[POWERPC] cell: wrap master run control bit
[pandora-kernel.git] / arch / powerpc / platforms / cell / spufs / hw_ops.c
1 /* hw_ops.c - query/set operations on active SPU context.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/poll.h>
27 #include <linux/smp.h>
28 #include <linux/stddef.h>
29 #include <linux/unistd.h>
30
31 #include <asm/io.h>
32 #include <asm/spu.h>
33 #include <asm/spu_priv1.h>
34 #include <asm/spu_csa.h>
35 #include <asm/mmu_context.h>
36 #include "spufs.h"
37
38 static int spu_hw_mbox_read(struct spu_context *ctx, u32 * data)
39 {
40         struct spu *spu = ctx->spu;
41         struct spu_problem __iomem *prob = spu->problem;
42         u32 mbox_stat;
43         int ret = 0;
44
45         spin_lock_irq(&spu->register_lock);
46         mbox_stat = in_be32(&prob->mb_stat_R);
47         if (mbox_stat & 0x0000ff) {
48                 *data = in_be32(&prob->pu_mb_R);
49                 ret = 4;
50         }
51         spin_unlock_irq(&spu->register_lock);
52         return ret;
53 }
54
55 static u32 spu_hw_mbox_stat_read(struct spu_context *ctx)
56 {
57         return in_be32(&ctx->spu->problem->mb_stat_R);
58 }
59
60 static unsigned int spu_hw_mbox_stat_poll(struct spu_context *ctx,
61                                           unsigned int events)
62 {
63         struct spu *spu = ctx->spu;
64         int ret = 0;
65         u32 stat;
66
67         spin_lock_irq(&spu->register_lock);
68         stat = in_be32(&spu->problem->mb_stat_R);
69
70         /* if the requested event is there, return the poll
71            mask, otherwise enable the interrupt to get notified,
72            but first mark any pending interrupts as done so
73            we don't get woken up unnecessarily */
74
75         if (events & (POLLIN | POLLRDNORM)) {
76                 if (stat & 0xff0000)
77                         ret |= POLLIN | POLLRDNORM;
78                 else {
79                         spu_int_stat_clear(spu, 2, 0x1);
80                         spu_int_mask_or(spu, 2, 0x1);
81                 }
82         }
83         if (events & (POLLOUT | POLLWRNORM)) {
84                 if (stat & 0x00ff00)
85                         ret = POLLOUT | POLLWRNORM;
86                 else {
87                         spu_int_stat_clear(spu, 2, 0x10);
88                         spu_int_mask_or(spu, 2, 0x10);
89                 }
90         }
91         spin_unlock_irq(&spu->register_lock);
92         return ret;
93 }
94
95 static int spu_hw_ibox_read(struct spu_context *ctx, u32 * data)
96 {
97         struct spu *spu = ctx->spu;
98         struct spu_problem __iomem *prob = spu->problem;
99         struct spu_priv2 __iomem *priv2 = spu->priv2;
100         int ret;
101
102         spin_lock_irq(&spu->register_lock);
103         if (in_be32(&prob->mb_stat_R) & 0xff0000) {
104                 /* read the first available word */
105                 *data = in_be64(&priv2->puint_mb_R);
106                 ret = 4;
107         } else {
108                 /* make sure we get woken up by the interrupt */
109                 spu_int_mask_or(spu, 2, 0x1);
110                 ret = 0;
111         }
112         spin_unlock_irq(&spu->register_lock);
113         return ret;
114 }
115
116 static int spu_hw_wbox_write(struct spu_context *ctx, u32 data)
117 {
118         struct spu *spu = ctx->spu;
119         struct spu_problem __iomem *prob = spu->problem;
120         int ret;
121
122         spin_lock_irq(&spu->register_lock);
123         if (in_be32(&prob->mb_stat_R) & 0x00ff00) {
124                 /* we have space to write wbox_data to */
125                 out_be32(&prob->spu_mb_W, data);
126                 ret = 4;
127         } else {
128                 /* make sure we get woken up by the interrupt when space
129                    becomes available */
130                 spu_int_mask_or(spu, 2, 0x10);
131                 ret = 0;
132         }
133         spin_unlock_irq(&spu->register_lock);
134         return ret;
135 }
136
137 static void spu_hw_signal1_write(struct spu_context *ctx, u32 data)
138 {
139         out_be32(&ctx->spu->problem->signal_notify1, data);
140 }
141
142 static void spu_hw_signal2_write(struct spu_context *ctx, u32 data)
143 {
144         out_be32(&ctx->spu->problem->signal_notify2, data);
145 }
146
147 static void spu_hw_signal1_type_set(struct spu_context *ctx, u64 val)
148 {
149         struct spu *spu = ctx->spu;
150         struct spu_priv2 __iomem *priv2 = spu->priv2;
151         u64 tmp;
152
153         spin_lock_irq(&spu->register_lock);
154         tmp = in_be64(&priv2->spu_cfg_RW);
155         if (val)
156                 tmp |= 1;
157         else
158                 tmp &= ~1;
159         out_be64(&priv2->spu_cfg_RW, tmp);
160         spin_unlock_irq(&spu->register_lock);
161 }
162
163 static u64 spu_hw_signal1_type_get(struct spu_context *ctx)
164 {
165         return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 1) != 0);
166 }
167
168 static void spu_hw_signal2_type_set(struct spu_context *ctx, u64 val)
169 {
170         struct spu *spu = ctx->spu;
171         struct spu_priv2 __iomem *priv2 = spu->priv2;
172         u64 tmp;
173
174         spin_lock_irq(&spu->register_lock);
175         tmp = in_be64(&priv2->spu_cfg_RW);
176         if (val)
177                 tmp |= 2;
178         else
179                 tmp &= ~2;
180         out_be64(&priv2->spu_cfg_RW, tmp);
181         spin_unlock_irq(&spu->register_lock);
182 }
183
184 static u64 spu_hw_signal2_type_get(struct spu_context *ctx)
185 {
186         return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 2) != 0);
187 }
188
189 static u32 spu_hw_npc_read(struct spu_context *ctx)
190 {
191         return in_be32(&ctx->spu->problem->spu_npc_RW);
192 }
193
194 static void spu_hw_npc_write(struct spu_context *ctx, u32 val)
195 {
196         out_be32(&ctx->spu->problem->spu_npc_RW, val);
197 }
198
199 static u32 spu_hw_status_read(struct spu_context *ctx)
200 {
201         return in_be32(&ctx->spu->problem->spu_status_R);
202 }
203
204 static char *spu_hw_get_ls(struct spu_context *ctx)
205 {
206         return ctx->spu->local_store;
207 }
208
209 static u32 spu_hw_runcntl_read(struct spu_context *ctx)
210 {
211         return in_be32(&ctx->spu->problem->spu_runcntl_RW);
212 }
213
214 static void spu_hw_runcntl_write(struct spu_context *ctx, u32 val)
215 {
216         spin_lock_irq(&ctx->spu->register_lock);
217         if (val & SPU_RUNCNTL_ISOLATE)
218                 out_be64(&ctx->spu->priv2->spu_privcntl_RW, 4LL);
219         out_be32(&ctx->spu->problem->spu_runcntl_RW, val);
220         spin_unlock_irq(&ctx->spu->register_lock);
221 }
222
223 static void spu_hw_runcntl_stop(struct spu_context *ctx)
224 {
225         spin_lock_irq(&ctx->spu->register_lock);
226         out_be32(&ctx->spu->problem->spu_runcntl_RW, SPU_RUNCNTL_STOP);
227         while (in_be32(&ctx->spu->problem->spu_status_R) & SPU_STATUS_RUNNING)
228                 cpu_relax();
229         spin_unlock_irq(&ctx->spu->register_lock);
230 }
231
232 static void spu_hw_master_start(struct spu_context *ctx)
233 {
234         struct spu *spu = ctx->spu;
235         u64 sr1;
236
237         spin_lock_irq(&spu->register_lock);
238         sr1 = spu_mfc_sr1_get(spu) | MFC_STATE1_MASTER_RUN_CONTROL_MASK;
239         spu_mfc_sr1_set(spu, sr1);
240         spin_unlock_irq(&spu->register_lock);
241 }
242
243 static void spu_hw_master_stop(struct spu_context *ctx)
244 {
245         struct spu *spu = ctx->spu;
246         u64 sr1;
247
248         spin_lock_irq(&spu->register_lock);
249         sr1 = spu_mfc_sr1_get(spu) & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
250         spu_mfc_sr1_set(spu, sr1);
251         spin_unlock_irq(&spu->register_lock);
252 }
253
254 static int spu_hw_set_mfc_query(struct spu_context * ctx, u32 mask, u32 mode)
255 {
256         struct spu_problem __iomem *prob = ctx->spu->problem;
257         int ret;
258
259         spin_lock_irq(&ctx->spu->register_lock);
260         ret = -EAGAIN;
261         if (in_be32(&prob->dma_querytype_RW))
262                 goto out;
263         ret = 0;
264         out_be32(&prob->dma_querymask_RW, mask);
265         out_be32(&prob->dma_querytype_RW, mode);
266 out:
267         spin_unlock_irq(&ctx->spu->register_lock);
268         return ret;
269 }
270
271 static u32 spu_hw_read_mfc_tagstatus(struct spu_context * ctx)
272 {
273         return in_be32(&ctx->spu->problem->dma_tagstatus_R);
274 }
275
276 static u32 spu_hw_get_mfc_free_elements(struct spu_context *ctx)
277 {
278         return in_be32(&ctx->spu->problem->dma_qstatus_R);
279 }
280
281 static int spu_hw_send_mfc_command(struct spu_context *ctx,
282                                         struct mfc_dma_command *cmd)
283 {
284         u32 status;
285         struct spu_problem __iomem *prob = ctx->spu->problem;
286
287         spin_lock_irq(&ctx->spu->register_lock);
288         out_be32(&prob->mfc_lsa_W, cmd->lsa);
289         out_be64(&prob->mfc_ea_W, cmd->ea);
290         out_be32(&prob->mfc_union_W.by32.mfc_size_tag32,
291                                 cmd->size << 16 | cmd->tag);
292         out_be32(&prob->mfc_union_W.by32.mfc_class_cmd32,
293                                 cmd->class << 16 | cmd->cmd);
294         status = in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
295         spin_unlock_irq(&ctx->spu->register_lock);
296
297         switch (status & 0xffff) {
298         case 0:
299                 return 0;
300         case 2:
301                 return -EAGAIN;
302         default:
303                 return -EINVAL;
304         }
305 }
306
307 static void spu_hw_restart_dma(struct spu_context *ctx)
308 {
309         struct spu_priv2 __iomem *priv2 = ctx->spu->priv2;
310
311         if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &ctx->spu->flags))
312                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
313 }
314
315 struct spu_context_ops spu_hw_ops = {
316         .mbox_read = spu_hw_mbox_read,
317         .mbox_stat_read = spu_hw_mbox_stat_read,
318         .mbox_stat_poll = spu_hw_mbox_stat_poll,
319         .ibox_read = spu_hw_ibox_read,
320         .wbox_write = spu_hw_wbox_write,
321         .signal1_write = spu_hw_signal1_write,
322         .signal2_write = spu_hw_signal2_write,
323         .signal1_type_set = spu_hw_signal1_type_set,
324         .signal1_type_get = spu_hw_signal1_type_get,
325         .signal2_type_set = spu_hw_signal2_type_set,
326         .signal2_type_get = spu_hw_signal2_type_get,
327         .npc_read = spu_hw_npc_read,
328         .npc_write = spu_hw_npc_write,
329         .status_read = spu_hw_status_read,
330         .get_ls = spu_hw_get_ls,
331         .runcntl_read = spu_hw_runcntl_read,
332         .runcntl_write = spu_hw_runcntl_write,
333         .runcntl_stop = spu_hw_runcntl_stop,
334         .master_start = spu_hw_master_start,
335         .master_stop = spu_hw_master_stop,
336         .set_mfc_query = spu_hw_set_mfc_query,
337         .read_mfc_tagstatus = spu_hw_read_mfc_tagstatus,
338         .get_mfc_free_elements = spu_hw_get_mfc_free_elements,
339         .send_mfc_command = spu_hw_send_mfc_command,
340         .restart_dma = spu_hw_restart_dma,
341 };