Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[pandora-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56 #include <asm/irq.h>
57
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "main_store.h"
64 #include "call_sm.h"
65 #include "call_hpt.h"
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
82
83 extern int rd_size;             /* Defined in drivers/block/rd.c */
84
85 extern unsigned long iSeries_recal_tb;
86 extern unsigned long iSeries_recal_titan;
87
88 struct MemoryBlock {
89         unsigned long absStart;
90         unsigned long absEnd;
91         unsigned long logicalStart;
92         unsigned long logicalEnd;
93 };
94
95 /*
96  * Process the main store vpd to determine where the holes in memory are
97  * and return the number of physical blocks and fill in the array of
98  * block data.
99  */
100 static unsigned long iSeries_process_Condor_mainstore_vpd(
101                 struct MemoryBlock *mb_array, unsigned long max_entries)
102 {
103         unsigned long holeFirstChunk, holeSizeChunks;
104         unsigned long numMemoryBlocks = 1;
105         struct IoHriMainStoreSegment4 *msVpd =
106                 (struct IoHriMainStoreSegment4 *)xMsVpd;
107         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
108         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
109         unsigned long holeSize = holeEnd - holeStart;
110
111         printk("Mainstore_VPD: Condor\n");
112         /*
113          * Determine if absolute memory has any
114          * holes so that we can interpret the
115          * access map we get back from the hypervisor
116          * correctly.
117          */
118         mb_array[0].logicalStart = 0;
119         mb_array[0].logicalEnd = 0x100000000;
120         mb_array[0].absStart = 0;
121         mb_array[0].absEnd = 0x100000000;
122
123         if (holeSize) {
124                 numMemoryBlocks = 2;
125                 holeStart = holeStart & 0x000fffffffffffff;
126                 holeStart = addr_to_chunk(holeStart);
127                 holeFirstChunk = holeStart;
128                 holeSize = addr_to_chunk(holeSize);
129                 holeSizeChunks = holeSize;
130                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
131                                 holeFirstChunk, holeSizeChunks );
132                 mb_array[0].logicalEnd = holeFirstChunk;
133                 mb_array[0].absEnd = holeFirstChunk;
134                 mb_array[1].logicalStart = holeFirstChunk;
135                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
136                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
137                 mb_array[1].absEnd = 0x100000000;
138         }
139         return numMemoryBlocks;
140 }
141
142 #define MaxSegmentAreas                 32
143 #define MaxSegmentAdrRangeBlocks        128
144 #define MaxAreaRangeBlocks              4
145
146 static unsigned long iSeries_process_Regatta_mainstore_vpd(
147                 struct MemoryBlock *mb_array, unsigned long max_entries)
148 {
149         struct IoHriMainStoreSegment5 *msVpdP =
150                 (struct IoHriMainStoreSegment5 *)xMsVpd;
151         unsigned long numSegmentBlocks = 0;
152         u32 existsBits = msVpdP->msAreaExists;
153         unsigned long area_num;
154
155         printk("Mainstore_VPD: Regatta\n");
156
157         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
158                 unsigned long numAreaBlocks;
159                 struct IoHriMainStoreArea4 *currentArea;
160
161                 if (existsBits & 0x80000000) {
162                         unsigned long block_num;
163
164                         currentArea = &msVpdP->msAreaArray[area_num];
165                         numAreaBlocks = currentArea->numAdrRangeBlocks;
166                         printk("ms_vpd: processing area %2ld  blocks=%ld",
167                                         area_num, numAreaBlocks);
168                         for (block_num = 0; block_num < numAreaBlocks;
169                                         ++block_num ) {
170                                 /* Process an address range block */
171                                 struct MemoryBlock tempBlock;
172                                 unsigned long i;
173
174                                 tempBlock.absStart =
175                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
176                                 tempBlock.absEnd =
177                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
178                                 tempBlock.logicalStart = 0;
179                                 tempBlock.logicalEnd   = 0;
180                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
181                                                 block_num, tempBlock.absStart,
182                                                 tempBlock.absEnd);
183
184                                 for (i = 0; i < numSegmentBlocks; ++i) {
185                                         if (mb_array[i].absStart ==
186                                                         tempBlock.absStart)
187                                                 break;
188                                 }
189                                 if (i == numSegmentBlocks) {
190                                         if (numSegmentBlocks == max_entries)
191                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
192                                         mb_array[numSegmentBlocks] = tempBlock;
193                                         ++numSegmentBlocks;
194                                 } else
195                                         printk(" (duplicate)");
196                         }
197                         printk("\n");
198                 }
199                 existsBits <<= 1;
200         }
201         /* Now sort the blocks found into ascending sequence */
202         if (numSegmentBlocks > 1) {
203                 unsigned long m, n;
204
205                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
206                         for (n = numSegmentBlocks - 1; m < n; --n) {
207                                 if (mb_array[n].absStart <
208                                                 mb_array[n-1].absStart) {
209                                         struct MemoryBlock tempBlock;
210
211                                         tempBlock = mb_array[n];
212                                         mb_array[n] = mb_array[n-1];
213                                         mb_array[n-1] = tempBlock;
214                                 }
215                         }
216                 }
217         }
218         /*
219          * Assign "logical" addresses to each block.  These
220          * addresses correspond to the hypervisor "bitmap" space.
221          * Convert all addresses into units of 256K chunks.
222          */
223         {
224         unsigned long i, nextBitmapAddress;
225
226         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
227         nextBitmapAddress = 0;
228         for (i = 0; i < numSegmentBlocks; ++i) {
229                 unsigned long length = mb_array[i].absEnd -
230                         mb_array[i].absStart;
231
232                 mb_array[i].logicalStart = nextBitmapAddress;
233                 mb_array[i].logicalEnd = nextBitmapAddress + length;
234                 nextBitmapAddress += length;
235                 printk("          Bitmap range: %016lx - %016lx\n"
236                                 "        Absolute range: %016lx - %016lx\n",
237                                 mb_array[i].logicalStart,
238                                 mb_array[i].logicalEnd,
239                                 mb_array[i].absStart, mb_array[i].absEnd);
240                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
241                                 0x000fffffffffffff);
242                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
243                                 0x000fffffffffffff);
244                 mb_array[i].logicalStart =
245                         addr_to_chunk(mb_array[i].logicalStart);
246                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
247         }
248         }
249
250         return numSegmentBlocks;
251 }
252
253 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
254                 unsigned long max_entries)
255 {
256         unsigned long i;
257         unsigned long mem_blocks = 0;
258
259         if (cpu_has_feature(CPU_FTR_SLB))
260                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
261                                 max_entries);
262         else
263                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
264                                 max_entries);
265
266         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
267         for (i = 0; i < mem_blocks; ++i) {
268                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
269                        "                             abs chunks %016lx - %016lx\n",
270                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
271                         mb_array[i].absStart, mb_array[i].absEnd);
272         }
273         return mem_blocks;
274 }
275
276 static void __init iSeries_get_cmdline(void)
277 {
278         char *p, *q;
279
280         /* copy the command line parameter from the primary VSP  */
281         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
282                         HvLpDma_Direction_RemoteToLocal);
283
284         p = cmd_line;
285         q = cmd_line + 255;
286         while(p < q) {
287                 if (!*p || *p == '\n')
288                         break;
289                 ++p;
290         }
291         *p = 0;
292 }
293
294 static void __init iSeries_init_early(void)
295 {
296         DBG(" -> iSeries_init_early()\n");
297
298         ppc64_interrupt_controller = IC_ISERIES;
299
300 #if defined(CONFIG_BLK_DEV_INITRD)
301         /*
302          * If the init RAM disk has been configured and there is
303          * a non-zero starting address for it, set it up
304          */
305         if (naca.xRamDisk) {
306                 initrd_start = (unsigned long)__va(naca.xRamDisk);
307                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
308                 initrd_below_start_ok = 1;      // ramdisk in kernel space
309                 ROOT_DEV = Root_RAM0;
310                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
311                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
312         } else
313 #endif /* CONFIG_BLK_DEV_INITRD */
314         {
315             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
316         }
317
318         iSeries_recal_tb = get_tb();
319         iSeries_recal_titan = HvCallXm_loadTod();
320
321         /*
322          * Initialize the DMA/TCE management
323          */
324         iommu_init_early_iSeries();
325
326         /* Initialize machine-dependency vectors */
327 #ifdef CONFIG_SMP
328         smp_init_iSeries();
329 #endif
330
331         /* Associate Lp Event Queue 0 with processor 0 */
332         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
333
334         mf_init();
335
336         /* If we were passed an initrd, set the ROOT_DEV properly if the values
337          * look sensible. If not, clear initrd reference.
338          */
339 #ifdef CONFIG_BLK_DEV_INITRD
340         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
341             initrd_end > initrd_start)
342                 ROOT_DEV = Root_RAM0;
343         else
344                 initrd_start = initrd_end = 0;
345 #endif /* CONFIG_BLK_DEV_INITRD */
346
347         DBG(" <- iSeries_init_early()\n");
348 }
349
350 struct mschunks_map mschunks_map = {
351         /* XXX We don't use these, but Piranha might need them. */
352         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
353         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
354         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
355 };
356 EXPORT_SYMBOL(mschunks_map);
357
358 void mschunks_alloc(unsigned long num_chunks)
359 {
360         klimit = _ALIGN(klimit, sizeof(u32));
361         mschunks_map.mapping = (u32 *)klimit;
362         klimit += num_chunks * sizeof(u32);
363         mschunks_map.num_chunks = num_chunks;
364 }
365
366 /*
367  * The iSeries may have very large memories ( > 128 GB ) and a partition
368  * may get memory in "chunks" that may be anywhere in the 2**52 real
369  * address space.  The chunks are 256K in size.  To map this to the
370  * memory model Linux expects, the AS/400 specific code builds a
371  * translation table to translate what Linux thinks are "physical"
372  * addresses to the actual real addresses.  This allows us to make
373  * it appear to Linux that we have contiguous memory starting at
374  * physical address zero while in fact this could be far from the truth.
375  * To avoid confusion, I'll let the words physical and/or real address
376  * apply to the Linux addresses while I'll use "absolute address" to
377  * refer to the actual hardware real address.
378  *
379  * build_iSeries_Memory_Map gets information from the Hypervisor and
380  * looks at the Main Store VPD to determine the absolute addresses
381  * of the memory that has been assigned to our partition and builds
382  * a table used to translate Linux's physical addresses to these
383  * absolute addresses.  Absolute addresses are needed when
384  * communicating with the hypervisor (e.g. to build HPT entries)
385  *
386  * Returns the physical memory size
387  */
388
389 static unsigned long __init build_iSeries_Memory_Map(void)
390 {
391         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
392         u32 nextPhysChunk;
393         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
394         u32 totalChunks,moreChunks;
395         u32 currChunk, thisChunk, absChunk;
396         u32 currDword;
397         u32 chunkBit;
398         u64 map;
399         struct MemoryBlock mb[32];
400         unsigned long numMemoryBlocks, curBlock;
401
402         /* Chunk size on iSeries is 256K bytes */
403         totalChunks = (u32)HvLpConfig_getMsChunks();
404         mschunks_alloc(totalChunks);
405
406         /*
407          * Get absolute address of our load area
408          * and map it to physical address 0
409          * This guarantees that the loadarea ends up at physical 0
410          * otherwise, it might not be returned by PLIC as the first
411          * chunks
412          */
413
414         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
415         loadAreaSize =  itLpNaca.xLoadAreaChunks;
416
417         /*
418          * Only add the pages already mapped here.
419          * Otherwise we might add the hpt pages
420          * The rest of the pages of the load area
421          * aren't in the HPT yet and can still
422          * be assigned an arbitrary physical address
423          */
424         if ((loadAreaSize * 64) > HvPagesToMap)
425                 loadAreaSize = HvPagesToMap / 64;
426
427         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
428
429         /*
430          * TODO Do we need to do something if the HPT is in the 64MB load area?
431          * This would be required if the itLpNaca.xLoadAreaChunks includes
432          * the HPT size
433          */
434
435         printk("Mapping load area - physical addr = 0000000000000000\n"
436                 "                    absolute addr = %016lx\n",
437                 chunk_to_addr(loadAreaFirstChunk));
438         printk("Load area size %dK\n", loadAreaSize * 256);
439
440         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
441                 mschunks_map.mapping[nextPhysChunk] =
442                         loadAreaFirstChunk + nextPhysChunk;
443
444         /*
445          * Get absolute address of our HPT and remember it so
446          * we won't map it to any physical address
447          */
448         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
449         hptSizePages = (u32)HvCallHpt_getHptPages();
450         hptSizeChunks = hptSizePages >>
451                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
452         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
453
454         printk("HPT absolute addr = %016lx, size = %dK\n",
455                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
456
457         /*
458          * Determine if absolute memory has any
459          * holes so that we can interpret the
460          * access map we get back from the hypervisor
461          * correctly.
462          */
463         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
464
465         /*
466          * Process the main store access map from the hypervisor
467          * to build up our physical -> absolute translation table
468          */
469         curBlock = 0;
470         currChunk = 0;
471         currDword = 0;
472         moreChunks = totalChunks;
473
474         while (moreChunks) {
475                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
476                                 currDword);
477                 thisChunk = currChunk;
478                 while (map) {
479                         chunkBit = map >> 63;
480                         map <<= 1;
481                         if (chunkBit) {
482                                 --moreChunks;
483                                 while (thisChunk >= mb[curBlock].logicalEnd) {
484                                         ++curBlock;
485                                         if (curBlock >= numMemoryBlocks)
486                                                 panic("out of memory blocks");
487                                 }
488                                 if (thisChunk < mb[curBlock].logicalStart)
489                                         panic("memory block error");
490
491                                 absChunk = mb[curBlock].absStart +
492                                         (thisChunk - mb[curBlock].logicalStart);
493                                 if (((absChunk < hptFirstChunk) ||
494                                      (absChunk > hptLastChunk)) &&
495                                     ((absChunk < loadAreaFirstChunk) ||
496                                      (absChunk > loadAreaLastChunk))) {
497                                         mschunks_map.mapping[nextPhysChunk] =
498                                                 absChunk;
499                                         ++nextPhysChunk;
500                                 }
501                         }
502                         ++thisChunk;
503                 }
504                 ++currDword;
505                 currChunk += 64;
506         }
507
508         /*
509          * main store size (in chunks) is
510          *   totalChunks - hptSizeChunks
511          * which should be equal to
512          *   nextPhysChunk
513          */
514         return chunk_to_addr(nextPhysChunk);
515 }
516
517 /*
518  * Document me.
519  */
520 static void __init iSeries_setup_arch(void)
521 {
522         if (get_lppaca()->shared_proc) {
523                 ppc_md.idle_loop = iseries_shared_idle;
524                 printk(KERN_DEBUG "Using shared processor idle loop\n");
525         } else {
526                 ppc_md.idle_loop = iseries_dedicated_idle;
527                 printk(KERN_DEBUG "Using dedicated idle loop\n");
528         }
529
530         /* Setup the Lp Event Queue */
531         setup_hvlpevent_queue();
532
533         printk("Max  logical processors = %d\n",
534                         itVpdAreas.xSlicMaxLogicalProcs);
535         printk("Max physical processors = %d\n",
536                         itVpdAreas.xSlicMaxPhysicalProcs);
537 }
538
539 static void iSeries_show_cpuinfo(struct seq_file *m)
540 {
541         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
542 }
543
544 static void __init iSeries_progress(char * st, unsigned short code)
545 {
546         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
547         mf_display_progress(code);
548 }
549
550 static void __init iSeries_fixup_klimit(void)
551 {
552         /*
553          * Change klimit to take into account any ram disk
554          * that may be included
555          */
556         if (naca.xRamDisk)
557                 klimit = KERNELBASE + (u64)naca.xRamDisk +
558                         (naca.xRamDiskSize * HW_PAGE_SIZE);
559 }
560
561 static int __init iSeries_src_init(void)
562 {
563         /* clear the progress line */
564         ppc_md.progress(" ", 0xffff);
565         return 0;
566 }
567
568 late_initcall(iSeries_src_init);
569
570 static inline void process_iSeries_events(void)
571 {
572         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
573 }
574
575 static void yield_shared_processor(void)
576 {
577         unsigned long tb;
578
579         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
580                                     HvCall_MaskLpEvent |
581                                     HvCall_MaskLpProd |
582                                     HvCall_MaskTimeout);
583
584         tb = get_tb();
585         /* Compute future tb value when yield should expire */
586         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
587
588         /*
589          * The decrementer stops during the yield.  Force a fake decrementer
590          * here and let the timer_interrupt code sort out the actual time.
591          */
592         get_lppaca()->int_dword.fields.decr_int = 1;
593         ppc64_runlatch_on();
594         process_iSeries_events();
595 }
596
597 static void iseries_shared_idle(void)
598 {
599         while (1) {
600                 while (!need_resched() && !hvlpevent_is_pending()) {
601                         local_irq_disable();
602                         ppc64_runlatch_off();
603
604                         /* Recheck with irqs off */
605                         if (!need_resched() && !hvlpevent_is_pending())
606                                 yield_shared_processor();
607
608                         HMT_medium();
609                         local_irq_enable();
610                 }
611
612                 ppc64_runlatch_on();
613
614                 if (hvlpevent_is_pending())
615                         process_iSeries_events();
616
617                 preempt_enable_no_resched();
618                 schedule();
619                 preempt_disable();
620         }
621 }
622
623 static void iseries_dedicated_idle(void)
624 {
625         set_thread_flag(TIF_POLLING_NRFLAG);
626
627         while (1) {
628                 if (!need_resched()) {
629                         while (!need_resched()) {
630                                 ppc64_runlatch_off();
631                                 HMT_low();
632
633                                 if (hvlpevent_is_pending()) {
634                                         HMT_medium();
635                                         ppc64_runlatch_on();
636                                         process_iSeries_events();
637                                 }
638                         }
639
640                         HMT_medium();
641                 }
642
643                 ppc64_runlatch_on();
644                 preempt_enable_no_resched();
645                 schedule();
646                 preempt_disable();
647         }
648 }
649
650 #ifndef CONFIG_PCI
651 void __init iSeries_init_IRQ(void) { }
652 #endif
653
654 static int __init iseries_probe(void)
655 {
656         unsigned long root = of_get_flat_dt_root();
657         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
658                 return 0;
659
660         powerpc_firmware_features |= FW_FEATURE_ISERIES;
661         powerpc_firmware_features |= FW_FEATURE_LPAR;
662
663         /*
664          * The Hypervisor only allows us up to 256 interrupt
665          * sources (the irq number is passed in a u8).
666          */
667         virt_irq_max = 255;
668
669         hpte_init_iSeries();
670
671         return 1;
672 }
673
674 define_machine(iseries) {
675         .name           = "iSeries",
676         .setup_arch     = iSeries_setup_arch,
677         .show_cpuinfo   = iSeries_show_cpuinfo,
678         .init_IRQ       = iSeries_init_IRQ,
679         .get_irq        = iSeries_get_irq,
680         .init_early     = iSeries_init_early,
681         .pcibios_fixup  = iSeries_pci_final_fixup,
682         .restart        = mf_reboot,
683         .power_off      = mf_power_off,
684         .halt           = mf_power_off,
685         .get_boot_time  = iSeries_get_boot_time,
686         .set_rtc_time   = iSeries_set_rtc_time,
687         .get_rtc_time   = iSeries_get_rtc_time,
688         .calibrate_decr = generic_calibrate_decr,
689         .progress       = iSeries_progress,
690         .probe          = iseries_probe,
691         /* XXX Implement enable_pmcs for iSeries */
692 };
693
694 void * __init iSeries_early_setup(void)
695 {
696         unsigned long phys_mem_size;
697
698         iSeries_fixup_klimit();
699
700         /*
701          * Initialize the table which translate Linux physical addresses to
702          * AS/400 absolute addresses
703          */
704         phys_mem_size = build_iSeries_Memory_Map();
705
706         iSeries_get_cmdline();
707
708         return (void *) __pa(build_flat_dt(phys_mem_size));
709 }
710
711 static void hvputc(char c)
712 {
713         if (c == '\n')
714                 hvputc('\r');
715
716         HvCall_writeLogBuffer(&c, 1);
717 }
718
719 void __init udbg_init_iseries(void)
720 {
721         udbg_putc = hvputc;
722 }