[PATCH] powerpc: make iSeries flat device tree stuff static
[pandora-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31 #include <linux/if_ether.h>     /* ETH_ALEN */
32
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
35 #include <asm/page.h>
36 #include <asm/mmu.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
42 #include <asm/firmware.h>
43 #include <asm/system.h>
44 #include <asm/time.h>
45 #include <asm/paca.h>
46 #include <asm/cache.h>
47 #include <asm/sections.h>
48 #include <asm/abs_addr.h>
49 #include <asm/iseries/hv_types.h>
50 #include <asm/iseries/hv_lp_config.h>
51 #include <asm/iseries/hv_call_event.h>
52 #include <asm/iseries/hv_call_xm.h>
53 #include <asm/iseries/it_lp_queue.h>
54 #include <asm/iseries/mf.h>
55 #include <asm/iseries/it_exp_vpd_panel.h>
56 #include <asm/iseries/hv_lp_event.h>
57 #include <asm/iseries/lpar_map.h>
58 #include <asm/udbg.h>
59 #include <asm/irq.h>
60
61 #include "naca.h"
62 #include "setup.h"
63 #include "irq.h"
64 #include "vpd_areas.h"
65 #include "processor_vpd.h"
66 #include "main_store.h"
67 #include "call_sm.h"
68 #include "call_hpt.h"
69 #include "call_pci.h"
70 #include "pci.h"
71
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77
78 /* Function Prototypes */
79 static unsigned long build_iSeries_Memory_Map(void);
80 static void iseries_shared_idle(void);
81 static void iseries_dedicated_idle(void);
82 #ifdef CONFIG_PCI
83 extern void iSeries_pci_final_fixup(void);
84 #else
85 static void iSeries_pci_final_fixup(void) { }
86 #endif
87
88 extern int rd_size;             /* Defined in drivers/block/rd.c */
89 extern unsigned long embedded_sysmap_start;
90 extern unsigned long embedded_sysmap_end;
91
92 extern unsigned long iSeries_recal_tb;
93 extern unsigned long iSeries_recal_titan;
94
95 struct MemoryBlock {
96         unsigned long absStart;
97         unsigned long absEnd;
98         unsigned long logicalStart;
99         unsigned long logicalEnd;
100 };
101
102 /*
103  * Process the main store vpd to determine where the holes in memory are
104  * and return the number of physical blocks and fill in the array of
105  * block data.
106  */
107 static unsigned long iSeries_process_Condor_mainstore_vpd(
108                 struct MemoryBlock *mb_array, unsigned long max_entries)
109 {
110         unsigned long holeFirstChunk, holeSizeChunks;
111         unsigned long numMemoryBlocks = 1;
112         struct IoHriMainStoreSegment4 *msVpd =
113                 (struct IoHriMainStoreSegment4 *)xMsVpd;
114         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
115         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
116         unsigned long holeSize = holeEnd - holeStart;
117
118         printk("Mainstore_VPD: Condor\n");
119         /*
120          * Determine if absolute memory has any
121          * holes so that we can interpret the
122          * access map we get back from the hypervisor
123          * correctly.
124          */
125         mb_array[0].logicalStart = 0;
126         mb_array[0].logicalEnd = 0x100000000;
127         mb_array[0].absStart = 0;
128         mb_array[0].absEnd = 0x100000000;
129
130         if (holeSize) {
131                 numMemoryBlocks = 2;
132                 holeStart = holeStart & 0x000fffffffffffff;
133                 holeStart = addr_to_chunk(holeStart);
134                 holeFirstChunk = holeStart;
135                 holeSize = addr_to_chunk(holeSize);
136                 holeSizeChunks = holeSize;
137                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
138                                 holeFirstChunk, holeSizeChunks );
139                 mb_array[0].logicalEnd = holeFirstChunk;
140                 mb_array[0].absEnd = holeFirstChunk;
141                 mb_array[1].logicalStart = holeFirstChunk;
142                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
143                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
144                 mb_array[1].absEnd = 0x100000000;
145         }
146         return numMemoryBlocks;
147 }
148
149 #define MaxSegmentAreas                 32
150 #define MaxSegmentAdrRangeBlocks        128
151 #define MaxAreaRangeBlocks              4
152
153 static unsigned long iSeries_process_Regatta_mainstore_vpd(
154                 struct MemoryBlock *mb_array, unsigned long max_entries)
155 {
156         struct IoHriMainStoreSegment5 *msVpdP =
157                 (struct IoHriMainStoreSegment5 *)xMsVpd;
158         unsigned long numSegmentBlocks = 0;
159         u32 existsBits = msVpdP->msAreaExists;
160         unsigned long area_num;
161
162         printk("Mainstore_VPD: Regatta\n");
163
164         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
165                 unsigned long numAreaBlocks;
166                 struct IoHriMainStoreArea4 *currentArea;
167
168                 if (existsBits & 0x80000000) {
169                         unsigned long block_num;
170
171                         currentArea = &msVpdP->msAreaArray[area_num];
172                         numAreaBlocks = currentArea->numAdrRangeBlocks;
173                         printk("ms_vpd: processing area %2ld  blocks=%ld",
174                                         area_num, numAreaBlocks);
175                         for (block_num = 0; block_num < numAreaBlocks;
176                                         ++block_num ) {
177                                 /* Process an address range block */
178                                 struct MemoryBlock tempBlock;
179                                 unsigned long i;
180
181                                 tempBlock.absStart =
182                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
183                                 tempBlock.absEnd =
184                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
185                                 tempBlock.logicalStart = 0;
186                                 tempBlock.logicalEnd   = 0;
187                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
188                                                 block_num, tempBlock.absStart,
189                                                 tempBlock.absEnd);
190
191                                 for (i = 0; i < numSegmentBlocks; ++i) {
192                                         if (mb_array[i].absStart ==
193                                                         tempBlock.absStart)
194                                                 break;
195                                 }
196                                 if (i == numSegmentBlocks) {
197                                         if (numSegmentBlocks == max_entries)
198                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
199                                         mb_array[numSegmentBlocks] = tempBlock;
200                                         ++numSegmentBlocks;
201                                 } else
202                                         printk(" (duplicate)");
203                         }
204                         printk("\n");
205                 }
206                 existsBits <<= 1;
207         }
208         /* Now sort the blocks found into ascending sequence */
209         if (numSegmentBlocks > 1) {
210                 unsigned long m, n;
211
212                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
213                         for (n = numSegmentBlocks - 1; m < n; --n) {
214                                 if (mb_array[n].absStart <
215                                                 mb_array[n-1].absStart) {
216                                         struct MemoryBlock tempBlock;
217
218                                         tempBlock = mb_array[n];
219                                         mb_array[n] = mb_array[n-1];
220                                         mb_array[n-1] = tempBlock;
221                                 }
222                         }
223                 }
224         }
225         /*
226          * Assign "logical" addresses to each block.  These
227          * addresses correspond to the hypervisor "bitmap" space.
228          * Convert all addresses into units of 256K chunks.
229          */
230         {
231         unsigned long i, nextBitmapAddress;
232
233         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
234         nextBitmapAddress = 0;
235         for (i = 0; i < numSegmentBlocks; ++i) {
236                 unsigned long length = mb_array[i].absEnd -
237                         mb_array[i].absStart;
238
239                 mb_array[i].logicalStart = nextBitmapAddress;
240                 mb_array[i].logicalEnd = nextBitmapAddress + length;
241                 nextBitmapAddress += length;
242                 printk("          Bitmap range: %016lx - %016lx\n"
243                                 "        Absolute range: %016lx - %016lx\n",
244                                 mb_array[i].logicalStart,
245                                 mb_array[i].logicalEnd,
246                                 mb_array[i].absStart, mb_array[i].absEnd);
247                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
248                                 0x000fffffffffffff);
249                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
250                                 0x000fffffffffffff);
251                 mb_array[i].logicalStart =
252                         addr_to_chunk(mb_array[i].logicalStart);
253                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
254         }
255         }
256
257         return numSegmentBlocks;
258 }
259
260 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
261                 unsigned long max_entries)
262 {
263         unsigned long i;
264         unsigned long mem_blocks = 0;
265
266         if (cpu_has_feature(CPU_FTR_SLB))
267                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
268                                 max_entries);
269         else
270                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
271                                 max_entries);
272
273         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
274         for (i = 0; i < mem_blocks; ++i) {
275                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
276                        "                             abs chunks %016lx - %016lx\n",
277                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
278                         mb_array[i].absStart, mb_array[i].absEnd);
279         }
280         return mem_blocks;
281 }
282
283 static void __init iSeries_get_cmdline(void)
284 {
285         char *p, *q;
286
287         /* copy the command line parameter from the primary VSP  */
288         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
289                         HvLpDma_Direction_RemoteToLocal);
290
291         p = cmd_line;
292         q = cmd_line + 255;
293         while(p < q) {
294                 if (!*p || *p == '\n')
295                         break;
296                 ++p;
297         }
298         *p = 0;
299 }
300
301 static void __init iSeries_init_early(void)
302 {
303         DBG(" -> iSeries_init_early()\n");
304
305         ppc64_interrupt_controller = IC_ISERIES;
306
307 #if defined(CONFIG_BLK_DEV_INITRD)
308         /*
309          * If the init RAM disk has been configured and there is
310          * a non-zero starting address for it, set it up
311          */
312         if (naca.xRamDisk) {
313                 initrd_start = (unsigned long)__va(naca.xRamDisk);
314                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
315                 initrd_below_start_ok = 1;      // ramdisk in kernel space
316                 ROOT_DEV = Root_RAM0;
317                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
318                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
319         } else
320 #endif /* CONFIG_BLK_DEV_INITRD */
321         {
322             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
323         }
324
325         iSeries_recal_tb = get_tb();
326         iSeries_recal_titan = HvCallXm_loadTod();
327
328         /*
329          * Initialize the hash table management pointers
330          */
331         hpte_init_iSeries();
332
333         /*
334          * Initialize the DMA/TCE management
335          */
336         iommu_init_early_iSeries();
337
338         /* Initialize machine-dependency vectors */
339 #ifdef CONFIG_SMP
340         smp_init_iSeries();
341 #endif
342
343         /* Associate Lp Event Queue 0 with processor 0 */
344         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
345
346         mf_init();
347
348         /* If we were passed an initrd, set the ROOT_DEV properly if the values
349          * look sensible. If not, clear initrd reference.
350          */
351 #ifdef CONFIG_BLK_DEV_INITRD
352         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
353             initrd_end > initrd_start)
354                 ROOT_DEV = Root_RAM0;
355         else
356                 initrd_start = initrd_end = 0;
357 #endif /* CONFIG_BLK_DEV_INITRD */
358
359         DBG(" <- iSeries_init_early()\n");
360 }
361
362 struct mschunks_map mschunks_map = {
363         /* XXX We don't use these, but Piranha might need them. */
364         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
365         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
366         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
367 };
368 EXPORT_SYMBOL(mschunks_map);
369
370 void mschunks_alloc(unsigned long num_chunks)
371 {
372         klimit = _ALIGN(klimit, sizeof(u32));
373         mschunks_map.mapping = (u32 *)klimit;
374         klimit += num_chunks * sizeof(u32);
375         mschunks_map.num_chunks = num_chunks;
376 }
377
378 /*
379  * The iSeries may have very large memories ( > 128 GB ) and a partition
380  * may get memory in "chunks" that may be anywhere in the 2**52 real
381  * address space.  The chunks are 256K in size.  To map this to the
382  * memory model Linux expects, the AS/400 specific code builds a
383  * translation table to translate what Linux thinks are "physical"
384  * addresses to the actual real addresses.  This allows us to make
385  * it appear to Linux that we have contiguous memory starting at
386  * physical address zero while in fact this could be far from the truth.
387  * To avoid confusion, I'll let the words physical and/or real address
388  * apply to the Linux addresses while I'll use "absolute address" to
389  * refer to the actual hardware real address.
390  *
391  * build_iSeries_Memory_Map gets information from the Hypervisor and
392  * looks at the Main Store VPD to determine the absolute addresses
393  * of the memory that has been assigned to our partition and builds
394  * a table used to translate Linux's physical addresses to these
395  * absolute addresses.  Absolute addresses are needed when
396  * communicating with the hypervisor (e.g. to build HPT entries)
397  *
398  * Returns the physical memory size
399  */
400
401 static unsigned long __init build_iSeries_Memory_Map(void)
402 {
403         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
404         u32 nextPhysChunk;
405         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
406         u32 totalChunks,moreChunks;
407         u32 currChunk, thisChunk, absChunk;
408         u32 currDword;
409         u32 chunkBit;
410         u64 map;
411         struct MemoryBlock mb[32];
412         unsigned long numMemoryBlocks, curBlock;
413
414         /* Chunk size on iSeries is 256K bytes */
415         totalChunks = (u32)HvLpConfig_getMsChunks();
416         mschunks_alloc(totalChunks);
417
418         /*
419          * Get absolute address of our load area
420          * and map it to physical address 0
421          * This guarantees that the loadarea ends up at physical 0
422          * otherwise, it might not be returned by PLIC as the first
423          * chunks
424          */
425
426         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
427         loadAreaSize =  itLpNaca.xLoadAreaChunks;
428
429         /*
430          * Only add the pages already mapped here.
431          * Otherwise we might add the hpt pages
432          * The rest of the pages of the load area
433          * aren't in the HPT yet and can still
434          * be assigned an arbitrary physical address
435          */
436         if ((loadAreaSize * 64) > HvPagesToMap)
437                 loadAreaSize = HvPagesToMap / 64;
438
439         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
440
441         /*
442          * TODO Do we need to do something if the HPT is in the 64MB load area?
443          * This would be required if the itLpNaca.xLoadAreaChunks includes
444          * the HPT size
445          */
446
447         printk("Mapping load area - physical addr = 0000000000000000\n"
448                 "                    absolute addr = %016lx\n",
449                 chunk_to_addr(loadAreaFirstChunk));
450         printk("Load area size %dK\n", loadAreaSize * 256);
451
452         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
453                 mschunks_map.mapping[nextPhysChunk] =
454                         loadAreaFirstChunk + nextPhysChunk;
455
456         /*
457          * Get absolute address of our HPT and remember it so
458          * we won't map it to any physical address
459          */
460         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
461         hptSizePages = (u32)HvCallHpt_getHptPages();
462         hptSizeChunks = hptSizePages >>
463                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
464         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
465
466         printk("HPT absolute addr = %016lx, size = %dK\n",
467                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
468
469         /*
470          * Determine if absolute memory has any
471          * holes so that we can interpret the
472          * access map we get back from the hypervisor
473          * correctly.
474          */
475         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
476
477         /*
478          * Process the main store access map from the hypervisor
479          * to build up our physical -> absolute translation table
480          */
481         curBlock = 0;
482         currChunk = 0;
483         currDword = 0;
484         moreChunks = totalChunks;
485
486         while (moreChunks) {
487                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
488                                 currDword);
489                 thisChunk = currChunk;
490                 while (map) {
491                         chunkBit = map >> 63;
492                         map <<= 1;
493                         if (chunkBit) {
494                                 --moreChunks;
495                                 while (thisChunk >= mb[curBlock].logicalEnd) {
496                                         ++curBlock;
497                                         if (curBlock >= numMemoryBlocks)
498                                                 panic("out of memory blocks");
499                                 }
500                                 if (thisChunk < mb[curBlock].logicalStart)
501                                         panic("memory block error");
502
503                                 absChunk = mb[curBlock].absStart +
504                                         (thisChunk - mb[curBlock].logicalStart);
505                                 if (((absChunk < hptFirstChunk) ||
506                                      (absChunk > hptLastChunk)) &&
507                                     ((absChunk < loadAreaFirstChunk) ||
508                                      (absChunk > loadAreaLastChunk))) {
509                                         mschunks_map.mapping[nextPhysChunk] =
510                                                 absChunk;
511                                         ++nextPhysChunk;
512                                 }
513                         }
514                         ++thisChunk;
515                 }
516                 ++currDword;
517                 currChunk += 64;
518         }
519
520         /*
521          * main store size (in chunks) is
522          *   totalChunks - hptSizeChunks
523          * which should be equal to
524          *   nextPhysChunk
525          */
526         return chunk_to_addr(nextPhysChunk);
527 }
528
529 /*
530  * Document me.
531  */
532 static void __init iSeries_setup_arch(void)
533 {
534         if (get_lppaca()->shared_proc) {
535                 ppc_md.idle_loop = iseries_shared_idle;
536                 printk(KERN_DEBUG "Using shared processor idle loop\n");
537         } else {
538                 ppc_md.idle_loop = iseries_dedicated_idle;
539                 printk(KERN_DEBUG "Using dedicated idle loop\n");
540         }
541
542         /* Setup the Lp Event Queue */
543         setup_hvlpevent_queue();
544
545         printk("Max  logical processors = %d\n",
546                         itVpdAreas.xSlicMaxLogicalProcs);
547         printk("Max physical processors = %d\n",
548                         itVpdAreas.xSlicMaxPhysicalProcs);
549 }
550
551 static void iSeries_show_cpuinfo(struct seq_file *m)
552 {
553         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
554 }
555
556 static void __init iSeries_progress(char * st, unsigned short code)
557 {
558         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
559         mf_display_progress(code);
560 }
561
562 static void __init iSeries_fixup_klimit(void)
563 {
564         /*
565          * Change klimit to take into account any ram disk
566          * that may be included
567          */
568         if (naca.xRamDisk)
569                 klimit = KERNELBASE + (u64)naca.xRamDisk +
570                         (naca.xRamDiskSize * HW_PAGE_SIZE);
571         else {
572                 /*
573                  * No ram disk was included - check and see if there
574                  * was an embedded system map.  Change klimit to take
575                  * into account any embedded system map
576                  */
577                 if (embedded_sysmap_end)
578                         klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
579                                         0xfffffffffffff000);
580         }
581 }
582
583 static int __init iSeries_src_init(void)
584 {
585         /* clear the progress line */
586         ppc_md.progress(" ", 0xffff);
587         return 0;
588 }
589
590 late_initcall(iSeries_src_init);
591
592 static inline void process_iSeries_events(void)
593 {
594         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
595 }
596
597 static void yield_shared_processor(void)
598 {
599         unsigned long tb;
600
601         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
602                                     HvCall_MaskLpEvent |
603                                     HvCall_MaskLpProd |
604                                     HvCall_MaskTimeout);
605
606         tb = get_tb();
607         /* Compute future tb value when yield should expire */
608         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
609
610         /*
611          * The decrementer stops during the yield.  Force a fake decrementer
612          * here and let the timer_interrupt code sort out the actual time.
613          */
614         get_lppaca()->int_dword.fields.decr_int = 1;
615         ppc64_runlatch_on();
616         process_iSeries_events();
617 }
618
619 static void iseries_shared_idle(void)
620 {
621         while (1) {
622                 while (!need_resched() && !hvlpevent_is_pending()) {
623                         local_irq_disable();
624                         ppc64_runlatch_off();
625
626                         /* Recheck with irqs off */
627                         if (!need_resched() && !hvlpevent_is_pending())
628                                 yield_shared_processor();
629
630                         HMT_medium();
631                         local_irq_enable();
632                 }
633
634                 ppc64_runlatch_on();
635
636                 if (hvlpevent_is_pending())
637                         process_iSeries_events();
638
639                 preempt_enable_no_resched();
640                 schedule();
641                 preempt_disable();
642         }
643 }
644
645 static void iseries_dedicated_idle(void)
646 {
647         set_thread_flag(TIF_POLLING_NRFLAG);
648
649         while (1) {
650                 if (!need_resched()) {
651                         while (!need_resched()) {
652                                 ppc64_runlatch_off();
653                                 HMT_low();
654
655                                 if (hvlpevent_is_pending()) {
656                                         HMT_medium();
657                                         ppc64_runlatch_on();
658                                         process_iSeries_events();
659                                 }
660                         }
661
662                         HMT_medium();
663                 }
664
665                 ppc64_runlatch_on();
666                 preempt_enable_no_resched();
667                 schedule();
668                 preempt_disable();
669         }
670 }
671
672 #ifndef CONFIG_PCI
673 void __init iSeries_init_IRQ(void) { }
674 #endif
675
676 static int __init iseries_probe(void)
677 {
678         unsigned long root = of_get_flat_dt_root();
679         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
680                 return 0;
681
682         powerpc_firmware_features |= FW_FEATURE_ISERIES;
683         powerpc_firmware_features |= FW_FEATURE_LPAR;
684
685         /*
686          * The Hypervisor only allows us up to 256 interrupt
687          * sources (the irq number is passed in a u8).
688          */
689         virt_irq_max = 255;
690
691         return 1;
692 }
693
694 define_machine(iseries) {
695         .name           = "iSeries",
696         .setup_arch     = iSeries_setup_arch,
697         .show_cpuinfo   = iSeries_show_cpuinfo,
698         .init_IRQ       = iSeries_init_IRQ,
699         .get_irq        = iSeries_get_irq,
700         .init_early     = iSeries_init_early,
701         .pcibios_fixup  = iSeries_pci_final_fixup,
702         .restart        = mf_reboot,
703         .power_off      = mf_power_off,
704         .halt           = mf_power_off,
705         .get_boot_time  = iSeries_get_boot_time,
706         .set_rtc_time   = iSeries_set_rtc_time,
707         .get_rtc_time   = iSeries_get_rtc_time,
708         .calibrate_decr = generic_calibrate_decr,
709         .progress       = iSeries_progress,
710         .probe          = iseries_probe,
711         /* XXX Implement enable_pmcs for iSeries */
712 };
713
714 struct blob {
715         unsigned char data[PAGE_SIZE * 2];
716         unsigned long next;
717 };
718
719 struct iseries_flat_dt {
720         struct boot_param_header header;
721         u64 reserve_map[2];
722         struct blob dt;
723         struct blob strings;
724 };
725
726 static struct iseries_flat_dt iseries_dt;
727
728 static void dt_init(struct iseries_flat_dt *dt)
729 {
730         dt->header.off_mem_rsvmap =
731                 offsetof(struct iseries_flat_dt, reserve_map);
732         dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
733         dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
734         dt->header.totalsize = sizeof(struct iseries_flat_dt);
735         dt->header.dt_strings_size = sizeof(struct blob);
736
737         /* There is no notion of hardware cpu id on iSeries */
738         dt->header.boot_cpuid_phys = smp_processor_id();
739
740         dt->dt.next = (unsigned long)&dt->dt.data;
741         dt->strings.next = (unsigned long)&dt->strings.data;
742
743         dt->header.magic = OF_DT_HEADER;
744         dt->header.version = 0x10;
745         dt->header.last_comp_version = 0x10;
746
747         dt->reserve_map[0] = 0;
748         dt->reserve_map[1] = 0;
749 }
750
751 static void dt_check_blob(struct blob *b)
752 {
753         if (b->next >= (unsigned long)&b->next) {
754                 DBG("Ran out of space in flat device tree blob!\n");
755                 BUG();
756         }
757 }
758
759 static void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
760 {
761         *((u32*)dt->dt.next) = value;
762         dt->dt.next += sizeof(u32);
763
764         dt_check_blob(&dt->dt);
765 }
766
767 #ifdef notyet
768 static void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
769 {
770         *((u64*)dt->dt.next) = value;
771         dt->dt.next += sizeof(u64);
772
773         dt_check_blob(&dt->dt);
774 }
775 #endif
776
777 static unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
778 {
779         unsigned long start = blob->next - (unsigned long)blob->data;
780
781         memcpy((char *)blob->next, data, len);
782         blob->next = _ALIGN(blob->next + len, 4);
783
784         dt_check_blob(blob);
785
786         return start;
787 }
788
789 static void dt_start_node(struct iseries_flat_dt *dt, char *name)
790 {
791         dt_push_u32(dt, OF_DT_BEGIN_NODE);
792         dt_push_bytes(&dt->dt, name, strlen(name) + 1);
793 }
794
795 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
796
797 static void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
798 {
799         unsigned long offset;
800
801         dt_push_u32(dt, OF_DT_PROP);
802
803         /* Length of the data */
804         dt_push_u32(dt, len);
805
806         /* Put the property name in the string blob. */
807         offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
808
809         /* The offset of the properties name in the string blob. */
810         dt_push_u32(dt, (u32)offset);
811
812         /* The actual data. */
813         dt_push_bytes(&dt->dt, data, len);
814 }
815
816 static void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
817 {
818         dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
819 }
820
821 static void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
822 {
823         dt_prop(dt, name, (char *)&data, sizeof(u32));
824 }
825
826 static void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
827 {
828         dt_prop(dt, name, (char *)&data, sizeof(u64));
829 }
830
831 static void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
832 {
833         dt_prop(dt, name, (char *)data, sizeof(u64) * n);
834 }
835
836 static void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
837 {
838         dt_prop(dt, name, (char *)data, sizeof(u32) * n);
839 }
840
841 #ifdef notyet
842 static void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
843 {
844         dt_prop(dt, name, NULL, 0);
845 }
846 #endif
847
848 static void dt_cpus(struct iseries_flat_dt *dt)
849 {
850         unsigned char buf[32];
851         unsigned char *p;
852         unsigned int i, index;
853         struct IoHriProcessorVpd *d;
854         u32 pft_size[2];
855
856         /* yuck */
857         snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
858         p = strchr(buf, ' ');
859         if (!p) p = buf + strlen(buf);
860
861         dt_start_node(dt, "cpus");
862         dt_prop_u32(dt, "#address-cells", 1);
863         dt_prop_u32(dt, "#size-cells", 0);
864
865         pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA  */
866         pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
867
868         for (i = 0; i < NR_CPUS; i++) {
869                 if (lppaca[i].dyn_proc_status >= 2)
870                         continue;
871
872                 snprintf(p, 32 - (p - buf), "@%d", i);
873                 dt_start_node(dt, buf);
874
875                 dt_prop_str(dt, "device_type", "cpu");
876
877                 index = lppaca[i].dyn_hv_phys_proc_index;
878                 d = &xIoHriProcessorVpd[index];
879
880                 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
881                 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
882
883                 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
884                 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
885
886                 /* magic conversions to Hz copied from old code */
887                 dt_prop_u32(dt, "clock-frequency",
888                         ((1UL << 34) * 1000000) / d->xProcFreq);
889                 dt_prop_u32(dt, "timebase-frequency",
890                         ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
891
892                 dt_prop_u32(dt, "reg", i);
893
894                 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
895
896                 dt_end_node(dt);
897         }
898
899         dt_end_node(dt);
900 }
901
902 static void dt_model(struct iseries_flat_dt *dt)
903 {
904         char buf[16] = "IBM,";
905
906         /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
907         strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
908         strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
909         buf[11] = '\0';
910         dt_prop_str(dt, "system-id", buf);
911
912         /* "IBM," + machineType[0:4] */
913         strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
914         buf[8] = '\0';
915         dt_prop_str(dt, "model", buf);
916
917         dt_prop_str(dt, "compatible", "IBM,iSeries");
918 }
919
920 static void dt_vdevices(struct iseries_flat_dt *dt)
921 {
922         u32 reg = 0;
923         HvLpIndexMap vlan_map;
924         int i;
925         char buf[32];
926
927         dt_start_node(dt, "vdevice");
928         dt_prop_str(dt, "device_type", "vdevice");
929         dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
930         dt_prop_u32(dt, "#address-cells", 1);
931         dt_prop_u32(dt, "#size-cells", 0);
932
933         snprintf(buf, sizeof(buf), "vty@%08x", reg);
934         dt_start_node(dt, buf);
935         dt_prop_str(dt, "device_type", "serial");
936         dt_prop_u32(dt, "reg", reg);
937         dt_end_node(dt);
938         reg++;
939
940         snprintf(buf, sizeof(buf), "v-scsi@%08x", reg);
941         dt_start_node(dt, buf);
942         dt_prop_str(dt, "device_type", "vscsi");
943         dt_prop_str(dt, "compatible", "IBM,v-scsi");
944         dt_prop_u32(dt, "reg", reg);
945         dt_end_node(dt);
946         reg++;
947
948         vlan_map = HvLpConfig_getVirtualLanIndexMap();
949         for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
950                 unsigned char mac_addr[ETH_ALEN];
951
952                 if ((vlan_map & (0x8000 >> i)) == 0)
953                         continue;
954                 snprintf(buf, 32, "l-lan@%08x", reg + i);
955                 dt_start_node(dt, buf);
956                 dt_prop_str(dt, "device_type", "network");
957                 dt_prop_str(dt, "compatible", "IBM,iSeries-l-lan");
958                 dt_prop_u32(dt, "reg", reg + i);
959                 dt_prop_u32(dt, "linux,unit_address", i);
960
961                 mac_addr[0] = 0x02;
962                 mac_addr[1] = 0x01;
963                 mac_addr[2] = 0xff;
964                 mac_addr[3] = i;
965                 mac_addr[4] = 0xff;
966                 mac_addr[5] = HvLpConfig_getLpIndex_outline();
967                 dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
968                 dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
969                 dt_prop_u32(dt, "max-frame-size", 9000);
970                 dt_prop_u32(dt, "address-bits", 48);
971
972                 dt_end_node(dt);
973         }
974         reg += HVMAXARCHITECTEDVIRTUALLANS;
975
976         for (i = 0; i < HVMAXARCHITECTEDVIRTUALDISKS; i++) {
977                 snprintf(buf, 32, "viodasd@%08x", reg + i);
978                 dt_start_node(dt, buf);
979                 dt_prop_str(dt, "device_type", "block");
980                 dt_prop_str(dt, "compatible", "IBM,iSeries-viodasd");
981                 dt_prop_u32(dt, "reg", reg + i);
982                 dt_prop_u32(dt, "linux,unit_address", i);
983                 dt_end_node(dt);
984         }
985         reg += HVMAXARCHITECTEDVIRTUALDISKS;
986         for (i = 0; i < HVMAXARCHITECTEDVIRTUALCDROMS; i++) {
987                 snprintf(buf, 32, "viocd@%08x", reg + i);
988                 dt_start_node(dt, buf);
989                 dt_prop_str(dt, "device_type", "block");
990                 dt_prop_str(dt, "compatible", "IBM,iSeries-viocd");
991                 dt_prop_u32(dt, "reg", reg + i);
992                 dt_prop_u32(dt, "linux,unit_address", i);
993                 dt_end_node(dt);
994         }
995         reg += HVMAXARCHITECTEDVIRTUALCDROMS;
996         for (i = 0; i < HVMAXARCHITECTEDVIRTUALTAPES; i++) {
997                 snprintf(buf, 32, "viotape@%08x", reg + i);
998                 dt_start_node(dt, buf);
999                 dt_prop_str(dt, "device_type", "byte");
1000                 dt_prop_str(dt, "compatible", "IBM,iSeries-viotape");
1001                 dt_prop_u32(dt, "reg", reg + i);
1002                 dt_prop_u32(dt, "linux,unit_address", i);
1003                 dt_end_node(dt);
1004         }
1005
1006         dt_end_node(dt);
1007 }
1008
1009 /*
1010  * This assumes that the node slot is always on the primary bus!
1011  */
1012 static void scan_bridge_slot(struct iseries_flat_dt *dt, HvBusNumber bus,
1013                 struct HvCallPci_BridgeInfo *bridge_info)
1014 {
1015         HvSubBusNumber sub_bus = bridge_info->subBusNumber;
1016         u16 vendor_id;
1017         u16 device_id;
1018         u32 class_id;
1019         int err;
1020         char buf[32];
1021         u32 reg[5];
1022         int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
1023         int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
1024         HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
1025
1026         /*
1027          * Connect all functions of any device found.
1028          */
1029         for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
1030                 for (function = 0; function < 8; function++) {
1031                         u8 devfn;
1032
1033                         HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
1034                                         function);
1035                         err = HvCallXm_connectBusUnit(bus, sub_bus,
1036                                         agent_id, 0);
1037                         if (err) {
1038                                 if (err != 0x302)
1039                                         printk(KERN_DEBUG
1040                                                 "connectBusUnit(%x, %x, %x) "
1041                                                 "== %x\n",
1042                                                 bus, sub_bus, agent_id, err);
1043                                 continue;
1044                         }
1045
1046                         err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
1047                                         PCI_VENDOR_ID, &vendor_id);
1048                         if (err) {
1049                                 printk(KERN_DEBUG
1050                                         "ReadVendor(%x, %x, %x) == %x\n",
1051                                         bus, sub_bus, agent_id, err);
1052                                 continue;
1053                         }
1054                         err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
1055                                         PCI_DEVICE_ID, &device_id);
1056                         if (err) {
1057                                 printk(KERN_DEBUG
1058                                         "ReadDevice(%x, %x, %x) == %x\n",
1059                                         bus, sub_bus, agent_id, err);
1060                                 continue;
1061                         }
1062                         err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
1063                                         PCI_CLASS_REVISION , &class_id);
1064                         if (err) {
1065                                 printk(KERN_DEBUG
1066                                         "ReadClass(%x, %x, %x) == %x\n",
1067                                         bus, sub_bus, agent_id, err);
1068                                 continue;
1069                         }
1070
1071                         devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
1072                                         function);
1073                         if (function == 0)
1074                                 snprintf(buf, sizeof(buf), "pci@%x",
1075                                                 PCI_SLOT(devfn));
1076                         else
1077                                 snprintf(buf, sizeof(buf), "pci@%x,%d",
1078                                                 PCI_SLOT(devfn), function);
1079                         dt_start_node(dt, buf);
1080                         reg[0] = (bus << 16) | (devfn << 8);
1081                         reg[1] = 0;
1082                         reg[2] = 0;
1083                         reg[3] = 0;
1084                         reg[4] = 0;
1085                         dt_prop_u32_list(dt, "reg", reg, 5);
1086                         dt_prop_u32(dt, "vendor-id", vendor_id);
1087                         dt_prop_u32(dt, "device-id", device_id);
1088                         dt_prop_u32(dt, "class-code", class_id >> 8);
1089                         dt_prop_u32(dt, "revision-id", class_id & 0xff);
1090                         dt_prop_u32(dt, "linux,subbus", sub_bus);
1091                         dt_prop_u32(dt, "linux,agent-id", agent_id);
1092                         dt_prop_u32(dt, "linux,logical-slot-number",
1093                                         bridge_info->logicalSlotNumber);
1094                         dt_end_node(dt);
1095
1096                 }
1097         }
1098 }
1099
1100 static void scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
1101                 HvSubBusNumber sub_bus, int id_sel)
1102 {
1103         struct HvCallPci_BridgeInfo bridge_info;
1104         HvAgentId agent_id;
1105         int function;
1106         int ret;
1107
1108         /* Note: hvSubBus and irq is always be 0 at this level! */
1109         for (function = 0; function < 8; ++function) {
1110                 agent_id = ISERIES_PCI_AGENTID(id_sel, function);
1111                 ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
1112                 if (ret != 0) {
1113                         if (ret != 0xb)
1114                                 printk(KERN_DEBUG "connectBusUnit(%x, %x, %x) "
1115                                                 "== %x\n",
1116                                                 bus, sub_bus, agent_id, ret);
1117                         continue;
1118                 }
1119                 printk("found device at bus %d idsel %d func %d (AgentId %x)\n",
1120                                 bus, id_sel, function, agent_id);
1121                 ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
1122                                 iseries_hv_addr(&bridge_info),
1123                                 sizeof(struct HvCallPci_BridgeInfo));
1124                 if (ret != 0)
1125                         continue;
1126                 printk("bridge info: type %x subbus %x "
1127                         "maxAgents %x maxsubbus %x logslot %x\n",
1128                         bridge_info.busUnitInfo.deviceType,
1129                         bridge_info.subBusNumber,
1130                         bridge_info.maxAgents,
1131                         bridge_info.maxSubBusNumber,
1132                         bridge_info.logicalSlotNumber);
1133                 if (bridge_info.busUnitInfo.deviceType ==
1134                                 HvCallPci_BridgeDevice)
1135                         scan_bridge_slot(dt, bus, &bridge_info);
1136                 else
1137                         printk("PCI: Invalid Bridge Configuration(0x%02X)",
1138                                 bridge_info.busUnitInfo.deviceType);
1139         }
1140 }
1141
1142 static void scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
1143 {
1144         struct HvCallPci_DeviceInfo dev_info;
1145         const HvSubBusNumber sub_bus = 0;       /* EADs is always 0. */
1146         int err;
1147         int id_sel;
1148         const int max_agents = 8;
1149
1150         /*
1151          * Probe for EADs Bridges
1152          */
1153         for (id_sel = 1; id_sel < max_agents; ++id_sel) {
1154                 err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
1155                                 iseries_hv_addr(&dev_info),
1156                                 sizeof(struct HvCallPci_DeviceInfo));
1157                 if (err) {
1158                         if (err != 0x302)
1159                                 printk(KERN_DEBUG "getDeviceInfo(%x, %x, %x) "
1160                                                 "== %x\n",
1161                                                 bus, sub_bus, id_sel, err);
1162                         continue;
1163                 }
1164                 if (dev_info.deviceType != HvCallPci_NodeDevice) {
1165                         printk(KERN_DEBUG "PCI: Invalid System Configuration"
1166                                         "(0x%02X) for bus 0x%02x id 0x%02x.\n",
1167                                         dev_info.deviceType, bus, id_sel);
1168                         continue;
1169                 }
1170                 scan_bridge(dt, bus, sub_bus, id_sel);
1171         }
1172 }
1173
1174 static void dt_pci_devices(struct iseries_flat_dt *dt)
1175 {
1176         HvBusNumber bus;
1177         char buf[32];
1178         u32 buses[2];
1179         int phb_num = 0;
1180
1181         /* Check all possible buses. */
1182         for (bus = 0; bus < 256; bus++) {
1183                 int err = HvCallXm_testBus(bus);
1184
1185                 if (err) {
1186                         /*
1187                          * Check for Unexpected Return code, a clue that
1188                          * something has gone wrong.
1189                          */
1190                         if (err != 0x0301)
1191                                 printk(KERN_ERR "Unexpected Return on Probe"
1192                                                 "(0x%02X): 0x%04X", bus, err);
1193                         continue;
1194                 }
1195                 printk("bus %d appears to exist\n", bus);
1196                 snprintf(buf, 32, "pci@%d", phb_num);
1197                 dt_start_node(dt, buf);
1198                 dt_prop_str(dt, "device_type", "pci");
1199                 dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
1200                 dt_prop_u32(dt, "#address-cells", 3);
1201                 dt_prop_u32(dt, "#size-cells", 2);
1202                 buses[0] = buses[1] = bus;
1203                 dt_prop_u32_list(dt, "bus-range", buses, 2);
1204                 scan_phb(dt, bus);
1205                 dt_end_node(dt);
1206                 phb_num++;
1207         }
1208 }
1209
1210 static void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
1211 {
1212         u64 tmp[2];
1213
1214         dt_init(dt);
1215
1216         dt_start_node(dt, "");
1217
1218         dt_prop_u32(dt, "#address-cells", 2);
1219         dt_prop_u32(dt, "#size-cells", 2);
1220         dt_model(dt);
1221
1222         /* /memory */
1223         dt_start_node(dt, "memory@0");
1224         dt_prop_str(dt, "name", "memory");
1225         dt_prop_str(dt, "device_type", "memory");
1226         tmp[0] = 0;
1227         tmp[1] = phys_mem_size;
1228         dt_prop_u64_list(dt, "reg", tmp, 2);
1229         dt_end_node(dt);
1230
1231         /* /chosen */
1232         dt_start_node(dt, "chosen");
1233         dt_prop_str(dt, "bootargs", cmd_line);
1234         dt_end_node(dt);
1235
1236         dt_cpus(dt);
1237
1238         dt_vdevices(dt);
1239         dt_pci_devices(dt);
1240
1241         dt_end_node(dt);
1242
1243         dt_push_u32(dt, OF_DT_END);
1244 }
1245
1246 void * __init iSeries_early_setup(void)
1247 {
1248         unsigned long phys_mem_size;
1249
1250         iSeries_fixup_klimit();
1251
1252         /*
1253          * Initialize the table which translate Linux physical addresses to
1254          * AS/400 absolute addresses
1255          */
1256         phys_mem_size = build_iSeries_Memory_Map();
1257
1258         iSeries_get_cmdline();
1259
1260         build_flat_dt(&iseries_dt, phys_mem_size);
1261
1262         return (void *) __pa(&iseries_dt);
1263 }
1264
1265 static void hvputc(char c)
1266 {
1267         if (c == '\n')
1268                 hvputc('\r');
1269
1270         HvCall_writeLogBuffer(&c, 1);
1271 }
1272
1273 void __init udbg_init_iseries(void)
1274 {
1275         udbg_putc = hvputc;
1276 }