Merge branch 'upstream'
[pandora-kernel.git] / arch / ppc / platforms / pmac_nvram.c
1 /*
2  *  arch/ppc/platforms/pmac_nvram.c
3  *
4  *  Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  *  Todo: - add support for the OF persistent properties
12  */
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/nvram.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/adb.h>
24 #include <linux/pmu.h>
25 #include <linux/bootmem.h>
26 #include <linux/completion.h>
27 #include <linux/spinlock.h>
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/system.h>
31 #include <asm/prom.h>
32 #include <asm/machdep.h>
33 #include <asm/nvram.h>
34
35 #define DEBUG
36
37 #ifdef DEBUG
38 #define DBG(x...) printk(x)
39 #else
40 #define DBG(x...)
41 #endif
42
43 #define NVRAM_SIZE              0x2000  /* 8kB of non-volatile RAM */
44
45 #define CORE99_SIGNATURE        0x5a
46 #define CORE99_ADLER_START      0x14
47
48 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
49 #define SM_FLASH_STATUS_DONE    0x80
50 #define SM_FLASH_STATUS_ERR             0x38
51 #define SM_FLASH_CMD_ERASE_CONFIRM      0xd0
52 #define SM_FLASH_CMD_ERASE_SETUP        0x20
53 #define SM_FLASH_CMD_RESET              0xff
54 #define SM_FLASH_CMD_WRITE_SETUP        0x40
55 #define SM_FLASH_CMD_CLEAR_STATUS       0x50
56 #define SM_FLASH_CMD_READ_STATUS        0x70
57
58 /* CHRP NVRAM header */
59 struct chrp_header {
60   u8            signature;
61   u8            cksum;
62   u16           len;
63   char          name[12];
64   u8            data[0];
65 };
66
67 struct core99_header {
68   struct chrp_header    hdr;
69   u32                   adler;
70   u32                   generation;
71   u32                   reserved[2];
72 };
73
74 /*
75  * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
76  */
77 static int nvram_naddrs;
78 static volatile unsigned char *nvram_addr;
79 static volatile unsigned char *nvram_data;
80 static int nvram_mult, is_core_99;
81 static int core99_bank = 0;
82 static int nvram_partitions[3];
83 static DEFINE_SPINLOCK(nv_lock);
84
85 extern int pmac_newworld;
86 extern int system_running;
87
88 static int (*core99_write_bank)(int bank, u8* datas);
89 static int (*core99_erase_bank)(int bank);
90
91 static char *nvram_image;
92
93
94 static unsigned char core99_nvram_read_byte(int addr)
95 {
96         if (nvram_image == NULL)
97                 return 0xff;
98         return nvram_image[addr];
99 }
100
101 static void core99_nvram_write_byte(int addr, unsigned char val)
102 {
103         if (nvram_image == NULL)
104                 return;
105         nvram_image[addr] = val;
106 }
107
108
109 static unsigned char direct_nvram_read_byte(int addr)
110 {
111         return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
112 }
113
114 static void direct_nvram_write_byte(int addr, unsigned char val)
115 {
116         out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
117 }
118
119
120 static unsigned char indirect_nvram_read_byte(int addr)
121 {
122         unsigned char val;
123         unsigned long flags;
124
125         spin_lock_irqsave(&nv_lock, flags);
126         out_8(nvram_addr, addr >> 5);
127         val = in_8(&nvram_data[(addr & 0x1f) << 4]);
128         spin_unlock_irqrestore(&nv_lock, flags);
129
130         return val;
131 }
132
133 static void indirect_nvram_write_byte(int addr, unsigned char val)
134 {
135         unsigned long flags;
136
137         spin_lock_irqsave(&nv_lock, flags);
138         out_8(nvram_addr, addr >> 5);
139         out_8(&nvram_data[(addr & 0x1f) << 4], val);
140         spin_unlock_irqrestore(&nv_lock, flags);
141 }
142
143
144 #ifdef CONFIG_ADB_PMU
145
146 static void pmu_nvram_complete(struct adb_request *req)
147 {
148         if (req->arg)
149                 complete((struct completion *)req->arg);
150 }
151
152 static unsigned char pmu_nvram_read_byte(int addr)
153 {
154         struct adb_request req;
155         DECLARE_COMPLETION(req_complete); 
156         
157         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
158         if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
159                         (addr >> 8) & 0xff, addr & 0xff))
160                 return 0xff;
161         if (system_state == SYSTEM_RUNNING)
162                 wait_for_completion(&req_complete);
163         while (!req.complete)
164                 pmu_poll();
165         return req.reply[0];
166 }
167
168 static void pmu_nvram_write_byte(int addr, unsigned char val)
169 {
170         struct adb_request req;
171         DECLARE_COMPLETION(req_complete); 
172         
173         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
174         if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
175                         (addr >> 8) & 0xff, addr & 0xff, val))
176                 return;
177         if (system_state == SYSTEM_RUNNING)
178                 wait_for_completion(&req_complete);
179         while (!req.complete)
180                 pmu_poll();
181 }
182
183 #endif /* CONFIG_ADB_PMU */
184
185
186 static u8 chrp_checksum(struct chrp_header* hdr)
187 {
188         u8 *ptr;
189         u16 sum = hdr->signature;
190         for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
191                 sum += *ptr;
192         while (sum > 0xFF)
193                 sum = (sum & 0xFF) + (sum>>8);
194         return sum;
195 }
196
197 static u32 core99_calc_adler(u8 *buffer)
198 {
199         int cnt;
200         u32 low, high;
201
202         buffer += CORE99_ADLER_START;
203         low = 1;
204         high = 0;
205         for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
206                 if ((cnt % 5000) == 0) {
207                         high  %= 65521UL;
208                         high %= 65521UL;
209                 }
210                 low += buffer[cnt];
211                 high += low;
212         }
213         low  %= 65521UL;
214         high %= 65521UL;
215
216         return (high << 16) | low;
217 }
218
219 static u32 core99_check(u8* datas)
220 {
221         struct core99_header* hdr99 = (struct core99_header*)datas;
222
223         if (hdr99->hdr.signature != CORE99_SIGNATURE) {
224                 DBG("Invalid signature\n");
225                 return 0;
226         }
227         if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
228                 DBG("Invalid checksum\n");
229                 return 0;
230         }
231         if (hdr99->adler != core99_calc_adler(datas)) {
232                 DBG("Invalid adler\n");
233                 return 0;
234         }
235         return hdr99->generation;
236 }
237
238 static int sm_erase_bank(int bank)
239 {
240         int stat, i;
241         unsigned long timeout;
242
243         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
244
245         DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
246
247         out_8(base, SM_FLASH_CMD_ERASE_SETUP);
248         out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
249         timeout = 0;
250         do {
251                 if (++timeout > 1000000) {
252                         printk(KERN_ERR "nvram: Sharp/Miron flash erase timeout !\n");
253                         break;
254                 }
255                 out_8(base, SM_FLASH_CMD_READ_STATUS);
256                 stat = in_8(base);
257         } while (!(stat & SM_FLASH_STATUS_DONE));
258
259         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
260         out_8(base, SM_FLASH_CMD_RESET);
261
262         for (i=0; i<NVRAM_SIZE; i++)
263                 if (base[i] != 0xff) {
264                         printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
265                         return -ENXIO;
266                 }
267         return 0;
268 }
269
270 static int sm_write_bank(int bank, u8* datas)
271 {
272         int i, stat = 0;
273         unsigned long timeout;
274
275         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
276
277         DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
278
279         for (i=0; i<NVRAM_SIZE; i++) {
280                 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
281                 udelay(1);
282                 out_8(base+i, datas[i]);
283                 timeout = 0;
284                 do {
285                         if (++timeout > 1000000) {
286                                 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
287                                 break;
288                         }
289                         out_8(base, SM_FLASH_CMD_READ_STATUS);
290                         stat = in_8(base);
291                 } while (!(stat & SM_FLASH_STATUS_DONE));
292                 if (!(stat & SM_FLASH_STATUS_DONE))
293                         break;
294         }
295         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
296         out_8(base, SM_FLASH_CMD_RESET);
297         for (i=0; i<NVRAM_SIZE; i++)
298                 if (base[i] != datas[i]) {
299                         printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
300                         return -ENXIO;
301                 }
302         return 0;
303 }
304
305 static int amd_erase_bank(int bank)
306 {
307         int i, stat = 0;
308         unsigned long timeout;
309
310         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
311
312         DBG("nvram: AMD Erasing bank %d...\n", bank);
313
314         /* Unlock 1 */
315         out_8(base+0x555, 0xaa);
316         udelay(1);
317         /* Unlock 2 */
318         out_8(base+0x2aa, 0x55);
319         udelay(1);
320
321         /* Sector-Erase */
322         out_8(base+0x555, 0x80);
323         udelay(1);
324         out_8(base+0x555, 0xaa);
325         udelay(1);
326         out_8(base+0x2aa, 0x55);
327         udelay(1);
328         out_8(base, 0x30);
329         udelay(1);
330
331         timeout = 0;
332         do {
333                 if (++timeout > 1000000) {
334                         printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
335                         break;
336                 }
337                 stat = in_8(base) ^ in_8(base);
338         } while (stat != 0);
339         
340         /* Reset */
341         out_8(base, 0xf0);
342         udelay(1);
343         
344         for (i=0; i<NVRAM_SIZE; i++)
345                 if (base[i] != 0xff) {
346                         printk(KERN_ERR "nvram: AMD flash erase failed !\n");
347                         return -ENXIO;
348                 }
349         return 0;
350 }
351
352 static int amd_write_bank(int bank, u8* datas)
353 {
354         int i, stat = 0;
355         unsigned long timeout;
356
357         u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;
358
359         DBG("nvram: AMD Writing bank %d...\n", bank);
360
361         for (i=0; i<NVRAM_SIZE; i++) {
362                 /* Unlock 1 */
363                 out_8(base+0x555, 0xaa);
364                 udelay(1);
365                 /* Unlock 2 */
366                 out_8(base+0x2aa, 0x55);
367                 udelay(1);
368
369                 /* Write single word */
370                 out_8(base+0x555, 0xa0);
371                 udelay(1);
372                 out_8(base+i, datas[i]);
373                 
374                 timeout = 0;
375                 do {
376                         if (++timeout > 1000000) {
377                                 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
378                                 break;
379                         }
380                         stat = in_8(base) ^ in_8(base);
381                 } while (stat != 0);
382                 if (stat != 0)
383                         break;
384         }
385
386         /* Reset */
387         out_8(base, 0xf0);
388         udelay(1);
389
390         for (i=0; i<NVRAM_SIZE; i++)
391                 if (base[i] != datas[i]) {
392                         printk(KERN_ERR "nvram: AMD flash write failed !\n");
393                         return -ENXIO;
394                 }
395         return 0;
396 }
397
398 static void __init lookup_partitions(void)
399 {
400         u8 buffer[17];
401         int i, offset;
402         struct chrp_header* hdr;
403
404         if (pmac_newworld) {
405                 nvram_partitions[pmac_nvram_OF] = -1;
406                 nvram_partitions[pmac_nvram_XPRAM] = -1;
407                 nvram_partitions[pmac_nvram_NR] = -1;
408                 hdr = (struct chrp_header *)buffer;
409
410                 offset = 0;
411                 buffer[16] = 0;
412                 do {
413                         for (i=0;i<16;i++)
414                                 buffer[i] = nvram_read_byte(offset+i);
415                         if (!strcmp(hdr->name, "common"))
416                                 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
417                         if (!strcmp(hdr->name, "APL,MacOS75")) {
418                                 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
419                                 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
420                         }
421                         offset += (hdr->len * 0x10);
422                 } while(offset < NVRAM_SIZE);
423         } else {
424                 nvram_partitions[pmac_nvram_OF] = 0x1800;
425                 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
426                 nvram_partitions[pmac_nvram_NR] = 0x1400;
427         }
428         DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
429         DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
430         DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
431 }
432
433 static void core99_nvram_sync(void)
434 {
435         struct core99_header* hdr99;
436         unsigned long flags;
437
438         if (!is_core_99 || !nvram_data || !nvram_image)
439                 return;
440
441         spin_lock_irqsave(&nv_lock, flags);
442         if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
443                 NVRAM_SIZE))
444                 goto bail;
445
446         DBG("Updating nvram...\n");
447
448         hdr99 = (struct core99_header*)nvram_image;
449         hdr99->generation++;
450         hdr99->hdr.signature = CORE99_SIGNATURE;
451         hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
452         hdr99->adler = core99_calc_adler(nvram_image);
453         core99_bank = core99_bank ? 0 : 1;
454         if (core99_erase_bank)
455                 if (core99_erase_bank(core99_bank)) {
456                         printk("nvram: Error erasing bank %d\n", core99_bank);
457                         goto bail;
458                 }
459         if (core99_write_bank)
460                 if (core99_write_bank(core99_bank, nvram_image))
461                         printk("nvram: Error writing bank %d\n", core99_bank);
462  bail:
463         spin_unlock_irqrestore(&nv_lock, flags);
464
465 #ifdef DEBUG
466         mdelay(2000);
467 #endif
468 }
469
470 void __init pmac_nvram_init(void)
471 {
472         struct device_node *dp;
473
474         nvram_naddrs = 0;
475
476         dp = find_devices("nvram");
477         if (dp == NULL) {
478                 printk(KERN_ERR "Can't find NVRAM device\n");
479                 return;
480         }
481         nvram_naddrs = dp->n_addrs;
482         is_core_99 = device_is_compatible(dp, "nvram,flash");
483         if (is_core_99) {
484                 int i;
485                 u32 gen_bank0, gen_bank1;
486
487                 if (nvram_naddrs < 1) {
488                         printk(KERN_ERR "nvram: no address\n");
489                         return;
490                 }
491                 nvram_image = alloc_bootmem(NVRAM_SIZE);
492                 if (nvram_image == NULL) {
493                         printk(KERN_ERR "nvram: can't allocate ram image\n");
494                         return;
495                 }
496                 nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2);
497                 nvram_naddrs = 1; /* Make sure we get the correct case */
498
499                 DBG("nvram: Checking bank 0...\n");
500
501                 gen_bank0 = core99_check((u8 *)nvram_data);
502                 gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
503                 core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
504
505                 DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
506                 DBG("nvram: Active bank is: %d\n", core99_bank);
507
508                 for (i=0; i<NVRAM_SIZE; i++)
509                         nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
510
511                 ppc_md.nvram_read_val   = core99_nvram_read_byte;
512                 ppc_md.nvram_write_val  = core99_nvram_write_byte;
513                 ppc_md.nvram_sync       = core99_nvram_sync;
514                 /* 
515                  * Maybe we could be smarter here though making an exclusive list
516                  * of known flash chips is a bit nasty as older OF didn't provide us
517                  * with a useful "compatible" entry. A solution would be to really
518                  * identify the chip using flash id commands and base ourselves on
519                  * a list of known chips IDs
520                  */
521                 if (device_is_compatible(dp, "amd-0137")) {
522                         core99_erase_bank = amd_erase_bank;
523                         core99_write_bank = amd_write_bank;
524                 } else {
525                         core99_erase_bank = sm_erase_bank;
526                         core99_write_bank = sm_write_bank;
527                 }
528         } else if (_machine == _MACH_chrp && nvram_naddrs == 1) {
529                 nvram_data = ioremap(dp->addrs[0].address + isa_mem_base,
530                                      dp->addrs[0].size);
531                 nvram_mult = 1;
532                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
533                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
534         } else if (nvram_naddrs == 1) {
535                 nvram_data = ioremap(dp->addrs[0].address, dp->addrs[0].size);
536                 nvram_mult = (dp->addrs[0].size + NVRAM_SIZE - 1) / NVRAM_SIZE;
537                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
538                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
539         } else if (nvram_naddrs == 2) {
540                 nvram_addr = ioremap(dp->addrs[0].address, dp->addrs[0].size);
541                 nvram_data = ioremap(dp->addrs[1].address, dp->addrs[1].size);
542                 ppc_md.nvram_read_val   = indirect_nvram_read_byte;
543                 ppc_md.nvram_write_val  = indirect_nvram_write_byte;
544         } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
545 #ifdef CONFIG_ADB_PMU
546                 nvram_naddrs = -1;
547                 ppc_md.nvram_read_val   = pmu_nvram_read_byte;
548                 ppc_md.nvram_write_val  = pmu_nvram_write_byte;
549 #endif /* CONFIG_ADB_PMU */
550         } else {
551                 printk(KERN_ERR "Don't know how to access NVRAM with %d addresses\n",
552                        nvram_naddrs);
553         }
554         lookup_partitions();
555 }
556
557 int pmac_get_partition(int partition)
558 {
559         return nvram_partitions[partition];
560 }
561
562 u8 pmac_xpram_read(int xpaddr)
563 {
564         int offset = nvram_partitions[pmac_nvram_XPRAM];
565
566         if (offset < 0)
567                 return 0xff;
568
569         return ppc_md.nvram_read_val(xpaddr + offset);
570 }
571
572 void pmac_xpram_write(int xpaddr, u8 data)
573 {
574         int offset = nvram_partitions[pmac_nvram_XPRAM];
575
576         if (offset < 0)
577                 return;
578
579         ppc_md.nvram_write_val(xpaddr + offset, data);
580 }
581
582 EXPORT_SYMBOL(pmac_get_partition);
583 EXPORT_SYMBOL(pmac_xpram_read);
584 EXPORT_SYMBOL(pmac_xpram_write);