Merge tag 'pwm/for-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[pandora-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 #include "book3s_hv_cma.h"
41
42 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43 #define MAX_LPID_970    63
44
45 /* Power architecture requires HPT is at least 256kB */
46 #define PPC_MIN_HPT_ORDER       18
47
48 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
49                                 long pte_index, unsigned long pteh,
50                                 unsigned long ptel, unsigned long *pte_idx_ret);
51 static void kvmppc_rmap_reset(struct kvm *kvm);
52
53 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
54 {
55         unsigned long hpt;
56         struct revmap_entry *rev;
57         struct page *page = NULL;
58         long order = KVM_DEFAULT_HPT_ORDER;
59
60         if (htab_orderp) {
61                 order = *htab_orderp;
62                 if (order < PPC_MIN_HPT_ORDER)
63                         order = PPC_MIN_HPT_ORDER;
64         }
65
66         kvm->arch.hpt_cma_alloc = 0;
67         /*
68          * try first to allocate it from the kernel page allocator.
69          * We keep the CMA reserved for failed allocation.
70          */
71         hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
72                                __GFP_NOWARN, order - PAGE_SHIFT);
73
74         /* Next try to allocate from the preallocated pool */
75         if (!hpt) {
76                 VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
77                 page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
78                 if (page) {
79                         hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
80                         kvm->arch.hpt_cma_alloc = 1;
81                 } else
82                         --order;
83         }
84
85         /* Lastly try successively smaller sizes from the page allocator */
86         while (!hpt && order > PPC_MIN_HPT_ORDER) {
87                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
88                                        __GFP_NOWARN, order - PAGE_SHIFT);
89                 if (!hpt)
90                         --order;
91         }
92
93         if (!hpt)
94                 return -ENOMEM;
95
96         kvm->arch.hpt_virt = hpt;
97         kvm->arch.hpt_order = order;
98         /* HPTEs are 2**4 bytes long */
99         kvm->arch.hpt_npte = 1ul << (order - 4);
100         /* 128 (2**7) bytes in each HPTEG */
101         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
102
103         /* Allocate reverse map array */
104         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
105         if (!rev) {
106                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
107                 goto out_freehpt;
108         }
109         kvm->arch.revmap = rev;
110         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
111
112         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
113                 hpt, order, kvm->arch.lpid);
114
115         if (htab_orderp)
116                 *htab_orderp = order;
117         return 0;
118
119  out_freehpt:
120         if (kvm->arch.hpt_cma_alloc)
121                 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
122         else
123                 free_pages(hpt, order - PAGE_SHIFT);
124         return -ENOMEM;
125 }
126
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
128 {
129         long err = -EBUSY;
130         long order;
131
132         mutex_lock(&kvm->lock);
133         if (kvm->arch.rma_setup_done) {
134                 kvm->arch.rma_setup_done = 0;
135                 /* order rma_setup_done vs. vcpus_running */
136                 smp_mb();
137                 if (atomic_read(&kvm->arch.vcpus_running)) {
138                         kvm->arch.rma_setup_done = 1;
139                         goto out;
140                 }
141         }
142         if (kvm->arch.hpt_virt) {
143                 order = kvm->arch.hpt_order;
144                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
145                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
146                 /*
147                  * Reset all the reverse-mapping chains for all memslots
148                  */
149                 kvmppc_rmap_reset(kvm);
150                 /* Ensure that each vcpu will flush its TLB on next entry. */
151                 cpumask_setall(&kvm->arch.need_tlb_flush);
152                 *htab_orderp = order;
153                 err = 0;
154         } else {
155                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
156                 order = *htab_orderp;
157         }
158  out:
159         mutex_unlock(&kvm->lock);
160         return err;
161 }
162
163 void kvmppc_free_hpt(struct kvm *kvm)
164 {
165         kvmppc_free_lpid(kvm->arch.lpid);
166         vfree(kvm->arch.revmap);
167         if (kvm->arch.hpt_cma_alloc)
168                 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
169                                 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
170         else
171                 free_pages(kvm->arch.hpt_virt,
172                            kvm->arch.hpt_order - PAGE_SHIFT);
173 }
174
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177 {
178         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179 }
180
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183 {
184         return (pgsize == 0x10000) ? 0x1000 : 0;
185 }
186
187 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188                      unsigned long porder)
189 {
190         unsigned long i;
191         unsigned long npages;
192         unsigned long hp_v, hp_r;
193         unsigned long addr, hash;
194         unsigned long psize;
195         unsigned long hp0, hp1;
196         unsigned long idx_ret;
197         long ret;
198         struct kvm *kvm = vcpu->kvm;
199
200         psize = 1ul << porder;
201         npages = memslot->npages >> (porder - PAGE_SHIFT);
202
203         /* VRMA can't be > 1TB */
204         if (npages > 1ul << (40 - porder))
205                 npages = 1ul << (40 - porder);
206         /* Can't use more than 1 HPTE per HPTEG */
207         if (npages > kvm->arch.hpt_mask + 1)
208                 npages = kvm->arch.hpt_mask + 1;
209
210         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212         hp1 = hpte1_pgsize_encoding(psize) |
213                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
215         for (i = 0; i < npages; ++i) {
216                 addr = i << porder;
217                 /* can't use hpt_hash since va > 64 bits */
218                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
219                 /*
220                  * We assume that the hash table is empty and no
221                  * vcpus are using it at this stage.  Since we create
222                  * at most one HPTE per HPTEG, we just assume entry 7
223                  * is available and use it.
224                  */
225                 hash = (hash << 3) + 7;
226                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227                 hp_r = hp1 | addr;
228                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229                                                  &idx_ret);
230                 if (ret != H_SUCCESS) {
231                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232                                addr, ret);
233                         break;
234                 }
235         }
236 }
237
238 int kvmppc_mmu_hv_init(void)
239 {
240         unsigned long host_lpid, rsvd_lpid;
241
242         if (!cpu_has_feature(CPU_FTR_HVMODE))
243                 return -EINVAL;
244
245         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
248                 rsvd_lpid = LPID_RSVD;
249         } else {
250                 host_lpid = 0;                  /* PPC970 */
251                 rsvd_lpid = MAX_LPID_970;
252         }
253
254         kvmppc_init_lpid(rsvd_lpid + 1);
255
256         kvmppc_claim_lpid(host_lpid);
257         /* rsvd_lpid is reserved for use in partition switching */
258         kvmppc_claim_lpid(rsvd_lpid);
259
260         return 0;
261 }
262
263 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
264 {
265         unsigned long msr = vcpu->arch.intr_msr;
266
267         /* If transactional, change to suspend mode on IRQ delivery */
268         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
269                 msr |= MSR_TS_S;
270         else
271                 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
272         kvmppc_set_msr(vcpu, msr);
273 }
274
275 /*
276  * This is called to get a reference to a guest page if there isn't
277  * one already in the memslot->arch.slot_phys[] array.
278  */
279 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
280                                   struct kvm_memory_slot *memslot,
281                                   unsigned long psize)
282 {
283         unsigned long start;
284         long np, err;
285         struct page *page, *hpage, *pages[1];
286         unsigned long s, pgsize;
287         unsigned long *physp;
288         unsigned int is_io, got, pgorder;
289         struct vm_area_struct *vma;
290         unsigned long pfn, i, npages;
291
292         physp = memslot->arch.slot_phys;
293         if (!physp)
294                 return -EINVAL;
295         if (physp[gfn - memslot->base_gfn])
296                 return 0;
297
298         is_io = 0;
299         got = 0;
300         page = NULL;
301         pgsize = psize;
302         err = -EINVAL;
303         start = gfn_to_hva_memslot(memslot, gfn);
304
305         /* Instantiate and get the page we want access to */
306         np = get_user_pages_fast(start, 1, 1, pages);
307         if (np != 1) {
308                 /* Look up the vma for the page */
309                 down_read(&current->mm->mmap_sem);
310                 vma = find_vma(current->mm, start);
311                 if (!vma || vma->vm_start > start ||
312                     start + psize > vma->vm_end ||
313                     !(vma->vm_flags & VM_PFNMAP))
314                         goto up_err;
315                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
316                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
317                 /* check alignment of pfn vs. requested page size */
318                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
319                         goto up_err;
320                 up_read(&current->mm->mmap_sem);
321
322         } else {
323                 page = pages[0];
324                 got = KVMPPC_GOT_PAGE;
325
326                 /* See if this is a large page */
327                 s = PAGE_SIZE;
328                 if (PageHuge(page)) {
329                         hpage = compound_head(page);
330                         s <<= compound_order(hpage);
331                         /* Get the whole large page if slot alignment is ok */
332                         if (s > psize && slot_is_aligned(memslot, s) &&
333                             !(memslot->userspace_addr & (s - 1))) {
334                                 start &= ~(s - 1);
335                                 pgsize = s;
336                                 get_page(hpage);
337                                 put_page(page);
338                                 page = hpage;
339                         }
340                 }
341                 if (s < psize)
342                         goto out;
343                 pfn = page_to_pfn(page);
344         }
345
346         npages = pgsize >> PAGE_SHIFT;
347         pgorder = __ilog2(npages);
348         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
349         spin_lock(&kvm->arch.slot_phys_lock);
350         for (i = 0; i < npages; ++i) {
351                 if (!physp[i]) {
352                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
353                                 got + is_io + pgorder;
354                         got = 0;
355                 }
356         }
357         spin_unlock(&kvm->arch.slot_phys_lock);
358         err = 0;
359
360  out:
361         if (got)
362                 put_page(page);
363         return err;
364
365  up_err:
366         up_read(&current->mm->mmap_sem);
367         return err;
368 }
369
370 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
371                                 long pte_index, unsigned long pteh,
372                                 unsigned long ptel, unsigned long *pte_idx_ret)
373 {
374         unsigned long psize, gpa, gfn;
375         struct kvm_memory_slot *memslot;
376         long ret;
377
378         if (kvm->arch.using_mmu_notifiers)
379                 goto do_insert;
380
381         psize = hpte_page_size(pteh, ptel);
382         if (!psize)
383                 return H_PARAMETER;
384
385         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
386
387         /* Find the memslot (if any) for this address */
388         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
389         gfn = gpa >> PAGE_SHIFT;
390         memslot = gfn_to_memslot(kvm, gfn);
391         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
392                 if (!slot_is_aligned(memslot, psize))
393                         return H_PARAMETER;
394                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
395                         return H_PARAMETER;
396         }
397
398  do_insert:
399         /* Protect linux PTE lookup from page table destruction */
400         rcu_read_lock_sched();  /* this disables preemption too */
401         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
402                                 current->mm->pgd, false, pte_idx_ret);
403         rcu_read_unlock_sched();
404         if (ret == H_TOO_HARD) {
405                 /* this can't happen */
406                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
407                 ret = H_RESOURCE;       /* or something */
408         }
409         return ret;
410
411 }
412
413 /*
414  * We come here on a H_ENTER call from the guest when we are not
415  * using mmu notifiers and we don't have the requested page pinned
416  * already.
417  */
418 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
419                              long pte_index, unsigned long pteh,
420                              unsigned long ptel)
421 {
422         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
423                                           pteh, ptel, &vcpu->arch.gpr[4]);
424 }
425
426 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
427                                                          gva_t eaddr)
428 {
429         u64 mask;
430         int i;
431
432         for (i = 0; i < vcpu->arch.slb_nr; i++) {
433                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
434                         continue;
435
436                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
437                         mask = ESID_MASK_1T;
438                 else
439                         mask = ESID_MASK;
440
441                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
442                         return &vcpu->arch.slb[i];
443         }
444         return NULL;
445 }
446
447 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
448                         unsigned long ea)
449 {
450         unsigned long ra_mask;
451
452         ra_mask = hpte_page_size(v, r) - 1;
453         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
454 }
455
456 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
457                         struct kvmppc_pte *gpte, bool data, bool iswrite)
458 {
459         struct kvm *kvm = vcpu->kvm;
460         struct kvmppc_slb *slbe;
461         unsigned long slb_v;
462         unsigned long pp, key;
463         unsigned long v, gr;
464         unsigned long *hptep;
465         int index;
466         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
467
468         /* Get SLB entry */
469         if (virtmode) {
470                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
471                 if (!slbe)
472                         return -EINVAL;
473                 slb_v = slbe->origv;
474         } else {
475                 /* real mode access */
476                 slb_v = vcpu->kvm->arch.vrma_slb_v;
477         }
478
479         preempt_disable();
480         /* Find the HPTE in the hash table */
481         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
482                                          HPTE_V_VALID | HPTE_V_ABSENT);
483         if (index < 0) {
484                 preempt_enable();
485                 return -ENOENT;
486         }
487         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
488         v = hptep[0] & ~HPTE_V_HVLOCK;
489         gr = kvm->arch.revmap[index].guest_rpte;
490
491         /* Unlock the HPTE */
492         asm volatile("lwsync" : : : "memory");
493         hptep[0] = v;
494         preempt_enable();
495
496         gpte->eaddr = eaddr;
497         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
498
499         /* Get PP bits and key for permission check */
500         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
501         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
502         key &= slb_v;
503
504         /* Calculate permissions */
505         gpte->may_read = hpte_read_permission(pp, key);
506         gpte->may_write = hpte_write_permission(pp, key);
507         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
508
509         /* Storage key permission check for POWER7 */
510         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
511                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
512                 if (amrfield & 1)
513                         gpte->may_read = 0;
514                 if (amrfield & 2)
515                         gpte->may_write = 0;
516         }
517
518         /* Get the guest physical address */
519         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
520         return 0;
521 }
522
523 /*
524  * Quick test for whether an instruction is a load or a store.
525  * If the instruction is a load or a store, then this will indicate
526  * which it is, at least on server processors.  (Embedded processors
527  * have some external PID instructions that don't follow the rule
528  * embodied here.)  If the instruction isn't a load or store, then
529  * this doesn't return anything useful.
530  */
531 static int instruction_is_store(unsigned int instr)
532 {
533         unsigned int mask;
534
535         mask = 0x10000000;
536         if ((instr & 0xfc000000) == 0x7c000000)
537                 mask = 0x100;           /* major opcode 31 */
538         return (instr & mask) != 0;
539 }
540
541 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
542                                   unsigned long gpa, gva_t ea, int is_store)
543 {
544         int ret;
545         u32 last_inst;
546         unsigned long srr0 = kvmppc_get_pc(vcpu);
547
548         /* We try to load the last instruction.  We don't let
549          * emulate_instruction do it as it doesn't check what
550          * kvmppc_ld returns.
551          * If we fail, we just return to the guest and try executing it again.
552          */
553         if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
554                 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
555                 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
556                         return RESUME_GUEST;
557                 vcpu->arch.last_inst = last_inst;
558         }
559
560         /*
561          * WARNING: We do not know for sure whether the instruction we just
562          * read from memory is the same that caused the fault in the first
563          * place.  If the instruction we read is neither an load or a store,
564          * then it can't access memory, so we don't need to worry about
565          * enforcing access permissions.  So, assuming it is a load or
566          * store, we just check that its direction (load or store) is
567          * consistent with the original fault, since that's what we
568          * checked the access permissions against.  If there is a mismatch
569          * we just return and retry the instruction.
570          */
571
572         if (instruction_is_store(kvmppc_get_last_inst(vcpu)) != !!is_store)
573                 return RESUME_GUEST;
574
575         /*
576          * Emulated accesses are emulated by looking at the hash for
577          * translation once, then performing the access later. The
578          * translation could be invalidated in the meantime in which
579          * point performing the subsequent memory access on the old
580          * physical address could possibly be a security hole for the
581          * guest (but not the host).
582          *
583          * This is less of an issue for MMIO stores since they aren't
584          * globally visible. It could be an issue for MMIO loads to
585          * a certain extent but we'll ignore it for now.
586          */
587
588         vcpu->arch.paddr_accessed = gpa;
589         vcpu->arch.vaddr_accessed = ea;
590         return kvmppc_emulate_mmio(run, vcpu);
591 }
592
593 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
594                                 unsigned long ea, unsigned long dsisr)
595 {
596         struct kvm *kvm = vcpu->kvm;
597         unsigned long *hptep, hpte[3], r;
598         unsigned long mmu_seq, psize, pte_size;
599         unsigned long gpa, gfn, hva, pfn;
600         struct kvm_memory_slot *memslot;
601         unsigned long *rmap;
602         struct revmap_entry *rev;
603         struct page *page, *pages[1];
604         long index, ret, npages;
605         unsigned long is_io;
606         unsigned int writing, write_ok;
607         struct vm_area_struct *vma;
608         unsigned long rcbits;
609
610         /*
611          * Real-mode code has already searched the HPT and found the
612          * entry we're interested in.  Lock the entry and check that
613          * it hasn't changed.  If it has, just return and re-execute the
614          * instruction.
615          */
616         if (ea != vcpu->arch.pgfault_addr)
617                 return RESUME_GUEST;
618         index = vcpu->arch.pgfault_index;
619         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
620         rev = &kvm->arch.revmap[index];
621         preempt_disable();
622         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
623                 cpu_relax();
624         hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
625         hpte[1] = hptep[1];
626         hpte[2] = r = rev->guest_rpte;
627         asm volatile("lwsync" : : : "memory");
628         hptep[0] = hpte[0];
629         preempt_enable();
630
631         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
632             hpte[1] != vcpu->arch.pgfault_hpte[1])
633                 return RESUME_GUEST;
634
635         /* Translate the logical address and get the page */
636         psize = hpte_page_size(hpte[0], r);
637         gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
638         gfn = gpa >> PAGE_SHIFT;
639         memslot = gfn_to_memslot(kvm, gfn);
640
641         /* No memslot means it's an emulated MMIO region */
642         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
643                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
644                                               dsisr & DSISR_ISSTORE);
645
646         if (!kvm->arch.using_mmu_notifiers)
647                 return -EFAULT;         /* should never get here */
648
649         /* used to check for invalidations in progress */
650         mmu_seq = kvm->mmu_notifier_seq;
651         smp_rmb();
652
653         is_io = 0;
654         pfn = 0;
655         page = NULL;
656         pte_size = PAGE_SIZE;
657         writing = (dsisr & DSISR_ISSTORE) != 0;
658         /* If writing != 0, then the HPTE must allow writing, if we get here */
659         write_ok = writing;
660         hva = gfn_to_hva_memslot(memslot, gfn);
661         npages = get_user_pages_fast(hva, 1, writing, pages);
662         if (npages < 1) {
663                 /* Check if it's an I/O mapping */
664                 down_read(&current->mm->mmap_sem);
665                 vma = find_vma(current->mm, hva);
666                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
667                     (vma->vm_flags & VM_PFNMAP)) {
668                         pfn = vma->vm_pgoff +
669                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
670                         pte_size = psize;
671                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
672                         write_ok = vma->vm_flags & VM_WRITE;
673                 }
674                 up_read(&current->mm->mmap_sem);
675                 if (!pfn)
676                         return -EFAULT;
677         } else {
678                 page = pages[0];
679                 pfn = page_to_pfn(page);
680                 if (PageHuge(page)) {
681                         page = compound_head(page);
682                         pte_size <<= compound_order(page);
683                 }
684                 /* if the guest wants write access, see if that is OK */
685                 if (!writing && hpte_is_writable(r)) {
686                         unsigned int hugepage_shift;
687                         pte_t *ptep, pte;
688
689                         /*
690                          * We need to protect against page table destruction
691                          * while looking up and updating the pte.
692                          */
693                         rcu_read_lock_sched();
694                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
695                                                          hva, &hugepage_shift);
696                         if (ptep) {
697                                 pte = kvmppc_read_update_linux_pte(ptep, 1,
698                                                            hugepage_shift);
699                                 if (pte_write(pte))
700                                         write_ok = 1;
701                         }
702                         rcu_read_unlock_sched();
703                 }
704         }
705
706         ret = -EFAULT;
707         if (psize > pte_size)
708                 goto out_put;
709
710         /* Check WIMG vs. the actual page we're accessing */
711         if (!hpte_cache_flags_ok(r, is_io)) {
712                 if (is_io)
713                         return -EFAULT;
714                 /*
715                  * Allow guest to map emulated device memory as
716                  * uncacheable, but actually make it cacheable.
717                  */
718                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
719         }
720
721         /*
722          * Set the HPTE to point to pfn.
723          * Since the pfn is at PAGE_SIZE granularity, make sure we
724          * don't mask out lower-order bits if psize < PAGE_SIZE.
725          */
726         if (psize < PAGE_SIZE)
727                 psize = PAGE_SIZE;
728         r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
729         if (hpte_is_writable(r) && !write_ok)
730                 r = hpte_make_readonly(r);
731         ret = RESUME_GUEST;
732         preempt_disable();
733         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
734                 cpu_relax();
735         if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
736             rev->guest_rpte != hpte[2])
737                 /* HPTE has been changed under us; let the guest retry */
738                 goto out_unlock;
739         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
740
741         rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
742         lock_rmap(rmap);
743
744         /* Check if we might have been invalidated; let the guest retry if so */
745         ret = RESUME_GUEST;
746         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
747                 unlock_rmap(rmap);
748                 goto out_unlock;
749         }
750
751         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
752         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
753         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
754
755         if (hptep[0] & HPTE_V_VALID) {
756                 /* HPTE was previously valid, so we need to invalidate it */
757                 unlock_rmap(rmap);
758                 hptep[0] |= HPTE_V_ABSENT;
759                 kvmppc_invalidate_hpte(kvm, hptep, index);
760                 /* don't lose previous R and C bits */
761                 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
762         } else {
763                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
764         }
765
766         hptep[1] = r;
767         eieio();
768         hptep[0] = hpte[0];
769         asm volatile("ptesync" : : : "memory");
770         preempt_enable();
771         if (page && hpte_is_writable(r))
772                 SetPageDirty(page);
773
774  out_put:
775         if (page) {
776                 /*
777                  * We drop pages[0] here, not page because page might
778                  * have been set to the head page of a compound, but
779                  * we have to drop the reference on the correct tail
780                  * page to match the get inside gup()
781                  */
782                 put_page(pages[0]);
783         }
784         return ret;
785
786  out_unlock:
787         hptep[0] &= ~HPTE_V_HVLOCK;
788         preempt_enable();
789         goto out_put;
790 }
791
792 static void kvmppc_rmap_reset(struct kvm *kvm)
793 {
794         struct kvm_memslots *slots;
795         struct kvm_memory_slot *memslot;
796         int srcu_idx;
797
798         srcu_idx = srcu_read_lock(&kvm->srcu);
799         slots = kvm->memslots;
800         kvm_for_each_memslot(memslot, slots) {
801                 /*
802                  * This assumes it is acceptable to lose reference and
803                  * change bits across a reset.
804                  */
805                 memset(memslot->arch.rmap, 0,
806                        memslot->npages * sizeof(*memslot->arch.rmap));
807         }
808         srcu_read_unlock(&kvm->srcu, srcu_idx);
809 }
810
811 static int kvm_handle_hva_range(struct kvm *kvm,
812                                 unsigned long start,
813                                 unsigned long end,
814                                 int (*handler)(struct kvm *kvm,
815                                                unsigned long *rmapp,
816                                                unsigned long gfn))
817 {
818         int ret;
819         int retval = 0;
820         struct kvm_memslots *slots;
821         struct kvm_memory_slot *memslot;
822
823         slots = kvm_memslots(kvm);
824         kvm_for_each_memslot(memslot, slots) {
825                 unsigned long hva_start, hva_end;
826                 gfn_t gfn, gfn_end;
827
828                 hva_start = max(start, memslot->userspace_addr);
829                 hva_end = min(end, memslot->userspace_addr +
830                                         (memslot->npages << PAGE_SHIFT));
831                 if (hva_start >= hva_end)
832                         continue;
833                 /*
834                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
835                  * {gfn, gfn+1, ..., gfn_end-1}.
836                  */
837                 gfn = hva_to_gfn_memslot(hva_start, memslot);
838                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
839
840                 for (; gfn < gfn_end; ++gfn) {
841                         gfn_t gfn_offset = gfn - memslot->base_gfn;
842
843                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
844                         retval |= ret;
845                 }
846         }
847
848         return retval;
849 }
850
851 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
852                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
853                                          unsigned long gfn))
854 {
855         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
856 }
857
858 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
859                            unsigned long gfn)
860 {
861         struct revmap_entry *rev = kvm->arch.revmap;
862         unsigned long h, i, j;
863         unsigned long *hptep;
864         unsigned long ptel, psize, rcbits;
865
866         for (;;) {
867                 lock_rmap(rmapp);
868                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
869                         unlock_rmap(rmapp);
870                         break;
871                 }
872
873                 /*
874                  * To avoid an ABBA deadlock with the HPTE lock bit,
875                  * we can't spin on the HPTE lock while holding the
876                  * rmap chain lock.
877                  */
878                 i = *rmapp & KVMPPC_RMAP_INDEX;
879                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
880                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
881                         /* unlock rmap before spinning on the HPTE lock */
882                         unlock_rmap(rmapp);
883                         while (hptep[0] & HPTE_V_HVLOCK)
884                                 cpu_relax();
885                         continue;
886                 }
887                 j = rev[i].forw;
888                 if (j == i) {
889                         /* chain is now empty */
890                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
891                 } else {
892                         /* remove i from chain */
893                         h = rev[i].back;
894                         rev[h].forw = j;
895                         rev[j].back = h;
896                         rev[i].forw = rev[i].back = i;
897                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
898                 }
899
900                 /* Now check and modify the HPTE */
901                 ptel = rev[i].guest_rpte;
902                 psize = hpte_page_size(hptep[0], ptel);
903                 if ((hptep[0] & HPTE_V_VALID) &&
904                     hpte_rpn(ptel, psize) == gfn) {
905                         if (kvm->arch.using_mmu_notifiers)
906                                 hptep[0] |= HPTE_V_ABSENT;
907                         kvmppc_invalidate_hpte(kvm, hptep, i);
908                         /* Harvest R and C */
909                         rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
910                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
911                         if (rcbits & ~rev[i].guest_rpte) {
912                                 rev[i].guest_rpte = ptel | rcbits;
913                                 note_hpte_modification(kvm, &rev[i]);
914                         }
915                 }
916                 unlock_rmap(rmapp);
917                 hptep[0] &= ~HPTE_V_HVLOCK;
918         }
919         return 0;
920 }
921
922 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
923 {
924         if (kvm->arch.using_mmu_notifiers)
925                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
926         return 0;
927 }
928
929 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
930 {
931         if (kvm->arch.using_mmu_notifiers)
932                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
933         return 0;
934 }
935
936 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
937                                   struct kvm_memory_slot *memslot)
938 {
939         unsigned long *rmapp;
940         unsigned long gfn;
941         unsigned long n;
942
943         rmapp = memslot->arch.rmap;
944         gfn = memslot->base_gfn;
945         for (n = memslot->npages; n; --n) {
946                 /*
947                  * Testing the present bit without locking is OK because
948                  * the memslot has been marked invalid already, and hence
949                  * no new HPTEs referencing this page can be created,
950                  * thus the present bit can't go from 0 to 1.
951                  */
952                 if (*rmapp & KVMPPC_RMAP_PRESENT)
953                         kvm_unmap_rmapp(kvm, rmapp, gfn);
954                 ++rmapp;
955                 ++gfn;
956         }
957 }
958
959 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
960                          unsigned long gfn)
961 {
962         struct revmap_entry *rev = kvm->arch.revmap;
963         unsigned long head, i, j;
964         unsigned long *hptep;
965         int ret = 0;
966
967  retry:
968         lock_rmap(rmapp);
969         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
970                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
971                 ret = 1;
972         }
973         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
974                 unlock_rmap(rmapp);
975                 return ret;
976         }
977
978         i = head = *rmapp & KVMPPC_RMAP_INDEX;
979         do {
980                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
981                 j = rev[i].forw;
982
983                 /* If this HPTE isn't referenced, ignore it */
984                 if (!(hptep[1] & HPTE_R_R))
985                         continue;
986
987                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
988                         /* unlock rmap before spinning on the HPTE lock */
989                         unlock_rmap(rmapp);
990                         while (hptep[0] & HPTE_V_HVLOCK)
991                                 cpu_relax();
992                         goto retry;
993                 }
994
995                 /* Now check and modify the HPTE */
996                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
997                         kvmppc_clear_ref_hpte(kvm, hptep, i);
998                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
999                                 rev[i].guest_rpte |= HPTE_R_R;
1000                                 note_hpte_modification(kvm, &rev[i]);
1001                         }
1002                         ret = 1;
1003                 }
1004                 hptep[0] &= ~HPTE_V_HVLOCK;
1005         } while ((i = j) != head);
1006
1007         unlock_rmap(rmapp);
1008         return ret;
1009 }
1010
1011 int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
1012 {
1013         if (!kvm->arch.using_mmu_notifiers)
1014                 return 0;
1015         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1016 }
1017
1018 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1019                               unsigned long gfn)
1020 {
1021         struct revmap_entry *rev = kvm->arch.revmap;
1022         unsigned long head, i, j;
1023         unsigned long *hp;
1024         int ret = 1;
1025
1026         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1027                 return 1;
1028
1029         lock_rmap(rmapp);
1030         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1031                 goto out;
1032
1033         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1034                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1035                 do {
1036                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1037                         j = rev[i].forw;
1038                         if (hp[1] & HPTE_R_R)
1039                                 goto out;
1040                 } while ((i = j) != head);
1041         }
1042         ret = 0;
1043
1044  out:
1045         unlock_rmap(rmapp);
1046         return ret;
1047 }
1048
1049 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1050 {
1051         if (!kvm->arch.using_mmu_notifiers)
1052                 return 0;
1053         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1054 }
1055
1056 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1057 {
1058         if (!kvm->arch.using_mmu_notifiers)
1059                 return;
1060         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1061 }
1062
1063 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1064 {
1065         struct revmap_entry *rev = kvm->arch.revmap;
1066         unsigned long head, i, j;
1067         unsigned long *hptep;
1068         int ret = 0;
1069
1070  retry:
1071         lock_rmap(rmapp);
1072         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1073                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1074                 ret = 1;
1075         }
1076         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1077                 unlock_rmap(rmapp);
1078                 return ret;
1079         }
1080
1081         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1082         do {
1083                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1084                 j = rev[i].forw;
1085
1086                 if (!(hptep[1] & HPTE_R_C))
1087                         continue;
1088
1089                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1090                         /* unlock rmap before spinning on the HPTE lock */
1091                         unlock_rmap(rmapp);
1092                         while (hptep[0] & HPTE_V_HVLOCK)
1093                                 cpu_relax();
1094                         goto retry;
1095                 }
1096
1097                 /* Now check and modify the HPTE */
1098                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1099                         /* need to make it temporarily absent to clear C */
1100                         hptep[0] |= HPTE_V_ABSENT;
1101                         kvmppc_invalidate_hpte(kvm, hptep, i);
1102                         hptep[1] &= ~HPTE_R_C;
1103                         eieio();
1104                         hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1105                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1106                                 rev[i].guest_rpte |= HPTE_R_C;
1107                                 note_hpte_modification(kvm, &rev[i]);
1108                         }
1109                         ret = 1;
1110                 }
1111                 hptep[0] &= ~HPTE_V_HVLOCK;
1112         } while ((i = j) != head);
1113
1114         unlock_rmap(rmapp);
1115         return ret;
1116 }
1117
1118 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1119                               struct kvm_memory_slot *memslot,
1120                               unsigned long *map)
1121 {
1122         unsigned long gfn;
1123
1124         if (!vpa->dirty || !vpa->pinned_addr)
1125                 return;
1126         gfn = vpa->gpa >> PAGE_SHIFT;
1127         if (gfn < memslot->base_gfn ||
1128             gfn >= memslot->base_gfn + memslot->npages)
1129                 return;
1130
1131         vpa->dirty = false;
1132         if (map)
1133                 __set_bit_le(gfn - memslot->base_gfn, map);
1134 }
1135
1136 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1137                              unsigned long *map)
1138 {
1139         unsigned long i;
1140         unsigned long *rmapp;
1141         struct kvm_vcpu *vcpu;
1142
1143         preempt_disable();
1144         rmapp = memslot->arch.rmap;
1145         for (i = 0; i < memslot->npages; ++i) {
1146                 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1147                         __set_bit_le(i, map);
1148                 ++rmapp;
1149         }
1150
1151         /* Harvest dirty bits from VPA and DTL updates */
1152         /* Note: we never modify the SLB shadow buffer areas */
1153         kvm_for_each_vcpu(i, vcpu, kvm) {
1154                 spin_lock(&vcpu->arch.vpa_update_lock);
1155                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1156                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1157                 spin_unlock(&vcpu->arch.vpa_update_lock);
1158         }
1159         preempt_enable();
1160         return 0;
1161 }
1162
1163 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1164                             unsigned long *nb_ret)
1165 {
1166         struct kvm_memory_slot *memslot;
1167         unsigned long gfn = gpa >> PAGE_SHIFT;
1168         struct page *page, *pages[1];
1169         int npages;
1170         unsigned long hva, offset;
1171         unsigned long pa;
1172         unsigned long *physp;
1173         int srcu_idx;
1174
1175         srcu_idx = srcu_read_lock(&kvm->srcu);
1176         memslot = gfn_to_memslot(kvm, gfn);
1177         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1178                 goto err;
1179         if (!kvm->arch.using_mmu_notifiers) {
1180                 physp = memslot->arch.slot_phys;
1181                 if (!physp)
1182                         goto err;
1183                 physp += gfn - memslot->base_gfn;
1184                 pa = *physp;
1185                 if (!pa) {
1186                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1187                                                   PAGE_SIZE) < 0)
1188                                 goto err;
1189                         pa = *physp;
1190                 }
1191                 page = pfn_to_page(pa >> PAGE_SHIFT);
1192                 get_page(page);
1193         } else {
1194                 hva = gfn_to_hva_memslot(memslot, gfn);
1195                 npages = get_user_pages_fast(hva, 1, 1, pages);
1196                 if (npages < 1)
1197                         goto err;
1198                 page = pages[0];
1199         }
1200         srcu_read_unlock(&kvm->srcu, srcu_idx);
1201
1202         offset = gpa & (PAGE_SIZE - 1);
1203         if (nb_ret)
1204                 *nb_ret = PAGE_SIZE - offset;
1205         return page_address(page) + offset;
1206
1207  err:
1208         srcu_read_unlock(&kvm->srcu, srcu_idx);
1209         return NULL;
1210 }
1211
1212 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1213                              bool dirty)
1214 {
1215         struct page *page = virt_to_page(va);
1216         struct kvm_memory_slot *memslot;
1217         unsigned long gfn;
1218         unsigned long *rmap;
1219         int srcu_idx;
1220
1221         put_page(page);
1222
1223         if (!dirty || !kvm->arch.using_mmu_notifiers)
1224                 return;
1225
1226         /* We need to mark this page dirty in the rmap chain */
1227         gfn = gpa >> PAGE_SHIFT;
1228         srcu_idx = srcu_read_lock(&kvm->srcu);
1229         memslot = gfn_to_memslot(kvm, gfn);
1230         if (memslot) {
1231                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1232                 lock_rmap(rmap);
1233                 *rmap |= KVMPPC_RMAP_CHANGED;
1234                 unlock_rmap(rmap);
1235         }
1236         srcu_read_unlock(&kvm->srcu, srcu_idx);
1237 }
1238
1239 /*
1240  * Functions for reading and writing the hash table via reads and
1241  * writes on a file descriptor.
1242  *
1243  * Reads return the guest view of the hash table, which has to be
1244  * pieced together from the real hash table and the guest_rpte
1245  * values in the revmap array.
1246  *
1247  * On writes, each HPTE written is considered in turn, and if it
1248  * is valid, it is written to the HPT as if an H_ENTER with the
1249  * exact flag set was done.  When the invalid count is non-zero
1250  * in the header written to the stream, the kernel will make
1251  * sure that that many HPTEs are invalid, and invalidate them
1252  * if not.
1253  */
1254
1255 struct kvm_htab_ctx {
1256         unsigned long   index;
1257         unsigned long   flags;
1258         struct kvm      *kvm;
1259         int             first_pass;
1260 };
1261
1262 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1263
1264 /*
1265  * Returns 1 if this HPT entry has been modified or has pending
1266  * R/C bit changes.
1267  */
1268 static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1269 {
1270         unsigned long rcbits_unset;
1271
1272         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1273                 return 1;
1274
1275         /* Also need to consider changes in reference and changed bits */
1276         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1277         if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1278                 return 1;
1279
1280         return 0;
1281 }
1282
1283 static long record_hpte(unsigned long flags, unsigned long *hptp,
1284                         unsigned long *hpte, struct revmap_entry *revp,
1285                         int want_valid, int first_pass)
1286 {
1287         unsigned long v, r;
1288         unsigned long rcbits_unset;
1289         int ok = 1;
1290         int valid, dirty;
1291
1292         /* Unmodified entries are uninteresting except on the first pass */
1293         dirty = hpte_dirty(revp, hptp);
1294         if (!first_pass && !dirty)
1295                 return 0;
1296
1297         valid = 0;
1298         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1299                 valid = 1;
1300                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1301                     !(hptp[0] & HPTE_V_BOLTED))
1302                         valid = 0;
1303         }
1304         if (valid != want_valid)
1305                 return 0;
1306
1307         v = r = 0;
1308         if (valid || dirty) {
1309                 /* lock the HPTE so it's stable and read it */
1310                 preempt_disable();
1311                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1312                         cpu_relax();
1313                 v = hptp[0];
1314
1315                 /* re-evaluate valid and dirty from synchronized HPTE value */
1316                 valid = !!(v & HPTE_V_VALID);
1317                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1318
1319                 /* Harvest R and C into guest view if necessary */
1320                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1321                 if (valid && (rcbits_unset & hptp[1])) {
1322                         revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1323                                 HPTE_GR_MODIFIED;
1324                         dirty = 1;
1325                 }
1326
1327                 if (v & HPTE_V_ABSENT) {
1328                         v &= ~HPTE_V_ABSENT;
1329                         v |= HPTE_V_VALID;
1330                         valid = 1;
1331                 }
1332                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1333                         valid = 0;
1334
1335                 r = revp->guest_rpte;
1336                 /* only clear modified if this is the right sort of entry */
1337                 if (valid == want_valid && dirty) {
1338                         r &= ~HPTE_GR_MODIFIED;
1339                         revp->guest_rpte = r;
1340                 }
1341                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1342                 hptp[0] &= ~HPTE_V_HVLOCK;
1343                 preempt_enable();
1344                 if (!(valid == want_valid && (first_pass || dirty)))
1345                         ok = 0;
1346         }
1347         hpte[0] = v;
1348         hpte[1] = r;
1349         return ok;
1350 }
1351
1352 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1353                              size_t count, loff_t *ppos)
1354 {
1355         struct kvm_htab_ctx *ctx = file->private_data;
1356         struct kvm *kvm = ctx->kvm;
1357         struct kvm_get_htab_header hdr;
1358         unsigned long *hptp;
1359         struct revmap_entry *revp;
1360         unsigned long i, nb, nw;
1361         unsigned long __user *lbuf;
1362         struct kvm_get_htab_header __user *hptr;
1363         unsigned long flags;
1364         int first_pass;
1365         unsigned long hpte[2];
1366
1367         if (!access_ok(VERIFY_WRITE, buf, count))
1368                 return -EFAULT;
1369
1370         first_pass = ctx->first_pass;
1371         flags = ctx->flags;
1372
1373         i = ctx->index;
1374         hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1375         revp = kvm->arch.revmap + i;
1376         lbuf = (unsigned long __user *)buf;
1377
1378         nb = 0;
1379         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1380                 /* Initialize header */
1381                 hptr = (struct kvm_get_htab_header __user *)buf;
1382                 hdr.n_valid = 0;
1383                 hdr.n_invalid = 0;
1384                 nw = nb;
1385                 nb += sizeof(hdr);
1386                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1387
1388                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1389                 if (!first_pass) {
1390                         while (i < kvm->arch.hpt_npte &&
1391                                !hpte_dirty(revp, hptp)) {
1392                                 ++i;
1393                                 hptp += 2;
1394                                 ++revp;
1395                         }
1396                 }
1397                 hdr.index = i;
1398
1399                 /* Grab a series of valid entries */
1400                 while (i < kvm->arch.hpt_npte &&
1401                        hdr.n_valid < 0xffff &&
1402                        nb + HPTE_SIZE < count &&
1403                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1404                         /* valid entry, write it out */
1405                         ++hdr.n_valid;
1406                         if (__put_user(hpte[0], lbuf) ||
1407                             __put_user(hpte[1], lbuf + 1))
1408                                 return -EFAULT;
1409                         nb += HPTE_SIZE;
1410                         lbuf += 2;
1411                         ++i;
1412                         hptp += 2;
1413                         ++revp;
1414                 }
1415                 /* Now skip invalid entries while we can */
1416                 while (i < kvm->arch.hpt_npte &&
1417                        hdr.n_invalid < 0xffff &&
1418                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1419                         /* found an invalid entry */
1420                         ++hdr.n_invalid;
1421                         ++i;
1422                         hptp += 2;
1423                         ++revp;
1424                 }
1425
1426                 if (hdr.n_valid || hdr.n_invalid) {
1427                         /* write back the header */
1428                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1429                                 return -EFAULT;
1430                         nw = nb;
1431                         buf = (char __user *)lbuf;
1432                 } else {
1433                         nb = nw;
1434                 }
1435
1436                 /* Check if we've wrapped around the hash table */
1437                 if (i >= kvm->arch.hpt_npte) {
1438                         i = 0;
1439                         ctx->first_pass = 0;
1440                         break;
1441                 }
1442         }
1443
1444         ctx->index = i;
1445
1446         return nb;
1447 }
1448
1449 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1450                               size_t count, loff_t *ppos)
1451 {
1452         struct kvm_htab_ctx *ctx = file->private_data;
1453         struct kvm *kvm = ctx->kvm;
1454         struct kvm_get_htab_header hdr;
1455         unsigned long i, j;
1456         unsigned long v, r;
1457         unsigned long __user *lbuf;
1458         unsigned long *hptp;
1459         unsigned long tmp[2];
1460         ssize_t nb;
1461         long int err, ret;
1462         int rma_setup;
1463
1464         if (!access_ok(VERIFY_READ, buf, count))
1465                 return -EFAULT;
1466
1467         /* lock out vcpus from running while we're doing this */
1468         mutex_lock(&kvm->lock);
1469         rma_setup = kvm->arch.rma_setup_done;
1470         if (rma_setup) {
1471                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1472                 /* order rma_setup_done vs. vcpus_running */
1473                 smp_mb();
1474                 if (atomic_read(&kvm->arch.vcpus_running)) {
1475                         kvm->arch.rma_setup_done = 1;
1476                         mutex_unlock(&kvm->lock);
1477                         return -EBUSY;
1478                 }
1479         }
1480
1481         err = 0;
1482         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1483                 err = -EFAULT;
1484                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1485                         break;
1486
1487                 err = 0;
1488                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1489                         break;
1490
1491                 nb += sizeof(hdr);
1492                 buf += sizeof(hdr);
1493
1494                 err = -EINVAL;
1495                 i = hdr.index;
1496                 if (i >= kvm->arch.hpt_npte ||
1497                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1498                         break;
1499
1500                 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1501                 lbuf = (unsigned long __user *)buf;
1502                 for (j = 0; j < hdr.n_valid; ++j) {
1503                         err = -EFAULT;
1504                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1505                                 goto out;
1506                         err = -EINVAL;
1507                         if (!(v & HPTE_V_VALID))
1508                                 goto out;
1509                         lbuf += 2;
1510                         nb += HPTE_SIZE;
1511
1512                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1513                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1514                         err = -EIO;
1515                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1516                                                          tmp);
1517                         if (ret != H_SUCCESS) {
1518                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1519                                        "r=%lx\n", ret, i, v, r);
1520                                 goto out;
1521                         }
1522                         if (!rma_setup && is_vrma_hpte(v)) {
1523                                 unsigned long psize = hpte_page_size(v, r);
1524                                 unsigned long senc = slb_pgsize_encoding(psize);
1525                                 unsigned long lpcr;
1526
1527                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1528                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1529                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1530                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1531                                 rma_setup = 1;
1532                         }
1533                         ++i;
1534                         hptp += 2;
1535                 }
1536
1537                 for (j = 0; j < hdr.n_invalid; ++j) {
1538                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1539                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1540                         ++i;
1541                         hptp += 2;
1542                 }
1543                 err = 0;
1544         }
1545
1546  out:
1547         /* Order HPTE updates vs. rma_setup_done */
1548         smp_wmb();
1549         kvm->arch.rma_setup_done = rma_setup;
1550         mutex_unlock(&kvm->lock);
1551
1552         if (err)
1553                 return err;
1554         return nb;
1555 }
1556
1557 static int kvm_htab_release(struct inode *inode, struct file *filp)
1558 {
1559         struct kvm_htab_ctx *ctx = filp->private_data;
1560
1561         filp->private_data = NULL;
1562         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1563                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1564         kvm_put_kvm(ctx->kvm);
1565         kfree(ctx);
1566         return 0;
1567 }
1568
1569 static const struct file_operations kvm_htab_fops = {
1570         .read           = kvm_htab_read,
1571         .write          = kvm_htab_write,
1572         .llseek         = default_llseek,
1573         .release        = kvm_htab_release,
1574 };
1575
1576 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1577 {
1578         int ret;
1579         struct kvm_htab_ctx *ctx;
1580         int rwflag;
1581
1582         /* reject flags we don't recognize */
1583         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1584                 return -EINVAL;
1585         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1586         if (!ctx)
1587                 return -ENOMEM;
1588         kvm_get_kvm(kvm);
1589         ctx->kvm = kvm;
1590         ctx->index = ghf->start_index;
1591         ctx->flags = ghf->flags;
1592         ctx->first_pass = 1;
1593
1594         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1595         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1596         if (ret < 0) {
1597                 kvm_put_kvm(kvm);
1598                 return ret;
1599         }
1600
1601         if (rwflag == O_RDONLY) {
1602                 mutex_lock(&kvm->slots_lock);
1603                 atomic_inc(&kvm->arch.hpte_mod_interest);
1604                 /* make sure kvmppc_do_h_enter etc. see the increment */
1605                 synchronize_srcu_expedited(&kvm->srcu);
1606                 mutex_unlock(&kvm->slots_lock);
1607         }
1608
1609         return ret;
1610 }
1611
1612 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1613 {
1614         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1615
1616         if (cpu_has_feature(CPU_FTR_ARCH_206))
1617                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1618         else
1619                 vcpu->arch.slb_nr = 64;
1620
1621         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1622         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1623
1624         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1625 }