Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28
29 #include "kernel.h"
30 #include "kstack.h"
31
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33  * overflow interrupts generated on transition from 0xffffffff to 0.
34  * The counters are accessed in one go using a 64-bit register.
35  *
36  * Both counters are controlled using a single control register.  The
37  * only way to stop all sampling is to clear all of the context (user,
38  * supervisor, hypervisor) sampling enable bits.  But these bits apply
39  * to both counters, thus the two counters can't be enabled/disabled
40  * individually.
41  *
42  * The control register has two event fields, one for each of the two
43  * counters.  It's thus nearly impossible to have one counter going
44  * while keeping the other one stopped.  Therefore it is possible to
45  * get overflow interrupts for counters not currently "in use" and
46  * that condition must be checked in the overflow interrupt handler.
47  *
48  * So we use a hack, in that we program inactive counters with the
49  * "sw_count0" and "sw_count1" events.  These count how many times
50  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
51  * unusual way to encode a NOP and therefore will not trigger in
52  * normal code.
53  */
54
55 #define MAX_HWEVENTS                    2
56 #define MAX_PERIOD                      ((1UL << 32) - 1)
57
58 #define PIC_UPPER_INDEX                 0
59 #define PIC_LOWER_INDEX                 1
60 #define PIC_NO_INDEX                    -1
61
62 struct cpu_hw_events {
63         /* Number of events currently scheduled onto this cpu.
64          * This tells how many entries in the arrays below
65          * are valid.
66          */
67         int                     n_events;
68
69         /* Number of new events added since the last hw_perf_disable().
70          * This works because the perf event layer always adds new
71          * events inside of a perf_{disable,enable}() sequence.
72          */
73         int                     n_added;
74
75         /* Array of events current scheduled on this cpu.  */
76         struct perf_event       *event[MAX_HWEVENTS];
77
78         /* Array of encoded longs, specifying the %pcr register
79          * encoding and the mask of PIC counters this even can
80          * be scheduled on.  See perf_event_encode() et al.
81          */
82         unsigned long           events[MAX_HWEVENTS];
83
84         /* The current counter index assigned to an event.  When the
85          * event hasn't been programmed into the cpu yet, this will
86          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
87          * we ought to schedule the event.
88          */
89         int                     current_idx[MAX_HWEVENTS];
90
91         /* Software copy of %pcr register on this cpu.  */
92         u64                     pcr;
93
94         /* Enabled/disable state.  */
95         int                     enabled;
96
97         unsigned int            group_flag;
98 };
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100
101 /* An event map describes the characteristics of a performance
102  * counter event.  In particular it gives the encoding as well as
103  * a mask telling which counters the event can be measured on.
104  */
105 struct perf_event_map {
106         u16     encoding;
107         u8      pic_mask;
108 #define PIC_NONE        0x00
109 #define PIC_UPPER       0x01
110 #define PIC_LOWER       0x02
111 };
112
113 /* Encode a perf_event_map entry into a long.  */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 {
116         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 }
118
119 static u8 perf_event_get_msk(unsigned long val)
120 {
121         return val & 0xff;
122 }
123
124 static u64 perf_event_get_enc(unsigned long val)
125 {
126         return val >> 16;
127 }
128
129 #define C(x) PERF_COUNT_HW_CACHE_##x
130
131 #define CACHE_OP_UNSUPPORTED    0xfffe
132 #define CACHE_OP_NONSENSE       0xffff
133
134 typedef struct perf_event_map cache_map_t
135                                 [PERF_COUNT_HW_CACHE_MAX]
136                                 [PERF_COUNT_HW_CACHE_OP_MAX]
137                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138
139 struct sparc_pmu {
140         const struct perf_event_map     *(*event_map)(int);
141         const cache_map_t               *cache_map;
142         int                             max_events;
143         int                             upper_shift;
144         int                             lower_shift;
145         int                             event_mask;
146         int                             hv_bit;
147         int                             irq_bit;
148         int                             upper_nop;
149         int                             lower_nop;
150 };
151
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 };
158
159 static const struct perf_event_map *ultra3_event_map(int event_id)
160 {
161         return &ultra3_perfmon_event_map[event_id];
162 }
163
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166         [C(OP_READ)] = {
167                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169         },
170         [C(OP_WRITE)] = {
171                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173         },
174         [C(OP_PREFETCH)] = {
175                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177         },
178 },
179 [C(L1I)] = {
180         [C(OP_READ)] = {
181                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183         },
184         [ C(OP_WRITE) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
187         },
188         [ C(OP_PREFETCH) ] = {
189                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
191         },
192 },
193 [C(LL)] = {
194         [C(OP_READ)] = {
195                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197         },
198         [C(OP_WRITE)] = {
199                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201         },
202         [C(OP_PREFETCH)] = {
203                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205         },
206 },
207 [C(DTLB)] = {
208         [C(OP_READ)] = {
209                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211         },
212         [ C(OP_WRITE) ] = {
213                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215         },
216         [ C(OP_PREFETCH) ] = {
217                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
219         },
220 },
221 [C(ITLB)] = {
222         [C(OP_READ)] = {
223                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225         },
226         [ C(OP_WRITE) ] = {
227                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229         },
230         [ C(OP_PREFETCH) ] = {
231                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
233         },
234 },
235 [C(BPU)] = {
236         [C(OP_READ)] = {
237                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239         },
240         [ C(OP_WRITE) ] = {
241                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243         },
244         [ C(OP_PREFETCH) ] = {
245                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247         },
248 },
249 [C(NODE)] = {
250         [C(OP_READ)] = {
251                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
252                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
253         },
254         [ C(OP_WRITE) ] = {
255                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
256                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
257         },
258         [ C(OP_PREFETCH) ] = {
259                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
260                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
261         },
262 },
263 };
264
265 static const struct sparc_pmu ultra3_pmu = {
266         .event_map      = ultra3_event_map,
267         .cache_map      = &ultra3_cache_map,
268         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
269         .upper_shift    = 11,
270         .lower_shift    = 4,
271         .event_mask     = 0x3f,
272         .upper_nop      = 0x1c,
273         .lower_nop      = 0x14,
274 };
275
276 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
277  * only instructions, so it is free running which creates all kinds of
278  * problems.  Some hardware designs make one wonder if the creator
279  * even looked at how this stuff gets used by software.
280  */
281 static const struct perf_event_map niagara1_perfmon_event_map[] = {
282         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
283         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
284         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
285         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
286 };
287
288 static const struct perf_event_map *niagara1_event_map(int event_id)
289 {
290         return &niagara1_perfmon_event_map[event_id];
291 }
292
293 static const cache_map_t niagara1_cache_map = {
294 [C(L1D)] = {
295         [C(OP_READ)] = {
296                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
297                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
298         },
299         [C(OP_WRITE)] = {
300                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
301                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
302         },
303         [C(OP_PREFETCH)] = {
304                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
305                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
306         },
307 },
308 [C(L1I)] = {
309         [C(OP_READ)] = {
310                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
311                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
312         },
313         [ C(OP_WRITE) ] = {
314                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
315                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
316         },
317         [ C(OP_PREFETCH) ] = {
318                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
319                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
320         },
321 },
322 [C(LL)] = {
323         [C(OP_READ)] = {
324                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
326         },
327         [C(OP_WRITE)] = {
328                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
329                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
330         },
331         [C(OP_PREFETCH)] = {
332                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
333                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
334         },
335 },
336 [C(DTLB)] = {
337         [C(OP_READ)] = {
338                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
348         },
349 },
350 [C(ITLB)] = {
351         [C(OP_READ)] = {
352                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
362         },
363 },
364 [C(BPU)] = {
365         [C(OP_READ)] = {
366                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
367                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
368         },
369         [ C(OP_WRITE) ] = {
370                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
372         },
373         [ C(OP_PREFETCH) ] = {
374                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
375                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
376         },
377 },
378 [C(NODE)] = {
379         [C(OP_READ)] = {
380                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
381                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
382         },
383         [ C(OP_WRITE) ] = {
384                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
385                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
386         },
387         [ C(OP_PREFETCH) ] = {
388                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
389                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
390         },
391 },
392 };
393
394 static const struct sparc_pmu niagara1_pmu = {
395         .event_map      = niagara1_event_map,
396         .cache_map      = &niagara1_cache_map,
397         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
398         .upper_shift    = 0,
399         .lower_shift    = 4,
400         .event_mask     = 0x7,
401         .upper_nop      = 0x0,
402         .lower_nop      = 0x0,
403 };
404
405 static const struct perf_event_map niagara2_perfmon_event_map[] = {
406         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
407         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
408         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
409         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
410         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
411         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
412 };
413
414 static const struct perf_event_map *niagara2_event_map(int event_id)
415 {
416         return &niagara2_perfmon_event_map[event_id];
417 }
418
419 static const cache_map_t niagara2_cache_map = {
420 [C(L1D)] = {
421         [C(OP_READ)] = {
422                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
424         },
425         [C(OP_WRITE)] = {
426                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
428         },
429         [C(OP_PREFETCH)] = {
430                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432         },
433 },
434 [C(L1I)] = {
435         [C(OP_READ)] = {
436                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
437                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
438         },
439         [ C(OP_WRITE) ] = {
440                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
441                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
442         },
443         [ C(OP_PREFETCH) ] = {
444                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
446         },
447 },
448 [C(LL)] = {
449         [C(OP_READ)] = {
450                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
451                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
452         },
453         [C(OP_WRITE)] = {
454                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
455                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
456         },
457         [C(OP_PREFETCH)] = {
458                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
459                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
460         },
461 },
462 [C(DTLB)] = {
463         [C(OP_READ)] = {
464                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
466         },
467         [ C(OP_WRITE) ] = {
468                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470         },
471         [ C(OP_PREFETCH) ] = {
472                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
474         },
475 },
476 [C(ITLB)] = {
477         [C(OP_READ)] = {
478                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
479                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
480         },
481         [ C(OP_WRITE) ] = {
482                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
483                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
484         },
485         [ C(OP_PREFETCH) ] = {
486                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
487                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
488         },
489 },
490 [C(BPU)] = {
491         [C(OP_READ)] = {
492                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
493                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
494         },
495         [ C(OP_WRITE) ] = {
496                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
497                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
498         },
499         [ C(OP_PREFETCH) ] = {
500                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
501                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
502         },
503 },
504 [C(NODE)] = {
505         [C(OP_READ)] = {
506                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
507                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
508         },
509         [ C(OP_WRITE) ] = {
510                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
511                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
512         },
513         [ C(OP_PREFETCH) ] = {
514                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
515                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
516         },
517 },
518 };
519
520 static const struct sparc_pmu niagara2_pmu = {
521         .event_map      = niagara2_event_map,
522         .cache_map      = &niagara2_cache_map,
523         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
524         .upper_shift    = 19,
525         .lower_shift    = 6,
526         .event_mask     = 0xfff,
527         .hv_bit         = 0x8,
528         .irq_bit        = 0x30,
529         .upper_nop      = 0x220,
530         .lower_nop      = 0x220,
531 };
532
533 static const struct sparc_pmu *sparc_pmu __read_mostly;
534
535 static u64 event_encoding(u64 event_id, int idx)
536 {
537         if (idx == PIC_UPPER_INDEX)
538                 event_id <<= sparc_pmu->upper_shift;
539         else
540                 event_id <<= sparc_pmu->lower_shift;
541         return event_id;
542 }
543
544 static u64 mask_for_index(int idx)
545 {
546         return event_encoding(sparc_pmu->event_mask, idx);
547 }
548
549 static u64 nop_for_index(int idx)
550 {
551         return event_encoding(idx == PIC_UPPER_INDEX ?
552                               sparc_pmu->upper_nop :
553                               sparc_pmu->lower_nop, idx);
554 }
555
556 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
557 {
558         u64 val, mask = mask_for_index(idx);
559
560         val = cpuc->pcr;
561         val &= ~mask;
562         val |= hwc->config;
563         cpuc->pcr = val;
564
565         pcr_ops->write(cpuc->pcr);
566 }
567
568 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
569 {
570         u64 mask = mask_for_index(idx);
571         u64 nop = nop_for_index(idx);
572         u64 val;
573
574         val = cpuc->pcr;
575         val &= ~mask;
576         val |= nop;
577         cpuc->pcr = val;
578
579         pcr_ops->write(cpuc->pcr);
580 }
581
582 static u32 read_pmc(int idx)
583 {
584         u64 val;
585
586         read_pic(val);
587         if (idx == PIC_UPPER_INDEX)
588                 val >>= 32;
589
590         return val & 0xffffffff;
591 }
592
593 static void write_pmc(int idx, u64 val)
594 {
595         u64 shift, mask, pic;
596
597         shift = 0;
598         if (idx == PIC_UPPER_INDEX)
599                 shift = 32;
600
601         mask = ((u64) 0xffffffff) << shift;
602         val <<= shift;
603
604         read_pic(pic);
605         pic &= ~mask;
606         pic |= val;
607         write_pic(pic);
608 }
609
610 static u64 sparc_perf_event_update(struct perf_event *event,
611                                    struct hw_perf_event *hwc, int idx)
612 {
613         int shift = 64 - 32;
614         u64 prev_raw_count, new_raw_count;
615         s64 delta;
616
617 again:
618         prev_raw_count = local64_read(&hwc->prev_count);
619         new_raw_count = read_pmc(idx);
620
621         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
622                              new_raw_count) != prev_raw_count)
623                 goto again;
624
625         delta = (new_raw_count << shift) - (prev_raw_count << shift);
626         delta >>= shift;
627
628         local64_add(delta, &event->count);
629         local64_sub(delta, &hwc->period_left);
630
631         return new_raw_count;
632 }
633
634 static int sparc_perf_event_set_period(struct perf_event *event,
635                                        struct hw_perf_event *hwc, int idx)
636 {
637         s64 left = local64_read(&hwc->period_left);
638         s64 period = hwc->sample_period;
639         int ret = 0;
640
641         if (unlikely(left <= -period)) {
642                 left = period;
643                 local64_set(&hwc->period_left, left);
644                 hwc->last_period = period;
645                 ret = 1;
646         }
647
648         if (unlikely(left <= 0)) {
649                 left += period;
650                 local64_set(&hwc->period_left, left);
651                 hwc->last_period = period;
652                 ret = 1;
653         }
654         if (left > MAX_PERIOD)
655                 left = MAX_PERIOD;
656
657         local64_set(&hwc->prev_count, (u64)-left);
658
659         write_pmc(idx, (u64)(-left) & 0xffffffff);
660
661         perf_event_update_userpage(event);
662
663         return ret;
664 }
665
666 /* If performance event entries have been added, move existing
667  * events around (if necessary) and then assign new entries to
668  * counters.
669  */
670 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
671 {
672         int i;
673
674         if (!cpuc->n_added)
675                 goto out;
676
677         /* Read in the counters which are moving.  */
678         for (i = 0; i < cpuc->n_events; i++) {
679                 struct perf_event *cp = cpuc->event[i];
680
681                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
682                     cpuc->current_idx[i] != cp->hw.idx) {
683                         sparc_perf_event_update(cp, &cp->hw,
684                                                 cpuc->current_idx[i]);
685                         cpuc->current_idx[i] = PIC_NO_INDEX;
686                 }
687         }
688
689         /* Assign to counters all unassigned events.  */
690         for (i = 0; i < cpuc->n_events; i++) {
691                 struct perf_event *cp = cpuc->event[i];
692                 struct hw_perf_event *hwc = &cp->hw;
693                 int idx = hwc->idx;
694                 u64 enc;
695
696                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
697                         continue;
698
699                 sparc_perf_event_set_period(cp, hwc, idx);
700                 cpuc->current_idx[i] = idx;
701
702                 enc = perf_event_get_enc(cpuc->events[i]);
703                 pcr &= ~mask_for_index(idx);
704                 if (hwc->state & PERF_HES_STOPPED)
705                         pcr |= nop_for_index(idx);
706                 else
707                         pcr |= event_encoding(enc, idx);
708         }
709 out:
710         return pcr;
711 }
712
713 static void sparc_pmu_enable(struct pmu *pmu)
714 {
715         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
716         u64 pcr;
717
718         if (cpuc->enabled)
719                 return;
720
721         cpuc->enabled = 1;
722         barrier();
723
724         pcr = cpuc->pcr;
725         if (!cpuc->n_events) {
726                 pcr = 0;
727         } else {
728                 pcr = maybe_change_configuration(cpuc, pcr);
729
730                 /* We require that all of the events have the same
731                  * configuration, so just fetch the settings from the
732                  * first entry.
733                  */
734                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
735         }
736
737         pcr_ops->write(cpuc->pcr);
738 }
739
740 static void sparc_pmu_disable(struct pmu *pmu)
741 {
742         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743         u64 val;
744
745         if (!cpuc->enabled)
746                 return;
747
748         cpuc->enabled = 0;
749         cpuc->n_added = 0;
750
751         val = cpuc->pcr;
752         val &= ~(PCR_UTRACE | PCR_STRACE |
753                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
754         cpuc->pcr = val;
755
756         pcr_ops->write(cpuc->pcr);
757 }
758
759 static int active_event_index(struct cpu_hw_events *cpuc,
760                               struct perf_event *event)
761 {
762         int i;
763
764         for (i = 0; i < cpuc->n_events; i++) {
765                 if (cpuc->event[i] == event)
766                         break;
767         }
768         BUG_ON(i == cpuc->n_events);
769         return cpuc->current_idx[i];
770 }
771
772 static void sparc_pmu_start(struct perf_event *event, int flags)
773 {
774         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
775         int idx = active_event_index(cpuc, event);
776
777         if (flags & PERF_EF_RELOAD) {
778                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
779                 sparc_perf_event_set_period(event, &event->hw, idx);
780         }
781
782         event->hw.state = 0;
783
784         sparc_pmu_enable_event(cpuc, &event->hw, idx);
785 }
786
787 static void sparc_pmu_stop(struct perf_event *event, int flags)
788 {
789         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790         int idx = active_event_index(cpuc, event);
791
792         if (!(event->hw.state & PERF_HES_STOPPED)) {
793                 sparc_pmu_disable_event(cpuc, &event->hw, idx);
794                 event->hw.state |= PERF_HES_STOPPED;
795         }
796
797         if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
798                 sparc_perf_event_update(event, &event->hw, idx);
799                 event->hw.state |= PERF_HES_UPTODATE;
800         }
801 }
802
803 static void sparc_pmu_del(struct perf_event *event, int _flags)
804 {
805         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
806         unsigned long flags;
807         int i;
808
809         local_irq_save(flags);
810         perf_pmu_disable(event->pmu);
811
812         for (i = 0; i < cpuc->n_events; i++) {
813                 if (event == cpuc->event[i]) {
814                         /* Absorb the final count and turn off the
815                          * event.
816                          */
817                         sparc_pmu_stop(event, PERF_EF_UPDATE);
818
819                         /* Shift remaining entries down into
820                          * the existing slot.
821                          */
822                         while (++i < cpuc->n_events) {
823                                 cpuc->event[i - 1] = cpuc->event[i];
824                                 cpuc->events[i - 1] = cpuc->events[i];
825                                 cpuc->current_idx[i - 1] =
826                                         cpuc->current_idx[i];
827                         }
828
829                         perf_event_update_userpage(event);
830
831                         cpuc->n_events--;
832                         break;
833                 }
834         }
835
836         perf_pmu_enable(event->pmu);
837         local_irq_restore(flags);
838 }
839
840 static void sparc_pmu_read(struct perf_event *event)
841 {
842         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
843         int idx = active_event_index(cpuc, event);
844         struct hw_perf_event *hwc = &event->hw;
845
846         sparc_perf_event_update(event, hwc, idx);
847 }
848
849 static atomic_t active_events = ATOMIC_INIT(0);
850 static DEFINE_MUTEX(pmc_grab_mutex);
851
852 static void perf_stop_nmi_watchdog(void *unused)
853 {
854         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
855
856         stop_nmi_watchdog(NULL);
857         cpuc->pcr = pcr_ops->read();
858 }
859
860 void perf_event_grab_pmc(void)
861 {
862         if (atomic_inc_not_zero(&active_events))
863                 return;
864
865         mutex_lock(&pmc_grab_mutex);
866         if (atomic_read(&active_events) == 0) {
867                 if (atomic_read(&nmi_active) > 0) {
868                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
869                         BUG_ON(atomic_read(&nmi_active) != 0);
870                 }
871                 atomic_inc(&active_events);
872         }
873         mutex_unlock(&pmc_grab_mutex);
874 }
875
876 void perf_event_release_pmc(void)
877 {
878         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
879                 if (atomic_read(&nmi_active) == 0)
880                         on_each_cpu(start_nmi_watchdog, NULL, 1);
881                 mutex_unlock(&pmc_grab_mutex);
882         }
883 }
884
885 static const struct perf_event_map *sparc_map_cache_event(u64 config)
886 {
887         unsigned int cache_type, cache_op, cache_result;
888         const struct perf_event_map *pmap;
889
890         if (!sparc_pmu->cache_map)
891                 return ERR_PTR(-ENOENT);
892
893         cache_type = (config >>  0) & 0xff;
894         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
895                 return ERR_PTR(-EINVAL);
896
897         cache_op = (config >>  8) & 0xff;
898         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
899                 return ERR_PTR(-EINVAL);
900
901         cache_result = (config >> 16) & 0xff;
902         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
903                 return ERR_PTR(-EINVAL);
904
905         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
906
907         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
908                 return ERR_PTR(-ENOENT);
909
910         if (pmap->encoding == CACHE_OP_NONSENSE)
911                 return ERR_PTR(-EINVAL);
912
913         return pmap;
914 }
915
916 static void hw_perf_event_destroy(struct perf_event *event)
917 {
918         perf_event_release_pmc();
919 }
920
921 /* Make sure all events can be scheduled into the hardware at
922  * the same time.  This is simplified by the fact that we only
923  * need to support 2 simultaneous HW events.
924  *
925  * As a side effect, the evts[]->hw.idx values will be assigned
926  * on success.  These are pending indexes.  When the events are
927  * actually programmed into the chip, these values will propagate
928  * to the per-cpu cpuc->current_idx[] slots, see the code in
929  * maybe_change_configuration() for details.
930  */
931 static int sparc_check_constraints(struct perf_event **evts,
932                                    unsigned long *events, int n_ev)
933 {
934         u8 msk0 = 0, msk1 = 0;
935         int idx0 = 0;
936
937         /* This case is possible when we are invoked from
938          * hw_perf_group_sched_in().
939          */
940         if (!n_ev)
941                 return 0;
942
943         if (n_ev > MAX_HWEVENTS)
944                 return -1;
945
946         msk0 = perf_event_get_msk(events[0]);
947         if (n_ev == 1) {
948                 if (msk0 & PIC_LOWER)
949                         idx0 = 1;
950                 goto success;
951         }
952         BUG_ON(n_ev != 2);
953         msk1 = perf_event_get_msk(events[1]);
954
955         /* If both events can go on any counter, OK.  */
956         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
957             msk1 == (PIC_UPPER | PIC_LOWER))
958                 goto success;
959
960         /* If one event is limited to a specific counter,
961          * and the other can go on both, OK.
962          */
963         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
964             msk1 == (PIC_UPPER | PIC_LOWER)) {
965                 if (msk0 & PIC_LOWER)
966                         idx0 = 1;
967                 goto success;
968         }
969
970         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
971             msk0 == (PIC_UPPER | PIC_LOWER)) {
972                 if (msk1 & PIC_UPPER)
973                         idx0 = 1;
974                 goto success;
975         }
976
977         /* If the events are fixed to different counters, OK.  */
978         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
979             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
980                 if (msk0 & PIC_LOWER)
981                         idx0 = 1;
982                 goto success;
983         }
984
985         /* Otherwise, there is a conflict.  */
986         return -1;
987
988 success:
989         evts[0]->hw.idx = idx0;
990         if (n_ev == 2)
991                 evts[1]->hw.idx = idx0 ^ 1;
992         return 0;
993 }
994
995 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
996 {
997         int eu = 0, ek = 0, eh = 0;
998         struct perf_event *event;
999         int i, n, first;
1000
1001         n = n_prev + n_new;
1002         if (n <= 1)
1003                 return 0;
1004
1005         first = 1;
1006         for (i = 0; i < n; i++) {
1007                 event = evts[i];
1008                 if (first) {
1009                         eu = event->attr.exclude_user;
1010                         ek = event->attr.exclude_kernel;
1011                         eh = event->attr.exclude_hv;
1012                         first = 0;
1013                 } else if (event->attr.exclude_user != eu ||
1014                            event->attr.exclude_kernel != ek ||
1015                            event->attr.exclude_hv != eh) {
1016                         return -EAGAIN;
1017                 }
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int collect_events(struct perf_event *group, int max_count,
1024                           struct perf_event *evts[], unsigned long *events,
1025                           int *current_idx)
1026 {
1027         struct perf_event *event;
1028         int n = 0;
1029
1030         if (!is_software_event(group)) {
1031                 if (n >= max_count)
1032                         return -1;
1033                 evts[n] = group;
1034                 events[n] = group->hw.event_base;
1035                 current_idx[n++] = PIC_NO_INDEX;
1036         }
1037         list_for_each_entry(event, &group->sibling_list, group_entry) {
1038                 if (!is_software_event(event) &&
1039                     event->state != PERF_EVENT_STATE_OFF) {
1040                         if (n >= max_count)
1041                                 return -1;
1042                         evts[n] = event;
1043                         events[n] = event->hw.event_base;
1044                         current_idx[n++] = PIC_NO_INDEX;
1045                 }
1046         }
1047         return n;
1048 }
1049
1050 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1051 {
1052         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1053         int n0, ret = -EAGAIN;
1054         unsigned long flags;
1055
1056         local_irq_save(flags);
1057         perf_pmu_disable(event->pmu);
1058
1059         n0 = cpuc->n_events;
1060         if (n0 >= MAX_HWEVENTS)
1061                 goto out;
1062
1063         cpuc->event[n0] = event;
1064         cpuc->events[n0] = event->hw.event_base;
1065         cpuc->current_idx[n0] = PIC_NO_INDEX;
1066
1067         event->hw.state = PERF_HES_UPTODATE;
1068         if (!(ef_flags & PERF_EF_START))
1069                 event->hw.state |= PERF_HES_STOPPED;
1070
1071         /*
1072          * If group events scheduling transaction was started,
1073          * skip the schedulability test here, it will be performed
1074          * at commit time(->commit_txn) as a whole
1075          */
1076         if (cpuc->group_flag & PERF_EVENT_TXN)
1077                 goto nocheck;
1078
1079         if (check_excludes(cpuc->event, n0, 1))
1080                 goto out;
1081         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1082                 goto out;
1083
1084 nocheck:
1085         cpuc->n_events++;
1086         cpuc->n_added++;
1087
1088         ret = 0;
1089 out:
1090         perf_pmu_enable(event->pmu);
1091         local_irq_restore(flags);
1092         return ret;
1093 }
1094
1095 static int sparc_pmu_event_init(struct perf_event *event)
1096 {
1097         struct perf_event_attr *attr = &event->attr;
1098         struct perf_event *evts[MAX_HWEVENTS];
1099         struct hw_perf_event *hwc = &event->hw;
1100         unsigned long events[MAX_HWEVENTS];
1101         int current_idx_dmy[MAX_HWEVENTS];
1102         const struct perf_event_map *pmap;
1103         int n;
1104
1105         if (atomic_read(&nmi_active) < 0)
1106                 return -ENODEV;
1107
1108         switch (attr->type) {
1109         case PERF_TYPE_HARDWARE:
1110                 if (attr->config >= sparc_pmu->max_events)
1111                         return -EINVAL;
1112                 pmap = sparc_pmu->event_map(attr->config);
1113                 break;
1114
1115         case PERF_TYPE_HW_CACHE:
1116                 pmap = sparc_map_cache_event(attr->config);
1117                 if (IS_ERR(pmap))
1118                         return PTR_ERR(pmap);
1119                 break;
1120
1121         case PERF_TYPE_RAW:
1122                 pmap = NULL;
1123                 break;
1124
1125         default:
1126                 return -ENOENT;
1127
1128         }
1129
1130         if (pmap) {
1131                 hwc->event_base = perf_event_encode(pmap);
1132         } else {
1133                 /*
1134                  * User gives us "(encoding << 16) | pic_mask" for
1135                  * PERF_TYPE_RAW events.
1136                  */
1137                 hwc->event_base = attr->config;
1138         }
1139
1140         /* We save the enable bits in the config_base.  */
1141         hwc->config_base = sparc_pmu->irq_bit;
1142         if (!attr->exclude_user)
1143                 hwc->config_base |= PCR_UTRACE;
1144         if (!attr->exclude_kernel)
1145                 hwc->config_base |= PCR_STRACE;
1146         if (!attr->exclude_hv)
1147                 hwc->config_base |= sparc_pmu->hv_bit;
1148
1149         n = 0;
1150         if (event->group_leader != event) {
1151                 n = collect_events(event->group_leader,
1152                                    MAX_HWEVENTS - 1,
1153                                    evts, events, current_idx_dmy);
1154                 if (n < 0)
1155                         return -EINVAL;
1156         }
1157         events[n] = hwc->event_base;
1158         evts[n] = event;
1159
1160         if (check_excludes(evts, n, 1))
1161                 return -EINVAL;
1162
1163         if (sparc_check_constraints(evts, events, n + 1))
1164                 return -EINVAL;
1165
1166         hwc->idx = PIC_NO_INDEX;
1167
1168         /* Try to do all error checking before this point, as unwinding
1169          * state after grabbing the PMC is difficult.
1170          */
1171         perf_event_grab_pmc();
1172         event->destroy = hw_perf_event_destroy;
1173
1174         if (!hwc->sample_period) {
1175                 hwc->sample_period = MAX_PERIOD;
1176                 hwc->last_period = hwc->sample_period;
1177                 local64_set(&hwc->period_left, hwc->sample_period);
1178         }
1179
1180         return 0;
1181 }
1182
1183 /*
1184  * Start group events scheduling transaction
1185  * Set the flag to make pmu::enable() not perform the
1186  * schedulability test, it will be performed at commit time
1187  */
1188 static void sparc_pmu_start_txn(struct pmu *pmu)
1189 {
1190         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1191
1192         perf_pmu_disable(pmu);
1193         cpuhw->group_flag |= PERF_EVENT_TXN;
1194 }
1195
1196 /*
1197  * Stop group events scheduling transaction
1198  * Clear the flag and pmu::enable() will perform the
1199  * schedulability test.
1200  */
1201 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1202 {
1203         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1204
1205         cpuhw->group_flag &= ~PERF_EVENT_TXN;
1206         perf_pmu_enable(pmu);
1207 }
1208
1209 /*
1210  * Commit group events scheduling transaction
1211  * Perform the group schedulability test as a whole
1212  * Return 0 if success
1213  */
1214 static int sparc_pmu_commit_txn(struct pmu *pmu)
1215 {
1216         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1217         int n;
1218
1219         if (!sparc_pmu)
1220                 return -EINVAL;
1221
1222         cpuc = &__get_cpu_var(cpu_hw_events);
1223         n = cpuc->n_events;
1224         if (check_excludes(cpuc->event, 0, n))
1225                 return -EINVAL;
1226         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1227                 return -EAGAIN;
1228
1229         cpuc->group_flag &= ~PERF_EVENT_TXN;
1230         perf_pmu_enable(pmu);
1231         return 0;
1232 }
1233
1234 static struct pmu pmu = {
1235         .pmu_enable     = sparc_pmu_enable,
1236         .pmu_disable    = sparc_pmu_disable,
1237         .event_init     = sparc_pmu_event_init,
1238         .add            = sparc_pmu_add,
1239         .del            = sparc_pmu_del,
1240         .start          = sparc_pmu_start,
1241         .stop           = sparc_pmu_stop,
1242         .read           = sparc_pmu_read,
1243         .start_txn      = sparc_pmu_start_txn,
1244         .cancel_txn     = sparc_pmu_cancel_txn,
1245         .commit_txn     = sparc_pmu_commit_txn,
1246 };
1247
1248 void perf_event_print_debug(void)
1249 {
1250         unsigned long flags;
1251         u64 pcr, pic;
1252         int cpu;
1253
1254         if (!sparc_pmu)
1255                 return;
1256
1257         local_irq_save(flags);
1258
1259         cpu = smp_processor_id();
1260
1261         pcr = pcr_ops->read();
1262         read_pic(pic);
1263
1264         pr_info("\n");
1265         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1266                 cpu, pcr, pic);
1267
1268         local_irq_restore(flags);
1269 }
1270
1271 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1272                                             unsigned long cmd, void *__args)
1273 {
1274         struct die_args *args = __args;
1275         struct perf_sample_data data;
1276         struct cpu_hw_events *cpuc;
1277         struct pt_regs *regs;
1278         int i;
1279
1280         if (!atomic_read(&active_events))
1281                 return NOTIFY_DONE;
1282
1283         switch (cmd) {
1284         case DIE_NMI:
1285                 break;
1286
1287         default:
1288                 return NOTIFY_DONE;
1289         }
1290
1291         regs = args->regs;
1292
1293         perf_sample_data_init(&data, 0);
1294
1295         cpuc = &__get_cpu_var(cpu_hw_events);
1296
1297         /* If the PMU has the TOE IRQ enable bits, we need to do a
1298          * dummy write to the %pcr to clear the overflow bits and thus
1299          * the interrupt.
1300          *
1301          * Do this before we peek at the counters to determine
1302          * overflow so we don't lose any events.
1303          */
1304         if (sparc_pmu->irq_bit)
1305                 pcr_ops->write(cpuc->pcr);
1306
1307         for (i = 0; i < cpuc->n_events; i++) {
1308                 struct perf_event *event = cpuc->event[i];
1309                 int idx = cpuc->current_idx[i];
1310                 struct hw_perf_event *hwc;
1311                 u64 val;
1312
1313                 hwc = &event->hw;
1314                 val = sparc_perf_event_update(event, hwc, idx);
1315                 if (val & (1ULL << 31))
1316                         continue;
1317
1318                 data.period = event->hw.last_period;
1319                 if (!sparc_perf_event_set_period(event, hwc, idx))
1320                         continue;
1321
1322                 if (perf_event_overflow(event, &data, regs))
1323                         sparc_pmu_stop(event, 0);
1324         }
1325
1326         return NOTIFY_STOP;
1327 }
1328
1329 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1330         .notifier_call          = perf_event_nmi_handler,
1331 };
1332
1333 static bool __init supported_pmu(void)
1334 {
1335         if (!strcmp(sparc_pmu_type, "ultra3") ||
1336             !strcmp(sparc_pmu_type, "ultra3+") ||
1337             !strcmp(sparc_pmu_type, "ultra3i") ||
1338             !strcmp(sparc_pmu_type, "ultra4+")) {
1339                 sparc_pmu = &ultra3_pmu;
1340                 return true;
1341         }
1342         if (!strcmp(sparc_pmu_type, "niagara")) {
1343                 sparc_pmu = &niagara1_pmu;
1344                 return true;
1345         }
1346         if (!strcmp(sparc_pmu_type, "niagara2")) {
1347                 sparc_pmu = &niagara2_pmu;
1348                 return true;
1349         }
1350         return false;
1351 }
1352
1353 int __init init_hw_perf_events(void)
1354 {
1355         pr_info("Performance events: ");
1356
1357         if (!supported_pmu()) {
1358                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1359                 return 0;
1360         }
1361
1362         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1363
1364         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1365         register_die_notifier(&perf_event_nmi_notifier);
1366
1367         return 0;
1368 }
1369 early_initcall(init_hw_perf_events);
1370
1371 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1372                            struct pt_regs *regs)
1373 {
1374         unsigned long ksp, fp;
1375 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1376         int graph = 0;
1377 #endif
1378
1379         stack_trace_flush();
1380
1381         perf_callchain_store(entry, regs->tpc);
1382
1383         ksp = regs->u_regs[UREG_I6];
1384         fp = ksp + STACK_BIAS;
1385         do {
1386                 struct sparc_stackf *sf;
1387                 struct pt_regs *regs;
1388                 unsigned long pc;
1389
1390                 if (!kstack_valid(current_thread_info(), fp))
1391                         break;
1392
1393                 sf = (struct sparc_stackf *) fp;
1394                 regs = (struct pt_regs *) (sf + 1);
1395
1396                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1397                         if (user_mode(regs))
1398                                 break;
1399                         pc = regs->tpc;
1400                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1401                 } else {
1402                         pc = sf->callers_pc;
1403                         fp = (unsigned long)sf->fp + STACK_BIAS;
1404                 }
1405                 perf_callchain_store(entry, pc);
1406 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1407                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1408                         int index = current->curr_ret_stack;
1409                         if (current->ret_stack && index >= graph) {
1410                                 pc = current->ret_stack[index - graph].ret;
1411                                 perf_callchain_store(entry, pc);
1412                                 graph++;
1413                         }
1414                 }
1415 #endif
1416         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1417 }
1418
1419 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1420                                    struct pt_regs *regs)
1421 {
1422         unsigned long ufp;
1423
1424         perf_callchain_store(entry, regs->tpc);
1425
1426         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1427         do {
1428                 struct sparc_stackf *usf, sf;
1429                 unsigned long pc;
1430
1431                 usf = (struct sparc_stackf *) ufp;
1432                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1433                         break;
1434
1435                 pc = sf.callers_pc;
1436                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1437                 perf_callchain_store(entry, pc);
1438         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1439 }
1440
1441 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1442                                    struct pt_regs *regs)
1443 {
1444         unsigned long ufp;
1445
1446         perf_callchain_store(entry, regs->tpc);
1447
1448         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1449         do {
1450                 struct sparc_stackf32 *usf, sf;
1451                 unsigned long pc;
1452
1453                 usf = (struct sparc_stackf32 *) ufp;
1454                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1455                         break;
1456
1457                 pc = sf.callers_pc;
1458                 ufp = (unsigned long)sf.fp;
1459                 perf_callchain_store(entry, pc);
1460         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1461 }
1462
1463 void
1464 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1465 {
1466         flushw_user();
1467         if (test_thread_flag(TIF_32BIT))
1468                 perf_callchain_user_32(entry, regs);
1469         else
1470                 perf_callchain_user_64(entry, regs);
1471 }