Merge branch 'tip/perf/jump-label-2' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/ipl.h>
42 #include <asm/setup.h>
43 #include <asm/sigp.h>
44 #include <asm/pgalloc.h>
45 #include <asm/irq.h>
46 #include <asm/s390_ext.h>
47 #include <asm/cpcmd.h>
48 #include <asm/tlbflush.h>
49 #include <asm/timer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/cputime.h>
53 #include <asm/vdso.h>
54 #include <asm/cpu.h>
55 #include "entry.h"
56
57 /* logical cpu to cpu address */
58 unsigned short __cpu_logical_map[NR_CPUS];
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76
77 static void smp_ext_bitcall(int, int);
78
79 static int raw_cpu_stopped(int cpu)
80 {
81         u32 status;
82
83         switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
84         case sigp_status_stored:
85                 /* Check for stopped and check stop state */
86                 if (status & 0x50)
87                         return 1;
88                 break;
89         default:
90                 break;
91         }
92         return 0;
93 }
94
95 static inline int cpu_stopped(int cpu)
96 {
97         return raw_cpu_stopped(cpu_logical_map(cpu));
98 }
99
100 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
101 {
102         struct _lowcore *lc, *current_lc;
103         struct stack_frame *sf;
104         struct pt_regs *regs;
105         unsigned long sp;
106
107         if (smp_processor_id() == 0)
108                 func(data);
109         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
110         /* Disable lowcore protection */
111         __ctl_clear_bit(0, 28);
112         current_lc = lowcore_ptr[smp_processor_id()];
113         lc = lowcore_ptr[0];
114         if (!lc)
115                 lc = current_lc;
116         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
117         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
118         if (!cpu_online(0))
119                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
120         while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
121                 cpu_relax();
122         sp = lc->panic_stack;
123         sp -= sizeof(struct pt_regs);
124         regs = (struct pt_regs *) sp;
125         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
126         regs->psw = lc->psw_save_area;
127         sp -= STACK_FRAME_OVERHEAD;
128         sf = (struct stack_frame *) sp;
129         sf->back_chain = regs->gprs[15];
130         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
131 }
132
133 void smp_send_stop(void)
134 {
135         int cpu, rc;
136
137         /* Disable all interrupts/machine checks */
138         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
139         trace_hardirqs_off();
140
141         /* stop all processors */
142         for_each_online_cpu(cpu) {
143                 if (cpu == smp_processor_id())
144                         continue;
145                 do {
146                         rc = sigp(cpu, sigp_stop);
147                 } while (rc == sigp_busy);
148
149                 while (!cpu_stopped(cpu))
150                         cpu_relax();
151         }
152 }
153
154 /*
155  * This is the main routine where commands issued by other
156  * cpus are handled.
157  */
158
159 static void do_ext_call_interrupt(unsigned int ext_int_code,
160                                   unsigned int param32, unsigned long param64)
161 {
162         unsigned long bits;
163
164         /*
165          * handle bit signal external calls
166          *
167          * For the ec_schedule signal we have to do nothing. All the work
168          * is done automatically when we return from the interrupt.
169          */
170         bits = xchg(&S390_lowcore.ext_call_fast, 0);
171
172         if (test_bit(ec_call_function, &bits))
173                 generic_smp_call_function_interrupt();
174
175         if (test_bit(ec_call_function_single, &bits))
176                 generic_smp_call_function_single_interrupt();
177 }
178
179 /*
180  * Send an external call sigp to another cpu and return without waiting
181  * for its completion.
182  */
183 static void smp_ext_bitcall(int cpu, int sig)
184 {
185         /*
186          * Set signaling bit in lowcore of target cpu and kick it
187          */
188         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
189         while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
190                 udelay(10);
191 }
192
193 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
194 {
195         int cpu;
196
197         for_each_cpu(cpu, mask)
198                 smp_ext_bitcall(cpu, ec_call_function);
199 }
200
201 void arch_send_call_function_single_ipi(int cpu)
202 {
203         smp_ext_bitcall(cpu, ec_call_function_single);
204 }
205
206 #ifndef CONFIG_64BIT
207 /*
208  * this function sends a 'purge tlb' signal to another CPU.
209  */
210 static void smp_ptlb_callback(void *info)
211 {
212         __tlb_flush_local();
213 }
214
215 void smp_ptlb_all(void)
216 {
217         on_each_cpu(smp_ptlb_callback, NULL, 1);
218 }
219 EXPORT_SYMBOL(smp_ptlb_all);
220 #endif /* ! CONFIG_64BIT */
221
222 /*
223  * this function sends a 'reschedule' IPI to another CPU.
224  * it goes straight through and wastes no time serializing
225  * anything. Worst case is that we lose a reschedule ...
226  */
227 void smp_send_reschedule(int cpu)
228 {
229         smp_ext_bitcall(cpu, ec_schedule);
230 }
231
232 /*
233  * parameter area for the set/clear control bit callbacks
234  */
235 struct ec_creg_mask_parms {
236         unsigned long orvals[16];
237         unsigned long andvals[16];
238 };
239
240 /*
241  * callback for setting/clearing control bits
242  */
243 static void smp_ctl_bit_callback(void *info)
244 {
245         struct ec_creg_mask_parms *pp = info;
246         unsigned long cregs[16];
247         int i;
248
249         __ctl_store(cregs, 0, 15);
250         for (i = 0; i <= 15; i++)
251                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
252         __ctl_load(cregs, 0, 15);
253 }
254
255 /*
256  * Set a bit in a control register of all cpus
257  */
258 void smp_ctl_set_bit(int cr, int bit)
259 {
260         struct ec_creg_mask_parms parms;
261
262         memset(&parms.orvals, 0, sizeof(parms.orvals));
263         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
264         parms.orvals[cr] = 1 << bit;
265         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
266 }
267 EXPORT_SYMBOL(smp_ctl_set_bit);
268
269 /*
270  * Clear a bit in a control register of all cpus
271  */
272 void smp_ctl_clear_bit(int cr, int bit)
273 {
274         struct ec_creg_mask_parms parms;
275
276         memset(&parms.orvals, 0, sizeof(parms.orvals));
277         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
278         parms.andvals[cr] = ~(1L << bit);
279         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
280 }
281 EXPORT_SYMBOL(smp_ctl_clear_bit);
282
283 #ifdef CONFIG_ZFCPDUMP
284
285 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
286 {
287         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
288                 return;
289         if (cpu >= NR_CPUS) {
290                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
291                            "the dump\n", cpu, NR_CPUS - 1);
292                 return;
293         }
294         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
295         while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
296                 cpu_relax();
297         memcpy_real(zfcpdump_save_areas[cpu],
298                     (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
299                     sizeof(struct save_area));
300 }
301
302 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
303 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
304
305 #else
306
307 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
308
309 #endif /* CONFIG_ZFCPDUMP */
310
311 static int cpu_known(int cpu_id)
312 {
313         int cpu;
314
315         for_each_present_cpu(cpu) {
316                 if (__cpu_logical_map[cpu] == cpu_id)
317                         return 1;
318         }
319         return 0;
320 }
321
322 static int smp_rescan_cpus_sigp(cpumask_t avail)
323 {
324         int cpu_id, logical_cpu;
325
326         logical_cpu = cpumask_first(&avail);
327         if (logical_cpu >= nr_cpu_ids)
328                 return 0;
329         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
330                 if (cpu_known(cpu_id))
331                         continue;
332                 __cpu_logical_map[logical_cpu] = cpu_id;
333                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
334                 if (!cpu_stopped(logical_cpu))
335                         continue;
336                 cpu_set(logical_cpu, cpu_present_map);
337                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
338                 logical_cpu = cpumask_next(logical_cpu, &avail);
339                 if (logical_cpu >= nr_cpu_ids)
340                         break;
341         }
342         return 0;
343 }
344
345 static int smp_rescan_cpus_sclp(cpumask_t avail)
346 {
347         struct sclp_cpu_info *info;
348         int cpu_id, logical_cpu, cpu;
349         int rc;
350
351         logical_cpu = cpumask_first(&avail);
352         if (logical_cpu >= nr_cpu_ids)
353                 return 0;
354         info = kmalloc(sizeof(*info), GFP_KERNEL);
355         if (!info)
356                 return -ENOMEM;
357         rc = sclp_get_cpu_info(info);
358         if (rc)
359                 goto out;
360         for (cpu = 0; cpu < info->combined; cpu++) {
361                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
362                         continue;
363                 cpu_id = info->cpu[cpu].address;
364                 if (cpu_known(cpu_id))
365                         continue;
366                 __cpu_logical_map[logical_cpu] = cpu_id;
367                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
368                 cpu_set(logical_cpu, cpu_present_map);
369                 if (cpu >= info->configured)
370                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
371                 else
372                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
373                 logical_cpu = cpumask_next(logical_cpu, &avail);
374                 if (logical_cpu >= nr_cpu_ids)
375                         break;
376         }
377 out:
378         kfree(info);
379         return rc;
380 }
381
382 static int __smp_rescan_cpus(void)
383 {
384         cpumask_t avail;
385
386         cpus_xor(avail, cpu_possible_map, cpu_present_map);
387         if (smp_use_sigp_detection)
388                 return smp_rescan_cpus_sigp(avail);
389         else
390                 return smp_rescan_cpus_sclp(avail);
391 }
392
393 static void __init smp_detect_cpus(void)
394 {
395         unsigned int cpu, c_cpus, s_cpus;
396         struct sclp_cpu_info *info;
397         u16 boot_cpu_addr, cpu_addr;
398
399         c_cpus = 1;
400         s_cpus = 0;
401         boot_cpu_addr = __cpu_logical_map[0];
402         info = kmalloc(sizeof(*info), GFP_KERNEL);
403         if (!info)
404                 panic("smp_detect_cpus failed to allocate memory\n");
405         /* Use sigp detection algorithm if sclp doesn't work. */
406         if (sclp_get_cpu_info(info)) {
407                 smp_use_sigp_detection = 1;
408                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
409                         if (cpu == boot_cpu_addr)
410                                 continue;
411                         if (!raw_cpu_stopped(cpu))
412                                 continue;
413                         smp_get_save_area(c_cpus, cpu);
414                         c_cpus++;
415                 }
416                 goto out;
417         }
418
419         if (info->has_cpu_type) {
420                 for (cpu = 0; cpu < info->combined; cpu++) {
421                         if (info->cpu[cpu].address == boot_cpu_addr) {
422                                 smp_cpu_type = info->cpu[cpu].type;
423                                 break;
424                         }
425                 }
426         }
427
428         for (cpu = 0; cpu < info->combined; cpu++) {
429                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
430                         continue;
431                 cpu_addr = info->cpu[cpu].address;
432                 if (cpu_addr == boot_cpu_addr)
433                         continue;
434                 if (!raw_cpu_stopped(cpu_addr)) {
435                         s_cpus++;
436                         continue;
437                 }
438                 smp_get_save_area(c_cpus, cpu_addr);
439                 c_cpus++;
440         }
441 out:
442         kfree(info);
443         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
444         get_online_cpus();
445         __smp_rescan_cpus();
446         put_online_cpus();
447 }
448
449 /*
450  *      Activate a secondary processor.
451  */
452 int __cpuinit start_secondary(void *cpuvoid)
453 {
454         /* Setup the cpu */
455         cpu_init();
456         preempt_disable();
457         /* Enable TOD clock interrupts on the secondary cpu. */
458         init_cpu_timer();
459         /* Enable cpu timer interrupts on the secondary cpu. */
460         init_cpu_vtimer();
461         /* Enable pfault pseudo page faults on this cpu. */
462         pfault_init();
463
464         /* call cpu notifiers */
465         notify_cpu_starting(smp_processor_id());
466         /* Mark this cpu as online */
467         ipi_call_lock();
468         cpu_set(smp_processor_id(), cpu_online_map);
469         ipi_call_unlock();
470         /* Switch on interrupts */
471         local_irq_enable();
472         /* Print info about this processor */
473         print_cpu_info();
474         /* cpu_idle will call schedule for us */
475         cpu_idle();
476         return 0;
477 }
478
479 static void __init smp_create_idle(unsigned int cpu)
480 {
481         struct task_struct *p;
482
483         /*
484          *  don't care about the psw and regs settings since we'll never
485          *  reschedule the forked task.
486          */
487         p = fork_idle(cpu);
488         if (IS_ERR(p))
489                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
490         current_set[cpu] = p;
491 }
492
493 static int __cpuinit smp_alloc_lowcore(int cpu)
494 {
495         unsigned long async_stack, panic_stack;
496         struct _lowcore *lowcore;
497
498         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
499         if (!lowcore)
500                 return -ENOMEM;
501         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
502         panic_stack = __get_free_page(GFP_KERNEL);
503         if (!panic_stack || !async_stack)
504                 goto out;
505         memcpy(lowcore, &S390_lowcore, 512);
506         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
507         lowcore->async_stack = async_stack + ASYNC_SIZE;
508         lowcore->panic_stack = panic_stack + PAGE_SIZE;
509
510 #ifndef CONFIG_64BIT
511         if (MACHINE_HAS_IEEE) {
512                 unsigned long save_area;
513
514                 save_area = get_zeroed_page(GFP_KERNEL);
515                 if (!save_area)
516                         goto out;
517                 lowcore->extended_save_area_addr = (u32) save_area;
518         }
519 #else
520         if (vdso_alloc_per_cpu(cpu, lowcore))
521                 goto out;
522 #endif
523         lowcore_ptr[cpu] = lowcore;
524         return 0;
525
526 out:
527         free_page(panic_stack);
528         free_pages(async_stack, ASYNC_ORDER);
529         free_pages((unsigned long) lowcore, LC_ORDER);
530         return -ENOMEM;
531 }
532
533 static void smp_free_lowcore(int cpu)
534 {
535         struct _lowcore *lowcore;
536
537         lowcore = lowcore_ptr[cpu];
538 #ifndef CONFIG_64BIT
539         if (MACHINE_HAS_IEEE)
540                 free_page((unsigned long) lowcore->extended_save_area_addr);
541 #else
542         vdso_free_per_cpu(cpu, lowcore);
543 #endif
544         free_page(lowcore->panic_stack - PAGE_SIZE);
545         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
546         free_pages((unsigned long) lowcore, LC_ORDER);
547         lowcore_ptr[cpu] = NULL;
548 }
549
550 /* Upping and downing of CPUs */
551 int __cpuinit __cpu_up(unsigned int cpu)
552 {
553         struct _lowcore *cpu_lowcore;
554         struct task_struct *idle;
555         struct stack_frame *sf;
556         u32 lowcore;
557         int ccode;
558
559         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
560                 return -EIO;
561         if (smp_alloc_lowcore(cpu))
562                 return -ENOMEM;
563         do {
564                 ccode = sigp(cpu, sigp_initial_cpu_reset);
565                 if (ccode == sigp_busy)
566                         udelay(10);
567                 if (ccode == sigp_not_operational)
568                         goto err_out;
569         } while (ccode == sigp_busy);
570
571         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
572         while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
573                 udelay(10);
574
575         idle = current_set[cpu];
576         cpu_lowcore = lowcore_ptr[cpu];
577         cpu_lowcore->kernel_stack = (unsigned long)
578                 task_stack_page(idle) + THREAD_SIZE;
579         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
580         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
581                                      - sizeof(struct pt_regs)
582                                      - sizeof(struct stack_frame));
583         memset(sf, 0, sizeof(struct stack_frame));
584         sf->gprs[9] = (unsigned long) sf;
585         cpu_lowcore->save_area[15] = (unsigned long) sf;
586         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
587         atomic_inc(&init_mm.context.attach_count);
588         asm volatile(
589                 "       stam    0,15,0(%0)"
590                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
591         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
592         cpu_lowcore->current_task = (unsigned long) idle;
593         cpu_lowcore->cpu_nr = cpu;
594         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
595         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
596         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
597         memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
598                MAX_FACILITY_BIT/8);
599         eieio();
600
601         while (sigp(cpu, sigp_restart) == sigp_busy)
602                 udelay(10);
603
604         while (!cpu_online(cpu))
605                 cpu_relax();
606         return 0;
607
608 err_out:
609         smp_free_lowcore(cpu);
610         return -EIO;
611 }
612
613 static int __init setup_possible_cpus(char *s)
614 {
615         int pcpus, cpu;
616
617         pcpus = simple_strtoul(s, NULL, 0);
618         init_cpu_possible(cpumask_of(0));
619         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
620                 set_cpu_possible(cpu, true);
621         return 0;
622 }
623 early_param("possible_cpus", setup_possible_cpus);
624
625 #ifdef CONFIG_HOTPLUG_CPU
626
627 int __cpu_disable(void)
628 {
629         struct ec_creg_mask_parms cr_parms;
630         int cpu = smp_processor_id();
631
632         cpu_clear(cpu, cpu_online_map);
633
634         /* Disable pfault pseudo page faults on this cpu. */
635         pfault_fini();
636
637         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
638         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
639
640         /* disable all external interrupts */
641         cr_parms.orvals[0] = 0;
642         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
643                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
644         /* disable all I/O interrupts */
645         cr_parms.orvals[6] = 0;
646         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
647                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
648         /* disable most machine checks */
649         cr_parms.orvals[14] = 0;
650         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
651                                  1 << 25 | 1 << 24);
652
653         smp_ctl_bit_callback(&cr_parms);
654
655         return 0;
656 }
657
658 void __cpu_die(unsigned int cpu)
659 {
660         /* Wait until target cpu is down */
661         while (!cpu_stopped(cpu))
662                 cpu_relax();
663         while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
664                 udelay(10);
665         smp_free_lowcore(cpu);
666         atomic_dec(&init_mm.context.attach_count);
667         pr_info("Processor %d stopped\n", cpu);
668 }
669
670 void cpu_die(void)
671 {
672         idle_task_exit();
673         while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
674                 cpu_relax();
675         for (;;);
676 }
677
678 #endif /* CONFIG_HOTPLUG_CPU */
679
680 void __init smp_prepare_cpus(unsigned int max_cpus)
681 {
682 #ifndef CONFIG_64BIT
683         unsigned long save_area = 0;
684 #endif
685         unsigned long async_stack, panic_stack;
686         struct _lowcore *lowcore;
687         unsigned int cpu;
688
689         smp_detect_cpus();
690
691         /* request the 0x1201 emergency signal external interrupt */
692         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
693                 panic("Couldn't request external interrupt 0x1201");
694         print_cpu_info();
695
696         /* Reallocate current lowcore, but keep its contents. */
697         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
698         panic_stack = __get_free_page(GFP_KERNEL);
699         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
700         BUG_ON(!lowcore || !panic_stack || !async_stack);
701 #ifndef CONFIG_64BIT
702         if (MACHINE_HAS_IEEE)
703                 save_area = get_zeroed_page(GFP_KERNEL);
704 #endif
705         local_irq_disable();
706         local_mcck_disable();
707         lowcore_ptr[smp_processor_id()] = lowcore;
708         *lowcore = S390_lowcore;
709         lowcore->panic_stack = panic_stack + PAGE_SIZE;
710         lowcore->async_stack = async_stack + ASYNC_SIZE;
711 #ifndef CONFIG_64BIT
712         if (MACHINE_HAS_IEEE)
713                 lowcore->extended_save_area_addr = (u32) save_area;
714 #endif
715         set_prefix((u32)(unsigned long) lowcore);
716         local_mcck_enable();
717         local_irq_enable();
718 #ifdef CONFIG_64BIT
719         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
720                 BUG();
721 #endif
722         for_each_possible_cpu(cpu)
723                 if (cpu != smp_processor_id())
724                         smp_create_idle(cpu);
725 }
726
727 void __init smp_prepare_boot_cpu(void)
728 {
729         BUG_ON(smp_processor_id() != 0);
730
731         current_thread_info()->cpu = 0;
732         cpu_set(0, cpu_present_map);
733         cpu_set(0, cpu_online_map);
734         S390_lowcore.percpu_offset = __per_cpu_offset[0];
735         current_set[0] = current;
736         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
737         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
738 }
739
740 void __init smp_cpus_done(unsigned int max_cpus)
741 {
742 }
743
744 void __init smp_setup_processor_id(void)
745 {
746         S390_lowcore.cpu_nr = 0;
747         __cpu_logical_map[0] = stap();
748 }
749
750 /*
751  * the frequency of the profiling timer can be changed
752  * by writing a multiplier value into /proc/profile.
753  *
754  * usually you want to run this on all CPUs ;)
755  */
756 int setup_profiling_timer(unsigned int multiplier)
757 {
758         return 0;
759 }
760
761 #ifdef CONFIG_HOTPLUG_CPU
762 static ssize_t cpu_configure_show(struct sys_device *dev,
763                                 struct sysdev_attribute *attr, char *buf)
764 {
765         ssize_t count;
766
767         mutex_lock(&smp_cpu_state_mutex);
768         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
769         mutex_unlock(&smp_cpu_state_mutex);
770         return count;
771 }
772
773 static ssize_t cpu_configure_store(struct sys_device *dev,
774                                   struct sysdev_attribute *attr,
775                                   const char *buf, size_t count)
776 {
777         int cpu = dev->id;
778         int val, rc;
779         char delim;
780
781         if (sscanf(buf, "%d %c", &val, &delim) != 1)
782                 return -EINVAL;
783         if (val != 0 && val != 1)
784                 return -EINVAL;
785
786         get_online_cpus();
787         mutex_lock(&smp_cpu_state_mutex);
788         rc = -EBUSY;
789         /* disallow configuration changes of online cpus and cpu 0 */
790         if (cpu_online(cpu) || cpu == 0)
791                 goto out;
792         rc = 0;
793         switch (val) {
794         case 0:
795                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
796                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
797                         if (!rc) {
798                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
799                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
800                         }
801                 }
802                 break;
803         case 1:
804                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
805                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
806                         if (!rc) {
807                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
808                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
809                         }
810                 }
811                 break;
812         default:
813                 break;
814         }
815 out:
816         mutex_unlock(&smp_cpu_state_mutex);
817         put_online_cpus();
818         return rc ? rc : count;
819 }
820 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
821 #endif /* CONFIG_HOTPLUG_CPU */
822
823 static ssize_t cpu_polarization_show(struct sys_device *dev,
824                                      struct sysdev_attribute *attr, char *buf)
825 {
826         int cpu = dev->id;
827         ssize_t count;
828
829         mutex_lock(&smp_cpu_state_mutex);
830         switch (smp_cpu_polarization[cpu]) {
831         case POLARIZATION_HRZ:
832                 count = sprintf(buf, "horizontal\n");
833                 break;
834         case POLARIZATION_VL:
835                 count = sprintf(buf, "vertical:low\n");
836                 break;
837         case POLARIZATION_VM:
838                 count = sprintf(buf, "vertical:medium\n");
839                 break;
840         case POLARIZATION_VH:
841                 count = sprintf(buf, "vertical:high\n");
842                 break;
843         default:
844                 count = sprintf(buf, "unknown\n");
845                 break;
846         }
847         mutex_unlock(&smp_cpu_state_mutex);
848         return count;
849 }
850 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
851
852 static ssize_t show_cpu_address(struct sys_device *dev,
853                                 struct sysdev_attribute *attr, char *buf)
854 {
855         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
856 }
857 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
858
859
860 static struct attribute *cpu_common_attrs[] = {
861 #ifdef CONFIG_HOTPLUG_CPU
862         &attr_configure.attr,
863 #endif
864         &attr_address.attr,
865         &attr_polarization.attr,
866         NULL,
867 };
868
869 static struct attribute_group cpu_common_attr_group = {
870         .attrs = cpu_common_attrs,
871 };
872
873 static ssize_t show_capability(struct sys_device *dev,
874                                 struct sysdev_attribute *attr, char *buf)
875 {
876         unsigned int capability;
877         int rc;
878
879         rc = get_cpu_capability(&capability);
880         if (rc)
881                 return rc;
882         return sprintf(buf, "%u\n", capability);
883 }
884 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
885
886 static ssize_t show_idle_count(struct sys_device *dev,
887                                 struct sysdev_attribute *attr, char *buf)
888 {
889         struct s390_idle_data *idle;
890         unsigned long long idle_count;
891         unsigned int sequence;
892
893         idle = &per_cpu(s390_idle, dev->id);
894 repeat:
895         sequence = idle->sequence;
896         smp_rmb();
897         if (sequence & 1)
898                 goto repeat;
899         idle_count = idle->idle_count;
900         if (idle->idle_enter)
901                 idle_count++;
902         smp_rmb();
903         if (idle->sequence != sequence)
904                 goto repeat;
905         return sprintf(buf, "%llu\n", idle_count);
906 }
907 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
908
909 static ssize_t show_idle_time(struct sys_device *dev,
910                                 struct sysdev_attribute *attr, char *buf)
911 {
912         struct s390_idle_data *idle;
913         unsigned long long now, idle_time, idle_enter;
914         unsigned int sequence;
915
916         idle = &per_cpu(s390_idle, dev->id);
917         now = get_clock();
918 repeat:
919         sequence = idle->sequence;
920         smp_rmb();
921         if (sequence & 1)
922                 goto repeat;
923         idle_time = idle->idle_time;
924         idle_enter = idle->idle_enter;
925         if (idle_enter != 0ULL && idle_enter < now)
926                 idle_time += now - idle_enter;
927         smp_rmb();
928         if (idle->sequence != sequence)
929                 goto repeat;
930         return sprintf(buf, "%llu\n", idle_time >> 12);
931 }
932 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
933
934 static struct attribute *cpu_online_attrs[] = {
935         &attr_capability.attr,
936         &attr_idle_count.attr,
937         &attr_idle_time_us.attr,
938         NULL,
939 };
940
941 static struct attribute_group cpu_online_attr_group = {
942         .attrs = cpu_online_attrs,
943 };
944
945 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
946                                     unsigned long action, void *hcpu)
947 {
948         unsigned int cpu = (unsigned int)(long)hcpu;
949         struct cpu *c = &per_cpu(cpu_devices, cpu);
950         struct sys_device *s = &c->sysdev;
951         struct s390_idle_data *idle;
952         int err = 0;
953
954         switch (action) {
955         case CPU_ONLINE:
956         case CPU_ONLINE_FROZEN:
957                 idle = &per_cpu(s390_idle, cpu);
958                 memset(idle, 0, sizeof(struct s390_idle_data));
959                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
960                 break;
961         case CPU_DEAD:
962         case CPU_DEAD_FROZEN:
963                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
964                 break;
965         }
966         return notifier_from_errno(err);
967 }
968
969 static struct notifier_block __cpuinitdata smp_cpu_nb = {
970         .notifier_call = smp_cpu_notify,
971 };
972
973 static int __devinit smp_add_present_cpu(int cpu)
974 {
975         struct cpu *c = &per_cpu(cpu_devices, cpu);
976         struct sys_device *s = &c->sysdev;
977         int rc;
978
979         c->hotpluggable = 1;
980         rc = register_cpu(c, cpu);
981         if (rc)
982                 goto out;
983         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
984         if (rc)
985                 goto out_cpu;
986         if (!cpu_online(cpu))
987                 goto out;
988         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
989         if (!rc)
990                 return 0;
991         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
992 out_cpu:
993 #ifdef CONFIG_HOTPLUG_CPU
994         unregister_cpu(c);
995 #endif
996 out:
997         return rc;
998 }
999
1000 #ifdef CONFIG_HOTPLUG_CPU
1001
1002 int __ref smp_rescan_cpus(void)
1003 {
1004         cpumask_t newcpus;
1005         int cpu;
1006         int rc;
1007
1008         get_online_cpus();
1009         mutex_lock(&smp_cpu_state_mutex);
1010         newcpus = cpu_present_map;
1011         rc = __smp_rescan_cpus();
1012         if (rc)
1013                 goto out;
1014         cpus_andnot(newcpus, cpu_present_map, newcpus);
1015         for_each_cpu_mask(cpu, newcpus) {
1016                 rc = smp_add_present_cpu(cpu);
1017                 if (rc)
1018                         cpu_clear(cpu, cpu_present_map);
1019         }
1020         rc = 0;
1021 out:
1022         mutex_unlock(&smp_cpu_state_mutex);
1023         put_online_cpus();
1024         if (!cpus_empty(newcpus))
1025                 topology_schedule_update();
1026         return rc;
1027 }
1028
1029 static ssize_t __ref rescan_store(struct sysdev_class *class,
1030                                   struct sysdev_class_attribute *attr,
1031                                   const char *buf,
1032                                   size_t count)
1033 {
1034         int rc;
1035
1036         rc = smp_rescan_cpus();
1037         return rc ? rc : count;
1038 }
1039 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1040 #endif /* CONFIG_HOTPLUG_CPU */
1041
1042 static ssize_t dispatching_show(struct sysdev_class *class,
1043                                 struct sysdev_class_attribute *attr,
1044                                 char *buf)
1045 {
1046         ssize_t count;
1047
1048         mutex_lock(&smp_cpu_state_mutex);
1049         count = sprintf(buf, "%d\n", cpu_management);
1050         mutex_unlock(&smp_cpu_state_mutex);
1051         return count;
1052 }
1053
1054 static ssize_t dispatching_store(struct sysdev_class *dev,
1055                                  struct sysdev_class_attribute *attr,
1056                                  const char *buf,
1057                                  size_t count)
1058 {
1059         int val, rc;
1060         char delim;
1061
1062         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1063                 return -EINVAL;
1064         if (val != 0 && val != 1)
1065                 return -EINVAL;
1066         rc = 0;
1067         get_online_cpus();
1068         mutex_lock(&smp_cpu_state_mutex);
1069         if (cpu_management == val)
1070                 goto out;
1071         rc = topology_set_cpu_management(val);
1072         if (!rc)
1073                 cpu_management = val;
1074 out:
1075         mutex_unlock(&smp_cpu_state_mutex);
1076         put_online_cpus();
1077         return rc ? rc : count;
1078 }
1079 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1080                          dispatching_store);
1081
1082 static int __init topology_init(void)
1083 {
1084         int cpu;
1085         int rc;
1086
1087         register_cpu_notifier(&smp_cpu_nb);
1088
1089 #ifdef CONFIG_HOTPLUG_CPU
1090         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1091         if (rc)
1092                 return rc;
1093 #endif
1094         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1095         if (rc)
1096                 return rc;
1097         for_each_present_cpu(cpu) {
1098                 rc = smp_add_present_cpu(cpu);
1099                 if (rc)
1100                         return rc;
1101         }
1102         return 0;
1103 }
1104 subsys_initcall(topology_init);