwc = &event->hw;
1058         unsigned long events[MAX_HWEVENTS];
1059         int current_idx_dmy[MAX_HWEVENTS];
1060         const struct perf_event_map *pmap;
1061         int n;
1062
1063         if (atomic_read(&nmi_active) < 0)
1064                 return -ENODEV;
1065
1066         switch (attr->type) {
1067         case PERF_TYPE_HARDWARE:
1068                 if (attr->config >= sparc_pmu->max_events)
1069                         return -EINVAL;
1070                 pmap = sparc_pmu->event_map(attr->config);
1071                 break;
1072
1073         case PERF_TYPE_HW_CACHE:
1074                 pmap = sparc_map_cache_event(attr->config);
1075                 if (IS_ERR(pmap))
1076                         return PTR_ERR(pmap);
1077                 break;
1078
1079         case PERF_TYPE_RAW:
1080                 pmap = NULL;
1081                 break;
1082
1083         default:
1084                 return -ENOENT;
1085
1086         }
1087
1088         if (pmap) {
1089                 hwc->event_base = perf_event_encode(pmap);
1090         } else {
1091                 /*
1092                  * User gives us "(encoding << 16) | pic_mask" for
1093                  * PERF_TYPE_RAW events.
1094                  */
1095                 hwc->event_base = attr->config;
1096         }
1097
1098         /* We save the enable bits in the config_base.  */
1099         hwc->config_base = sparc_pmu->irq_bit;
1100         if (!attr->exclude_user)
1101                 hwc->config_base |= PCR_UTRACE;
1102         if (!attr->exclude_kernel)
1103                 hwc->config_base |= PCR_STRACE;
1104         if (!attr->exclude_hv)
1105                 hwc->config_base |= sparc_pmu->hv_bit;
1106
1107         n = 0;
1108         if (event->group_leader != event) {
1109                 n = collect_events(event->group_leader,
1110                                    MAX_HWEVENTS - 1,
1111                                    evts, events, current_idx_dmy);
1112                 if (n < 0)
1113                         return -EINVAL;
1114         }
1115         events[n] = hwc->event_base;
1116         evts[n] = event;
1117
1118         if (check_excludes(evts, n, 1))
1119                 return -EINVAL;
1120
1121         if (sparc_check_constraints(evts, events, n + 1))
1122                 return -EINVAL;
1123
1124         hwc->idx = PIC_NO_INDEX;
1125
1126         /* Try to do all error checking before this point, as unwinding
1127          * state after grabbing the PMC is difficult.
1128          */
1129         perf_event_grab_pmc();
1130         event->destroy = hw_perf_event_destroy;
1131
1132         if (!hwc->sample_period) {
1133                 hwc->sample_period = MAX_PERIOD;
1134                 hwc->last_period = hwc->sample_period;
1135                 local64_set(&hwc->period_left, hwc->sample_period);
1136         }
1137
1138         return 0;
1139 }
1140
1141 /*
1142  * Start group events scheduling transaction
1143  * Set the flag to make pmu::enable() not perform the
1144  * schedulability test, it will be performed at commit time
1145  */
1146 static void sparc_pmu_start_txn(struct pmu *pmu)
1147 {
1148         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1149
1150         perf_pmu_disable(pmu);
1151         cpuhw->group_flag |= PERF_EVENT_TXN;
1152 }
1153
1154 /*
1155  * Stop group events scheduling transaction
1156  * Clear the flag and pmu::enable() will perform the
1157  * schedulability test.
1158  */
1159 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1160 {
1161         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1162
1163         cpuhw->group_flag &= ~PERF_EVENT_TXN;
1164         perf_pmu_enable(pmu);
1165 }
1166
1167 /*
1168  * Commit group events scheduling transaction
1169  * Perform the group schedulability test as a whole
1170  * Return 0 if success
1171  */
1172 static int sparc_pmu_commit_txn(struct pmu *pmu)
1173 {
1174         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1175         int n;
1176
1177         if (!sparc_pmu)
1178                 return -EINVAL;
1179
1180         cpuc = &__get_cpu_var(cpu_hw_events);
1181         n = cpuc->n_events;
1182         if (check_excludes(cpuc->event, 0, n))
1183                 return -EINVAL;
1184         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1185                 return -EAGAIN;
1186
1187         cpuc->group_flag &= ~PERF_EVENT_TXN;
1188         perf_pmu_enable(pmu);
1189         return 0;
1190 }
1191
1192 static struct pmu pmu = {
1193         .pmu_enable     = sparc_pmu_enable,
1194         .pmu_disable    = sparc_pmu_disable,
1195         .event_init     = sparc_pmu_event_init,
1196         .add            = sparc_pmu_add,
1197         .del            = sparc_pmu_del,
1198         .start          = sparc_pmu_start,
1199         .stop           = sparc_pmu_stop,
1200         .read           = sparc_pmu_read,
1201         .start_txn      = sparc_pmu_start_txn,
1202         .cancel_txn     = sparc_pmu_cancel_txn,
1203         .commit_txn     = sparc_pmu_commit_txn,
1204 };
1205
1206 void perf_event_print_debug(void)
1207 {
1208         unsigned long flags;
1209         u64 pcr, pic;
1210         int cpu;
1211
1212         if (!sparc_pmu)
1213                 return;
1214
1215         local_irq_save(flags);
1216
1217         cpu = smp_processor_id();
1218
1219         pcr = pcr_ops->read();
1220         read_pic(pic);
1221
1222         pr_info("\n");
1223         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1224                 cpu, pcr, pic);
1225
1226         local_irq_restore(flags);
1227 }
1228
1229 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1230                                             unsigned long cmd, void *__args)
1231 {
1232         struct die_args *args = __args;
1233         struct perf_sample_data data;
1234         struct cpu_hw_events *cpuc;
1235         struct pt_regs *regs;
1236         int i;
1237
1238         if (!atomic_read(&active_events))
1239                 return NOTIFY_DONE;
1240
1241         switch (cmd) {
1242         case DIE_NMI:
1243                 break;
1244
1245         default:
1246                 return NOTIFY_DONE;
1247         }
1248
1249         regs = args->regs;
1250
1251         perf_sample_data_init(&data, 0);
1252
1253         cpuc = &__get_cpu_var(cpu_hw_events);
1254
1255         /* If the PMU has the TOE IRQ enable bits, we need to do a
1256          * dummy write to the %pcr to clear the overflow bits and thus
1257          * the interrupt.
1258          *
1259          * Do this before we peek at the counters to determine
1260          * overflow so we don't lose any events.
1261          */
1262         if (sparc_pmu->irq_bit)
1263                 pcr_ops->write(cpuc->pcr);
1264
1265         for (i = 0; i < cpuc->n_events; i++) {
1266                 struct perf_event *event = cpuc->event[i];
1267                 int idx = cpuc->current_idx[i];
1268                 struct hw_perf_event *hwc;
1269                 u64 val;
1270
1271                 hwc = &event->hw;
1272                 val = sparc_perf_event_update(event, hwc, idx);
1273                 if (val & (1ULL << 31))
1274                         continue;
1275
1276                 data.period = event->hw.last_period;
1277                 if (!sparc_perf_event_set_period(event, hwc, idx))
1278                         continue;
1279
1280                 if (perf_event_overflow(event, 1, &data, regs))
1281                         sparc_pmu_stop(event, 0);
1282         }
1283
1284         return NOTIFY_STOP;
1285 }
1286
1287 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1288         .notifier_call          = perf_event_nmi_handler,
1289 };
1290
1291 static bool __init supported_pmu(void)
1292 {
1293         if (!strcmp(sparc_pmu_type, "ultra3") ||
1294             !strcmp(sparc_pmu_type, "ultra3+") ||
1295             !strcmp(sparc_pmu_type, "ultra3i") ||
1296             !strcmp(sparc_pmu_type, "ultra4+")) {
1297                 sparc_pmu = &ultra3_pmu;
1298                 return true;
1299         }
1300         if (!strcmp(sparc_pmu_type, "niagara")) {
1301                 sparc_pmu = &niagara1_pmu;
1302                 return true;
1303         }
1304         if (!strcmp(sparc_pmu_type, "niagara2")) {
1305                 sparc_pmu = &niagara2_pmu;
1306                 return true;
1307         }
1308         return false;
1309 }
1310
1311 int __init init_hw_perf_events(void)
1312 {
1313         pr_info("Performance events: ");
1314
1315         if (!supported_pmu()) {
1316                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1317                 return 0;
1318         }
1319
1320         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1321
1322         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1323         register_die_notifier(&perf_event_nmi_notifier);
1324
1325         return 0;
1326 }
1327 early_initcall(init_hw_perf_events);
1328
1329 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1330                            struct pt_regs *regs)
1331 {
1332         unsigned long ksp, fp;
1333 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1334         int graph = 0;
1335 #endif
1336
1337         stack_trace_flush();
1338
1339         perf_callchain_store(entry, regs->tpc);
1340
1341         ksp = regs->u_regs[UREG_I6];
1342         fp = ksp + STACK_BIAS;
1343         do {
1344                 struct sparc_stackf *sf;
1345                 struct pt_regs *regs;
1346                 unsigned long pc;
1347
1348                 if (!kstack_valid(current_thread_info(), fp))
1349                         break;
1350
1351                 sf = (struct sparc_stackf *) fp;
1352                 regs = (struct pt_regs *) (sf + 1);
1353
1354                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1355                         if (user_mode(regs))
1356                                 break;
1357                         pc = regs->tpc;
1358                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1359                 } else {
1360                         pc = sf->callers_pc;
1361                         fp = (unsigned long)sf->fp + STACK_BIAS;
1362                 }
1363                 perf_callchain_store(entry, pc);
1364 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1365                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1366                         int index = current->curr_ret_stack;
1367                         if (current->ret_stack && index >= graph) {
1368                                 pc = current->ret_stack[index - graph].ret;
1369                                 perf_callchain_store(entry, pc);
1370                                 graph++;
1371                         }
1372                 }
1373 #endif
1374         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1375 }
1376
1377 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1378                                    struct pt_regs *regs)
1379 {
1380         unsigned long ufp;
1381
1382         perf_callchain_store(entry, regs->tpc);
1383
1384         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1385         do {
1386                 struct sparc_stackf *usf, sf;
1387                 unsigned long pc;
1388
1389                 usf = (struct sparc_stackf *) ufp;
1390                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1391                         break;
1392
1393                 pc = sf.callers_pc;
1394                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1395                 perf_callchain_store(entry, pc);
1396         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1397 }
1398
1399 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1400                                    struct pt_regs *regs)
1401 {
1402         unsigned long ufp;
1403
1404         perf_callchain_store(entry, regs->tpc);
1405
1406         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1407         do {
1408                 struct sparc_stackf32 *usf, sf;
1409                 unsigned long pc;
1410
1411                 usf = (struct sparc_stackf32 *) ufp;
1412                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1413                         break;
1414
1415                 pc = sf.callers_pc;
1416                 ufp = (unsigned long)sf.fp;
1417                 perf_callchain_store(entry, pc);
1418         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1419 }
1420
1421 void
1422 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1423 {
1424         flushw_user();
1425         if (test_thread_flag(TIF_32BIT))
1426                 perf_callchain_user_32(entry, regs);
1427         else
1428                 perf_callchain_user_64(entry, regs);
1429 }