Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee13...
[pandora-kernel.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18
19 /* Change Activity:
20  * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21  * End Change Activity
22  */
23
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/irq.h>
37 #include <linux/random.h>
38 #include <linux/sysrq.h>
39 #include <linux/bitops.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/pgtable.h>
45 #include <asm/irq.h>
46 #include <asm/cache.h>
47 #include <asm/prom.h>
48 #include <asm/ptrace.h>
49 #include <asm/machdep.h>
50 #include <asm/rtas.h>
51 #include <asm/udbg.h>
52 #include <asm/firmware.h>
53
54 #include "ras.h"
55
56 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
57 static DEFINE_SPINLOCK(ras_log_buf_lock);
58
59 char mce_data_buf[RTAS_ERROR_LOG_MAX];
60
61 static int ras_get_sensor_state_token;
62 static int ras_check_exception_token;
63
64 #define EPOW_SENSOR_TOKEN       9
65 #define EPOW_SENSOR_INDEX       0
66 #define RAS_VECTOR_OFFSET       0x500
67
68 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id,
69                                         struct pt_regs * regs);
70 static irqreturn_t ras_error_interrupt(int irq, void *dev_id,
71                                         struct pt_regs * regs);
72
73 /* #define DEBUG */
74
75
76 static void request_ras_irqs(struct device_node *np,
77                         irqreturn_t (*handler)(int, void *, struct pt_regs *),
78                         const char *name)
79 {
80         int i, index, count = 0;
81         struct of_irq oirq;
82         const u32 *opicprop;
83         unsigned int opicplen;
84         unsigned int virqs[16];
85
86         /* Check for obsolete "open-pic-interrupt" property. If present, then
87          * map those interrupts using the default interrupt host and default
88          * trigger
89          */
90         opicprop = get_property(np, "open-pic-interrupt", &opicplen);
91         if (opicprop) {
92                 opicplen /= sizeof(u32);
93                 for (i = 0; i < opicplen; i++) {
94                         if (count > 15)
95                                 break;
96                         virqs[count] = irq_create_mapping(NULL, *(opicprop++));
97                         if (virqs[count] == NO_IRQ)
98                                 printk(KERN_ERR "Unable to allocate interrupt "
99                                        "number for %s\n", np->full_name);
100                         else
101                                 count++;
102
103                 }
104         }
105         /* Else use normal interrupt tree parsing */
106         else {
107                 /* First try to do a proper OF tree parsing */
108                 for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
109                      index++) {
110                         if (count > 15)
111                                 break;
112                         virqs[count] = irq_create_of_mapping(oirq.controller,
113                                                             oirq.specifier,
114                                                             oirq.size);
115                         if (virqs[count] == NO_IRQ)
116                                 printk(KERN_ERR "Unable to allocate interrupt "
117                                        "number for %s\n", np->full_name);
118                         else
119                                 count++;
120                 }
121         }
122
123         /* Now request them */
124         for (i = 0; i < count; i++) {
125                 if (request_irq(virqs[i], handler, 0, name, NULL)) {
126                         printk(KERN_ERR "Unable to request interrupt %d for "
127                                "%s\n", virqs[i], np->full_name);
128                         return;
129                 }
130         }
131 }
132
133 /*
134  * Initialize handlers for the set of interrupts caused by hardware errors
135  * and power system events.
136  */
137 static int __init init_ras_IRQ(void)
138 {
139         struct device_node *np;
140
141         ras_get_sensor_state_token = rtas_token("get-sensor-state");
142         ras_check_exception_token = rtas_token("check-exception");
143
144         /* Internal Errors */
145         np = of_find_node_by_path("/event-sources/internal-errors");
146         if (np != NULL) {
147                 request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
148                 of_node_put(np);
149         }
150
151         /* EPOW Events */
152         np = of_find_node_by_path("/event-sources/epow-events");
153         if (np != NULL) {
154                 request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
155                 of_node_put(np);
156         }
157
158         return 0;
159 }
160 __initcall(init_ras_IRQ);
161
162 /*
163  * Handle power subsystem events (EPOW).
164  *
165  * Presently we just log the event has occurred.  This should be fixed
166  * to examine the type of power failure and take appropriate action where
167  * the time horizon permits something useful to be done.
168  */
169 static irqreturn_t
170 ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs)
171 {
172         int status = 0xdeadbeef;
173         int state = 0;
174         int critical;
175
176         status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
177                            EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
178
179         if (state > 3)
180                 critical = 1;  /* Time Critical */
181         else
182                 critical = 0;
183
184         spin_lock(&ras_log_buf_lock);
185
186         status = rtas_call(ras_check_exception_token, 6, 1, NULL,
187                            RAS_VECTOR_OFFSET,
188                            irq_map[irq].hwirq,
189                            RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
190                            critical, __pa(&ras_log_buf),
191                                 rtas_get_error_log_max());
192
193         udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
194                     *((unsigned long *)&ras_log_buf), status, state);
195         printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
196                *((unsigned long *)&ras_log_buf), status, state);
197
198         /* format and print the extended information */
199         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
200
201         spin_unlock(&ras_log_buf_lock);
202         return IRQ_HANDLED;
203 }
204
205 /*
206  * Handle hardware error interrupts.
207  *
208  * RTAS check-exception is called to collect data on the exception.  If
209  * the error is deemed recoverable, we log a warning and return.
210  * For nonrecoverable errors, an error is logged and we stop all processing
211  * as quickly as possible in order to prevent propagation of the failure.
212  */
213 static irqreturn_t
214 ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs)
215 {
216         struct rtas_error_log *rtas_elog;
217         int status = 0xdeadbeef;
218         int fatal;
219
220         spin_lock(&ras_log_buf_lock);
221
222         status = rtas_call(ras_check_exception_token, 6, 1, NULL,
223                            RAS_VECTOR_OFFSET,
224                            irq_map[irq].hwirq,
225                            RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
226                            __pa(&ras_log_buf),
227                                 rtas_get_error_log_max());
228
229         rtas_elog = (struct rtas_error_log *)ras_log_buf;
230
231         if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
232                 fatal = 1;
233         else
234                 fatal = 0;
235
236         /* format and print the extended information */
237         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
238
239         if (fatal) {
240                 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
241                             *((unsigned long *)&ras_log_buf), status);
242                 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
243                        *((unsigned long *)&ras_log_buf), status);
244
245 #ifndef DEBUG
246                 /* Don't actually power off when debugging so we can test
247                  * without actually failing while injecting errors.
248                  * Error data will not be logged to syslog.
249                  */
250                 ppc_md.power_off();
251 #endif
252         } else {
253                 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
254                             *((unsigned long *)&ras_log_buf), status);
255                 printk(KERN_WARNING
256                        "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
257                        *((unsigned long *)&ras_log_buf), status);
258         }
259
260         spin_unlock(&ras_log_buf_lock);
261         return IRQ_HANDLED;
262 }
263
264 /* Get the error information for errors coming through the
265  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
266  * the actual r3 if possible, and a ptr to the error log entry
267  * will be returned if found.
268  *
269  * The mce_data_buf does not have any locks or protection around it,
270  * if a second machine check comes in, or a system reset is done
271  * before we have logged the error, then we will get corruption in the
272  * error log.  This is preferable over holding off on calling
273  * ibm,nmi-interlock which would result in us checkstopping if a
274  * second machine check did come in.
275  */
276 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
277 {
278         unsigned long errdata = regs->gpr[3];
279         struct rtas_error_log *errhdr = NULL;
280         unsigned long *savep;
281
282         if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
283             (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
284                 savep = __va(errdata);
285                 regs->gpr[3] = savep[0];        /* restore original r3 */
286                 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
287                 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
288                 errhdr = (struct rtas_error_log *)mce_data_buf;
289         } else {
290                 printk("FWNMI: corrupt r3\n");
291         }
292         return errhdr;
293 }
294
295 /* Call this when done with the data returned by FWNMI_get_errinfo.
296  * It will release the saved data area for other CPUs in the
297  * partition to receive FWNMI errors.
298  */
299 static void fwnmi_release_errinfo(void)
300 {
301         int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
302         if (ret != 0)
303                 printk("FWNMI: nmi-interlock failed: %d\n", ret);
304 }
305
306 int pSeries_system_reset_exception(struct pt_regs *regs)
307 {
308         if (fwnmi_active) {
309                 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
310                 if (errhdr) {
311                         /* XXX Should look at FWNMI information */
312                 }
313                 fwnmi_release_errinfo();
314         }
315         return 0; /* need to perform reset */
316 }
317
318 /*
319  * See if we can recover from a machine check exception.
320  * This is only called on power4 (or above) and only via
321  * the Firmware Non-Maskable Interrupts (fwnmi) handler
322  * which provides the error analysis for us.
323  *
324  * Return 1 if corrected (or delivered a signal).
325  * Return 0 if there is nothing we can do.
326  */
327 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
328 {
329         int nonfatal = 0;
330
331         if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
332                 /* Platform corrected itself */
333                 nonfatal = 1;
334         } else if ((regs->msr & MSR_RI) &&
335                    user_mode(regs) &&
336                    err->severity == RTAS_SEVERITY_ERROR_SYNC &&
337                    err->disposition == RTAS_DISP_NOT_RECOVERED &&
338                    err->target == RTAS_TARGET_MEMORY &&
339                    err->type == RTAS_TYPE_ECC_UNCORR &&
340                    !(current->pid == 0 || is_init(current))) {
341                 /* Kill off a user process with an ECC error */
342                 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
343                        current->pid);
344                 /* XXX something better for ECC error? */
345                 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
346                 nonfatal = 1;
347         }
348
349         log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
350
351         return nonfatal;
352 }
353
354 /*
355  * Handle a machine check.
356  *
357  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
358  * should be present.  If so the handler which called us tells us if the
359  * error was recovered (never true if RI=0).
360  *
361  * On hardware prior to Power 4 these exceptions were asynchronous which
362  * means we can't tell exactly where it occurred and so we can't recover.
363  */
364 int pSeries_machine_check_exception(struct pt_regs *regs)
365 {
366         struct rtas_error_log *errp;
367
368         if (fwnmi_active) {
369                 errp = fwnmi_get_errinfo(regs);
370                 fwnmi_release_errinfo();
371                 if (errp && recover_mce(regs, errp))
372                         return 1;
373         }
374
375         return 0;
376 }