[PATCH] powerpc: Add ibm,pft-size to iSeries device tree
[pandora-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56
57 #include "naca.h"
58 #include "setup.h"
59 #include "irq.h"
60 #include "vpd_areas.h"
61 #include "processor_vpd.h"
62 #include "main_store.h"
63 #include "call_sm.h"
64 #include "call_hpt.h"
65
66 #ifdef DEBUG
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71
72 /* Function Prototypes */
73 static unsigned long build_iSeries_Memory_Map(void);
74 static void iseries_shared_idle(void);
75 static void iseries_dedicated_idle(void);
76 #ifdef CONFIG_PCI
77 extern void iSeries_pci_final_fixup(void);
78 #else
79 static void iSeries_pci_final_fixup(void) { }
80 #endif
81
82 /* Global Variables */
83 int piranha_simulator;
84
85 extern int rd_size;             /* Defined in drivers/block/rd.c */
86 extern unsigned long embedded_sysmap_start;
87 extern unsigned long embedded_sysmap_end;
88
89 extern unsigned long iSeries_recal_tb;
90 extern unsigned long iSeries_recal_titan;
91
92 static int mf_initialized;
93
94 static unsigned long cmd_mem_limit;
95
96 struct MemoryBlock {
97         unsigned long absStart;
98         unsigned long absEnd;
99         unsigned long logicalStart;
100         unsigned long logicalEnd;
101 };
102
103 /*
104  * Process the main store vpd to determine where the holes in memory are
105  * and return the number of physical blocks and fill in the array of
106  * block data.
107  */
108 static unsigned long iSeries_process_Condor_mainstore_vpd(
109                 struct MemoryBlock *mb_array, unsigned long max_entries)
110 {
111         unsigned long holeFirstChunk, holeSizeChunks;
112         unsigned long numMemoryBlocks = 1;
113         struct IoHriMainStoreSegment4 *msVpd =
114                 (struct IoHriMainStoreSegment4 *)xMsVpd;
115         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
116         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
117         unsigned long holeSize = holeEnd - holeStart;
118
119         printk("Mainstore_VPD: Condor\n");
120         /*
121          * Determine if absolute memory has any
122          * holes so that we can interpret the
123          * access map we get back from the hypervisor
124          * correctly.
125          */
126         mb_array[0].logicalStart = 0;
127         mb_array[0].logicalEnd = 0x100000000;
128         mb_array[0].absStart = 0;
129         mb_array[0].absEnd = 0x100000000;
130
131         if (holeSize) {
132                 numMemoryBlocks = 2;
133                 holeStart = holeStart & 0x000fffffffffffff;
134                 holeStart = addr_to_chunk(holeStart);
135                 holeFirstChunk = holeStart;
136                 holeSize = addr_to_chunk(holeSize);
137                 holeSizeChunks = holeSize;
138                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
139                                 holeFirstChunk, holeSizeChunks );
140                 mb_array[0].logicalEnd = holeFirstChunk;
141                 mb_array[0].absEnd = holeFirstChunk;
142                 mb_array[1].logicalStart = holeFirstChunk;
143                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
144                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
145                 mb_array[1].absEnd = 0x100000000;
146         }
147         return numMemoryBlocks;
148 }
149
150 #define MaxSegmentAreas                 32
151 #define MaxSegmentAdrRangeBlocks        128
152 #define MaxAreaRangeBlocks              4
153
154 static unsigned long iSeries_process_Regatta_mainstore_vpd(
155                 struct MemoryBlock *mb_array, unsigned long max_entries)
156 {
157         struct IoHriMainStoreSegment5 *msVpdP =
158                 (struct IoHriMainStoreSegment5 *)xMsVpd;
159         unsigned long numSegmentBlocks = 0;
160         u32 existsBits = msVpdP->msAreaExists;
161         unsigned long area_num;
162
163         printk("Mainstore_VPD: Regatta\n");
164
165         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
166                 unsigned long numAreaBlocks;
167                 struct IoHriMainStoreArea4 *currentArea;
168
169                 if (existsBits & 0x80000000) {
170                         unsigned long block_num;
171
172                         currentArea = &msVpdP->msAreaArray[area_num];
173                         numAreaBlocks = currentArea->numAdrRangeBlocks;
174                         printk("ms_vpd: processing area %2ld  blocks=%ld",
175                                         area_num, numAreaBlocks);
176                         for (block_num = 0; block_num < numAreaBlocks;
177                                         ++block_num ) {
178                                 /* Process an address range block */
179                                 struct MemoryBlock tempBlock;
180                                 unsigned long i;
181
182                                 tempBlock.absStart =
183                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
184                                 tempBlock.absEnd =
185                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
186                                 tempBlock.logicalStart = 0;
187                                 tempBlock.logicalEnd   = 0;
188                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
189                                                 block_num, tempBlock.absStart,
190                                                 tempBlock.absEnd);
191
192                                 for (i = 0; i < numSegmentBlocks; ++i) {
193                                         if (mb_array[i].absStart ==
194                                                         tempBlock.absStart)
195                                                 break;
196                                 }
197                                 if (i == numSegmentBlocks) {
198                                         if (numSegmentBlocks == max_entries)
199                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
200                                         mb_array[numSegmentBlocks] = tempBlock;
201                                         ++numSegmentBlocks;
202                                 } else
203                                         printk(" (duplicate)");
204                         }
205                         printk("\n");
206                 }
207                 existsBits <<= 1;
208         }
209         /* Now sort the blocks found into ascending sequence */
210         if (numSegmentBlocks > 1) {
211                 unsigned long m, n;
212
213                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
214                         for (n = numSegmentBlocks - 1; m < n; --n) {
215                                 if (mb_array[n].absStart <
216                                                 mb_array[n-1].absStart) {
217                                         struct MemoryBlock tempBlock;
218
219                                         tempBlock = mb_array[n];
220                                         mb_array[n] = mb_array[n-1];
221                                         mb_array[n-1] = tempBlock;
222                                 }
223                         }
224                 }
225         }
226         /*
227          * Assign "logical" addresses to each block.  These
228          * addresses correspond to the hypervisor "bitmap" space.
229          * Convert all addresses into units of 256K chunks.
230          */
231         {
232         unsigned long i, nextBitmapAddress;
233
234         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
235         nextBitmapAddress = 0;
236         for (i = 0; i < numSegmentBlocks; ++i) {
237                 unsigned long length = mb_array[i].absEnd -
238                         mb_array[i].absStart;
239
240                 mb_array[i].logicalStart = nextBitmapAddress;
241                 mb_array[i].logicalEnd = nextBitmapAddress + length;
242                 nextBitmapAddress += length;
243                 printk("          Bitmap range: %016lx - %016lx\n"
244                                 "        Absolute range: %016lx - %016lx\n",
245                                 mb_array[i].logicalStart,
246                                 mb_array[i].logicalEnd,
247                                 mb_array[i].absStart, mb_array[i].absEnd);
248                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
249                                 0x000fffffffffffff);
250                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
251                                 0x000fffffffffffff);
252                 mb_array[i].logicalStart =
253                         addr_to_chunk(mb_array[i].logicalStart);
254                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
255         }
256         }
257
258         return numSegmentBlocks;
259 }
260
261 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
262                 unsigned long max_entries)
263 {
264         unsigned long i;
265         unsigned long mem_blocks = 0;
266
267         if (cpu_has_feature(CPU_FTR_SLB))
268                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
269                                 max_entries);
270         else
271                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
272                                 max_entries);
273
274         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
275         for (i = 0; i < mem_blocks; ++i) {
276                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
277                        "                             abs chunks %016lx - %016lx\n",
278                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
279                         mb_array[i].absStart, mb_array[i].absEnd);
280         }
281         return mem_blocks;
282 }
283
284 static void __init iSeries_get_cmdline(void)
285 {
286         char *p, *q;
287
288         /* copy the command line parameter from the primary VSP  */
289         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
290                         HvLpDma_Direction_RemoteToLocal);
291
292         p = cmd_line;
293         q = cmd_line + 255;
294         while(p < q) {
295                 if (!*p || *p == '\n')
296                         break;
297                 ++p;
298         }
299         *p = 0;
300 }
301
302 static void __init iSeries_init_early(void)
303 {
304         DBG(" -> iSeries_init_early()\n");
305
306         ppc64_firmware_features = FW_FEATURE_ISERIES;
307
308         ppc64_interrupt_controller = IC_ISERIES;
309
310 #if defined(CONFIG_BLK_DEV_INITRD)
311         /*
312          * If the init RAM disk has been configured and there is
313          * a non-zero starting address for it, set it up
314          */
315         if (naca.xRamDisk) {
316                 initrd_start = (unsigned long)__va(naca.xRamDisk);
317                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
318                 initrd_below_start_ok = 1;      // ramdisk in kernel space
319                 ROOT_DEV = Root_RAM0;
320                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
321                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
322         } else
323 #endif /* CONFIG_BLK_DEV_INITRD */
324         {
325             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
326         }
327
328         iSeries_recal_tb = get_tb();
329         iSeries_recal_titan = HvCallXm_loadTod();
330
331         /*
332          * Initialize the hash table management pointers
333          */
334         hpte_init_iSeries();
335
336         /*
337          * Initialize the DMA/TCE management
338          */
339         iommu_init_early_iSeries();
340
341         /* Initialize machine-dependency vectors */
342 #ifdef CONFIG_SMP
343         smp_init_iSeries();
344 #endif
345         if (itLpNaca.xPirEnvironMode == 0)
346                 piranha_simulator = 1;
347
348         /* Associate Lp Event Queue 0 with processor 0 */
349         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
350
351         mf_init();
352         mf_initialized = 1;
353         mb();
354
355         /* If we were passed an initrd, set the ROOT_DEV properly if the values
356          * look sensible. If not, clear initrd reference.
357          */
358 #ifdef CONFIG_BLK_DEV_INITRD
359         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
360             initrd_end > initrd_start)
361                 ROOT_DEV = Root_RAM0;
362         else
363                 initrd_start = initrd_end = 0;
364 #endif /* CONFIG_BLK_DEV_INITRD */
365
366         DBG(" <- iSeries_init_early()\n");
367 }
368
369 struct mschunks_map mschunks_map = {
370         /* XXX We don't use these, but Piranha might need them. */
371         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
372         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
373         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
374 };
375 EXPORT_SYMBOL(mschunks_map);
376
377 void mschunks_alloc(unsigned long num_chunks)
378 {
379         klimit = _ALIGN(klimit, sizeof(u32));
380         mschunks_map.mapping = (u32 *)klimit;
381         klimit += num_chunks * sizeof(u32);
382         mschunks_map.num_chunks = num_chunks;
383 }
384
385 /*
386  * The iSeries may have very large memories ( > 128 GB ) and a partition
387  * may get memory in "chunks" that may be anywhere in the 2**52 real
388  * address space.  The chunks are 256K in size.  To map this to the
389  * memory model Linux expects, the AS/400 specific code builds a
390  * translation table to translate what Linux thinks are "physical"
391  * addresses to the actual real addresses.  This allows us to make
392  * it appear to Linux that we have contiguous memory starting at
393  * physical address zero while in fact this could be far from the truth.
394  * To avoid confusion, I'll let the words physical and/or real address
395  * apply to the Linux addresses while I'll use "absolute address" to
396  * refer to the actual hardware real address.
397  *
398  * build_iSeries_Memory_Map gets information from the Hypervisor and
399  * looks at the Main Store VPD to determine the absolute addresses
400  * of the memory that has been assigned to our partition and builds
401  * a table used to translate Linux's physical addresses to these
402  * absolute addresses.  Absolute addresses are needed when
403  * communicating with the hypervisor (e.g. to build HPT entries)
404  *
405  * Returns the physical memory size
406  */
407
408 static unsigned long __init build_iSeries_Memory_Map(void)
409 {
410         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
411         u32 nextPhysChunk;
412         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
413         u32 totalChunks,moreChunks;
414         u32 currChunk, thisChunk, absChunk;
415         u32 currDword;
416         u32 chunkBit;
417         u64 map;
418         struct MemoryBlock mb[32];
419         unsigned long numMemoryBlocks, curBlock;
420
421         /* Chunk size on iSeries is 256K bytes */
422         totalChunks = (u32)HvLpConfig_getMsChunks();
423         mschunks_alloc(totalChunks);
424
425         /*
426          * Get absolute address of our load area
427          * and map it to physical address 0
428          * This guarantees that the loadarea ends up at physical 0
429          * otherwise, it might not be returned by PLIC as the first
430          * chunks
431          */
432
433         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
434         loadAreaSize =  itLpNaca.xLoadAreaChunks;
435
436         /*
437          * Only add the pages already mapped here.
438          * Otherwise we might add the hpt pages
439          * The rest of the pages of the load area
440          * aren't in the HPT yet and can still
441          * be assigned an arbitrary physical address
442          */
443         if ((loadAreaSize * 64) > HvPagesToMap)
444                 loadAreaSize = HvPagesToMap / 64;
445
446         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
447
448         /*
449          * TODO Do we need to do something if the HPT is in the 64MB load area?
450          * This would be required if the itLpNaca.xLoadAreaChunks includes
451          * the HPT size
452          */
453
454         printk("Mapping load area - physical addr = 0000000000000000\n"
455                 "                    absolute addr = %016lx\n",
456                 chunk_to_addr(loadAreaFirstChunk));
457         printk("Load area size %dK\n", loadAreaSize * 256);
458
459         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
460                 mschunks_map.mapping[nextPhysChunk] =
461                         loadAreaFirstChunk + nextPhysChunk;
462
463         /*
464          * Get absolute address of our HPT and remember it so
465          * we won't map it to any physical address
466          */
467         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
468         hptSizePages = (u32)HvCallHpt_getHptPages();
469         hptSizeChunks = hptSizePages >>
470                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
471         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
472
473         printk("HPT absolute addr = %016lx, size = %dK\n",
474                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
475
476         /*
477          * The actual hashed page table is in the hypervisor,
478          * we have no direct access
479          */
480         htab_address = NULL;
481
482         /*
483          * Determine if absolute memory has any
484          * holes so that we can interpret the
485          * access map we get back from the hypervisor
486          * correctly.
487          */
488         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
489
490         /*
491          * Process the main store access map from the hypervisor
492          * to build up our physical -> absolute translation table
493          */
494         curBlock = 0;
495         currChunk = 0;
496         currDword = 0;
497         moreChunks = totalChunks;
498
499         while (moreChunks) {
500                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
501                                 currDword);
502                 thisChunk = currChunk;
503                 while (map) {
504                         chunkBit = map >> 63;
505                         map <<= 1;
506                         if (chunkBit) {
507                                 --moreChunks;
508                                 while (thisChunk >= mb[curBlock].logicalEnd) {
509                                         ++curBlock;
510                                         if (curBlock >= numMemoryBlocks)
511                                                 panic("out of memory blocks");
512                                 }
513                                 if (thisChunk < mb[curBlock].logicalStart)
514                                         panic("memory block error");
515
516                                 absChunk = mb[curBlock].absStart +
517                                         (thisChunk - mb[curBlock].logicalStart);
518                                 if (((absChunk < hptFirstChunk) ||
519                                      (absChunk > hptLastChunk)) &&
520                                     ((absChunk < loadAreaFirstChunk) ||
521                                      (absChunk > loadAreaLastChunk))) {
522                                         mschunks_map.mapping[nextPhysChunk] =
523                                                 absChunk;
524                                         ++nextPhysChunk;
525                                 }
526                         }
527                         ++thisChunk;
528                 }
529                 ++currDword;
530                 currChunk += 64;
531         }
532
533         /*
534          * main store size (in chunks) is
535          *   totalChunks - hptSizeChunks
536          * which should be equal to
537          *   nextPhysChunk
538          */
539         return chunk_to_addr(nextPhysChunk);
540 }
541
542 /*
543  * Document me.
544  */
545 static void __init iSeries_setup_arch(void)
546 {
547         if (get_paca()->lppaca.shared_proc) {
548                 ppc_md.idle_loop = iseries_shared_idle;
549                 printk(KERN_INFO "Using shared processor idle loop\n");
550         } else {
551                 ppc_md.idle_loop = iseries_dedicated_idle;
552                 printk(KERN_INFO "Using dedicated idle loop\n");
553         }
554
555         /* Setup the Lp Event Queue */
556         setup_hvlpevent_queue();
557
558         printk("Max  logical processors = %d\n",
559                         itVpdAreas.xSlicMaxLogicalProcs);
560         printk("Max physical processors = %d\n",
561                         itVpdAreas.xSlicMaxPhysicalProcs);
562 }
563
564 static void iSeries_show_cpuinfo(struct seq_file *m)
565 {
566         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
567 }
568
569 /*
570  * Document me.
571  */
572 static void iSeries_restart(char *cmd)
573 {
574         mf_reboot();
575 }
576
577 /*
578  * Document me.
579  */
580 static void iSeries_power_off(void)
581 {
582         mf_power_off();
583 }
584
585 /*
586  * Document me.
587  */
588 static void iSeries_halt(void)
589 {
590         mf_power_off();
591 }
592
593 static void __init iSeries_progress(char * st, unsigned short code)
594 {
595         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
596         if (!piranha_simulator && mf_initialized) {
597                 if (code != 0xffff)
598                         mf_display_progress(code);
599                 else
600                         mf_clear_src();
601         }
602 }
603
604 static void __init iSeries_fixup_klimit(void)
605 {
606         /*
607          * Change klimit to take into account any ram disk
608          * that may be included
609          */
610         if (naca.xRamDisk)
611                 klimit = KERNELBASE + (u64)naca.xRamDisk +
612                         (naca.xRamDiskSize * HW_PAGE_SIZE);
613         else {
614                 /*
615                  * No ram disk was included - check and see if there
616                  * was an embedded system map.  Change klimit to take
617                  * into account any embedded system map
618                  */
619                 if (embedded_sysmap_end)
620                         klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
621                                         0xfffffffffffff000);
622         }
623 }
624
625 static int __init iSeries_src_init(void)
626 {
627         /* clear the progress line */
628         ppc_md.progress(" ", 0xffff);
629         return 0;
630 }
631
632 late_initcall(iSeries_src_init);
633
634 static inline void process_iSeries_events(void)
635 {
636         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
637 }
638
639 static void yield_shared_processor(void)
640 {
641         unsigned long tb;
642
643         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
644                                     HvCall_MaskLpEvent |
645                                     HvCall_MaskLpProd |
646                                     HvCall_MaskTimeout);
647
648         tb = get_tb();
649         /* Compute future tb value when yield should expire */
650         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
651
652         /*
653          * The decrementer stops during the yield.  Force a fake decrementer
654          * here and let the timer_interrupt code sort out the actual time.
655          */
656         get_paca()->lppaca.int_dword.fields.decr_int = 1;
657         process_iSeries_events();
658 }
659
660 static void iseries_shared_idle(void)
661 {
662         while (1) {
663                 while (!need_resched() && !hvlpevent_is_pending()) {
664                         local_irq_disable();
665                         ppc64_runlatch_off();
666
667                         /* Recheck with irqs off */
668                         if (!need_resched() && !hvlpevent_is_pending())
669                                 yield_shared_processor();
670
671                         HMT_medium();
672                         local_irq_enable();
673                 }
674
675                 ppc64_runlatch_on();
676
677                 if (hvlpevent_is_pending())
678                         process_iSeries_events();
679
680                 preempt_enable_no_resched();
681                 schedule();
682                 preempt_disable();
683         }
684 }
685
686 static void iseries_dedicated_idle(void)
687 {
688         set_thread_flag(TIF_POLLING_NRFLAG);
689
690         while (1) {
691                 if (!need_resched()) {
692                         while (!need_resched()) {
693                                 ppc64_runlatch_off();
694                                 HMT_low();
695
696                                 if (hvlpevent_is_pending()) {
697                                         HMT_medium();
698                                         ppc64_runlatch_on();
699                                         process_iSeries_events();
700                                 }
701                         }
702
703                         HMT_medium();
704                 }
705
706                 ppc64_runlatch_on();
707                 preempt_enable_no_resched();
708                 schedule();
709                 preempt_disable();
710         }
711 }
712
713 #ifndef CONFIG_PCI
714 void __init iSeries_init_IRQ(void) { }
715 #endif
716
717 static int __init iseries_probe(int platform)
718 {
719         return PLATFORM_ISERIES_LPAR == platform;
720 }
721
722 struct machdep_calls __initdata iseries_md = {
723         .setup_arch     = iSeries_setup_arch,
724         .show_cpuinfo   = iSeries_show_cpuinfo,
725         .init_IRQ       = iSeries_init_IRQ,
726         .get_irq        = iSeries_get_irq,
727         .init_early     = iSeries_init_early,
728         .pcibios_fixup  = iSeries_pci_final_fixup,
729         .restart        = iSeries_restart,
730         .power_off      = iSeries_power_off,
731         .halt           = iSeries_halt,
732         .get_boot_time  = iSeries_get_boot_time,
733         .set_rtc_time   = iSeries_set_rtc_time,
734         .get_rtc_time   = iSeries_get_rtc_time,
735         .calibrate_decr = generic_calibrate_decr,
736         .progress       = iSeries_progress,
737         .probe          = iseries_probe,
738         /* XXX Implement enable_pmcs for iSeries */
739 };
740
741 struct blob {
742         unsigned char data[PAGE_SIZE];
743         unsigned long next;
744 };
745
746 struct iseries_flat_dt {
747         struct boot_param_header header;
748         u64 reserve_map[2];
749         struct blob dt;
750         struct blob strings;
751 };
752
753 struct iseries_flat_dt iseries_dt;
754
755 void dt_init(struct iseries_flat_dt *dt)
756 {
757         dt->header.off_mem_rsvmap =
758                 offsetof(struct iseries_flat_dt, reserve_map);
759         dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
760         dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
761         dt->header.totalsize = sizeof(struct iseries_flat_dt);
762         dt->header.dt_strings_size = sizeof(struct blob);
763
764         /* There is no notion of hardware cpu id on iSeries */
765         dt->header.boot_cpuid_phys = smp_processor_id();
766
767         dt->dt.next = (unsigned long)&dt->dt.data;
768         dt->strings.next = (unsigned long)&dt->strings.data;
769
770         dt->header.magic = OF_DT_HEADER;
771         dt->header.version = 0x10;
772         dt->header.last_comp_version = 0x10;
773
774         dt->reserve_map[0] = 0;
775         dt->reserve_map[1] = 0;
776 }
777
778 void dt_check_blob(struct blob *b)
779 {
780         if (b->next >= (unsigned long)&b->next) {
781                 DBG("Ran out of space in flat device tree blob!\n");
782                 BUG();
783         }
784 }
785
786 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
787 {
788         *((u32*)dt->dt.next) = value;
789         dt->dt.next += sizeof(u32);
790
791         dt_check_blob(&dt->dt);
792 }
793
794 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
795 {
796         *((u64*)dt->dt.next) = value;
797         dt->dt.next += sizeof(u64);
798
799         dt_check_blob(&dt->dt);
800 }
801
802 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
803 {
804         unsigned long start = blob->next - (unsigned long)blob->data;
805
806         memcpy((char *)blob->next, data, len);
807         blob->next = _ALIGN(blob->next + len, 4);
808
809         dt_check_blob(blob);
810
811         return start;
812 }
813
814 void dt_start_node(struct iseries_flat_dt *dt, char *name)
815 {
816         dt_push_u32(dt, OF_DT_BEGIN_NODE);
817         dt_push_bytes(&dt->dt, name, strlen(name) + 1);
818 }
819
820 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
821
822 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
823 {
824         unsigned long offset;
825
826         dt_push_u32(dt, OF_DT_PROP);
827
828         /* Length of the data */
829         dt_push_u32(dt, len);
830
831         /* Put the property name in the string blob. */
832         offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
833
834         /* The offset of the properties name in the string blob. */
835         dt_push_u32(dt, (u32)offset);
836
837         /* The actual data. */
838         dt_push_bytes(&dt->dt, data, len);
839 }
840
841 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
842 {
843         dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
844 }
845
846 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
847 {
848         dt_prop(dt, name, (char *)&data, sizeof(u32));
849 }
850
851 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
852 {
853         dt_prop(dt, name, (char *)&data, sizeof(u64));
854 }
855
856 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
857 {
858         dt_prop(dt, name, (char *)data, sizeof(u64) * n);
859 }
860
861 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
862 {
863         dt_prop(dt, name, (char *)data, sizeof(u32) * n);
864 }
865
866 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
867 {
868         dt_prop(dt, name, NULL, 0);
869 }
870
871 void dt_cpus(struct iseries_flat_dt *dt)
872 {
873         unsigned char buf[32];
874         unsigned char *p;
875         unsigned int i, index;
876         struct IoHriProcessorVpd *d;
877         u32 pft_size[2];
878
879         /* yuck */
880         snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
881         p = strchr(buf, ' ');
882         if (!p) p = buf + strlen(buf);
883
884         dt_start_node(dt, "cpus");
885         dt_prop_u32(dt, "#address-cells", 1);
886         dt_prop_u32(dt, "#size-cells", 0);
887
888         pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA  */
889         pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
890
891         for (i = 0; i < NR_CPUS; i++) {
892                 if (paca[i].lppaca.dyn_proc_status >= 2)
893                         continue;
894
895                 snprintf(p, 32 - (p - buf), "@%d", i);
896                 dt_start_node(dt, buf);
897
898                 dt_prop_str(dt, "device_type", "cpu");
899
900                 index = paca[i].lppaca.dyn_hv_phys_proc_index;
901                 d = &xIoHriProcessorVpd[index];
902
903                 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
904                 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
905
906                 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
907                 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
908
909                 /* magic conversions to Hz copied from old code */
910                 dt_prop_u32(dt, "clock-frequency",
911                         ((1UL << 34) * 1000000) / d->xProcFreq);
912                 dt_prop_u32(dt, "timebase-frequency",
913                         ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
914
915                 dt_prop_u32(dt, "reg", i);
916
917                 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
918
919                 dt_end_node(dt);
920         }
921
922         dt_end_node(dt);
923 }
924
925 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
926 {
927         u64 tmp[2];
928
929         dt_init(dt);
930
931         dt_start_node(dt, "");
932
933         dt_prop_u32(dt, "#address-cells", 2);
934         dt_prop_u32(dt, "#size-cells", 2);
935
936         /* /memory */
937         dt_start_node(dt, "memory@0");
938         dt_prop_str(dt, "name", "memory");
939         dt_prop_str(dt, "device_type", "memory");
940         tmp[0] = 0;
941         tmp[1] = phys_mem_size;
942         dt_prop_u64_list(dt, "reg", tmp, 2);
943         dt_end_node(dt);
944
945         /* /chosen */
946         dt_start_node(dt, "chosen");
947         dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
948         if (cmd_mem_limit)
949                 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
950         dt_end_node(dt);
951
952         dt_cpus(dt);
953
954         dt_end_node(dt);
955
956         dt_push_u32(dt, OF_DT_END);
957 }
958
959 void * __init iSeries_early_setup(void)
960 {
961         unsigned long phys_mem_size;
962
963         iSeries_fixup_klimit();
964
965         /*
966          * Initialize the table which translate Linux physical addresses to
967          * AS/400 absolute addresses
968          */
969         phys_mem_size = build_iSeries_Memory_Map();
970
971         iSeries_get_cmdline();
972
973         /* Save unparsed command line copy for /proc/cmdline */
974         strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
975
976         /* Parse early parameters, in particular mem=x */
977         parse_early_param();
978
979         build_flat_dt(&iseries_dt, phys_mem_size);
980
981         return (void *) __pa(&iseries_dt);
982 }
983
984 /*
985  * On iSeries we just parse the mem=X option from the command line.
986  * On pSeries it's a bit more complicated, see prom_init_mem()
987  */
988 static int __init early_parsemem(char *p)
989 {
990         if (p)
991                 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
992         return 0;
993 }
994 early_param("mem", early_parsemem);
995
996 static void hvputc(char c)
997 {
998         if (c == '\n')
999                 hvputc('\r');
1000
1001         HvCall_writeLogBuffer(&c, 1);
1002 }
1003
1004 void __init udbg_init_iseries(void)
1005 {
1006         udbg_putc = hvputc;
1007 }