[PATCH] powerpc: Parse early parameters earlier
[pandora-kernel.git] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63
64 #ifdef CONFIG_PPC64
65 int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69
70 typedef u32 cell_t;
71
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77
78 static struct device_node *allnodes = NULL;
79
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84
85 /* export that to outside world */
86 struct device_node *of_chosen;
87
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100         unsigned long tmp;
101
102         if (!mem_start)
103                 return kmalloc(size, GFP_KERNEL);
104
105         tmp = *mem_start;
106         *mem_start += size;
107         return (void *)tmp;
108 }
109
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115         struct device_node *np;
116
117         for (np = allnodes; np != 0; np = np->allnext)
118                 if (np->linux_phandle == ph)
119                         return np;
120         return NULL;
121 }
122
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128         phandle *parp;
129
130         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131         if (parp == NULL)
132                 return p->parent;
133         p = find_phandle(*parp);
134         if (p != NULL)
135                 return p;
136         /*
137          * On a powermac booted with BootX, we don't get to know the
138          * phandles for any nodes, so find_phandle will return NULL.
139          * Fortunately these machines only have one interrupt controller
140          * so there isn't in fact any ambiguity.  -- paulus
141          */
142         if (num_interrupt_controllers == 1)
143                 p = dflt_interrupt_controller;
144         return p;
145 }
146
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153         struct device_node *p;
154         unsigned int *icp;
155
156         for (p = np; (p = intr_parent(p)) != NULL; ) {
157                 icp = (unsigned int *)
158                         get_property(p, "#interrupt-cells", NULL);
159                 if (icp != NULL)
160                         return *icp;
161                 if (get_property(p, "interrupt-controller", NULL) != NULL
162                     || get_property(p, "interrupt-map", NULL) != NULL) {
163                         printk("oops, node %s doesn't have #interrupt-cells\n",
164                                p->full_name);
165                         return 1;
166                 }
167         }
168 #ifdef DEBUG_IRQ
169         printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171         return 1;
172 }
173
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179                                    struct device_node *np, unsigned int *ints,
180                                    int nintrc)
181 {
182         struct device_node *p, *ipar;
183         unsigned int *imap, *imask, *ip;
184         int i, imaplen, match;
185         int newintrc = 0, newaddrc = 0;
186         unsigned int *reg;
187         int naddrc;
188
189         reg = (unsigned int *) get_property(np, "reg", NULL);
190         naddrc = prom_n_addr_cells(np);
191         p = intr_parent(np);
192         while (p != NULL) {
193                 if (get_property(p, "interrupt-controller", NULL) != NULL)
194                         /* this node is an interrupt controller, stop here */
195                         break;
196                 imap = (unsigned int *)
197                         get_property(p, "interrupt-map", &imaplen);
198                 if (imap == NULL) {
199                         p = intr_parent(p);
200                         continue;
201                 }
202                 imask = (unsigned int *)
203                         get_property(p, "interrupt-map-mask", NULL);
204                 if (imask == NULL) {
205                         printk("oops, %s has interrupt-map but no mask\n",
206                                p->full_name);
207                         return 0;
208                 }
209                 imaplen /= sizeof(unsigned int);
210                 match = 0;
211                 ipar = NULL;
212                 while (imaplen > 0 && !match) {
213                         /* check the child-interrupt field */
214                         match = 1;
215                         for (i = 0; i < naddrc && match; ++i)
216                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217                         for (; i < naddrc + nintrc && match; ++i)
218                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219                         imap += naddrc + nintrc;
220                         imaplen -= naddrc + nintrc;
221                         /* grab the interrupt parent */
222                         ipar = find_phandle((phandle) *imap++);
223                         --imaplen;
224                         if (ipar == NULL && num_interrupt_controllers == 1)
225                                 /* cope with BootX not giving us phandles */
226                                 ipar = dflt_interrupt_controller;
227                         if (ipar == NULL) {
228                                 printk("oops, no int parent %x in map of %s\n",
229                                        imap[-1], p->full_name);
230                                 return 0;
231                         }
232                         /* find the parent's # addr and intr cells */
233                         ip = (unsigned int *)
234                                 get_property(ipar, "#interrupt-cells", NULL);
235                         if (ip == NULL) {
236                                 printk("oops, no #interrupt-cells on %s\n",
237                                        ipar->full_name);
238                                 return 0;
239                         }
240                         newintrc = *ip;
241                         ip = (unsigned int *)
242                                 get_property(ipar, "#address-cells", NULL);
243                         newaddrc = (ip == NULL)? 0: *ip;
244                         imap += newaddrc + newintrc;
245                         imaplen -= newaddrc + newintrc;
246                 }
247                 if (imaplen < 0) {
248                         printk("oops, error decoding int-map on %s, len=%d\n",
249                                p->full_name, imaplen);
250                         return 0;
251                 }
252                 if (!match) {
253 #ifdef DEBUG_IRQ
254                         printk("oops, no match in %s int-map for %s\n",
255                                p->full_name, np->full_name);
256 #endif
257                         return 0;
258                 }
259                 p = ipar;
260                 naddrc = newaddrc;
261                 nintrc = newintrc;
262                 ints = imap - nintrc;
263                 reg = ints - naddrc;
264         }
265         if (p == NULL) {
266 #ifdef DEBUG_IRQ
267                 printk("hmmm, int tree for %s doesn't have ctrler\n",
268                        np->full_name);
269 #endif
270                 return 0;
271         }
272         *irq = ints;
273         *ictrler = p;
274         return nintrc;
275 }
276
277 static unsigned char map_isa_senses[4] = {
278         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283
284 static unsigned char map_mpic_senses[4] = {
285         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287         /* 2 seems to be used for the 8259 cascade... */
288         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291
292 static int __devinit finish_node_interrupts(struct device_node *np,
293                                             unsigned long *mem_start,
294                                             int measure_only)
295 {
296         unsigned int *ints;
297         int intlen, intrcells, intrcount;
298         int i, j, n, sense;
299         unsigned int *irq, virq;
300         struct device_node *ic;
301         int trace = 0;
302
303         //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305
306         if (!strcmp(np->name, "smu-doorbell"))
307                 trace = 1;
308
309         TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310               num_interrupt_controllers);
311
312         if (num_interrupt_controllers == 0) {
313                 /*
314                  * Old machines just have a list of interrupt numbers
315                  * and no interrupt-controller nodes.
316                  */
317                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318                                                      &intlen);
319                 /* XXX old interpret_pci_props looked in parent too */
320                 /* XXX old interpret_macio_props looked for interrupts
321                    before AAPL,interrupts */
322                 if (ints == NULL)
323                         ints = (unsigned int *) get_property(np, "interrupts",
324                                                              &intlen);
325                 if (ints == NULL)
326                         return 0;
327
328                 np->n_intrs = intlen / sizeof(unsigned int);
329                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330                                        mem_start);
331                 if (!np->intrs)
332                         return -ENOMEM;
333                 if (measure_only)
334                         return 0;
335
336                 for (i = 0; i < np->n_intrs; ++i) {
337                         np->intrs[i].line = *ints++;
338                         np->intrs[i].sense = IRQ_SENSE_LEVEL
339                                 | IRQ_POLARITY_NEGATIVE;
340                 }
341                 return 0;
342         }
343
344         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345         TRACE("ints=%p, intlen=%d\n", ints, intlen);
346         if (ints == NULL)
347                 return 0;
348         intrcells = prom_n_intr_cells(np);
349         intlen /= intrcells * sizeof(unsigned int);
350         TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352         if (!np->intrs)
353                 return -ENOMEM;
354
355         if (measure_only)
356                 return 0;
357
358         intrcount = 0;
359         for (i = 0; i < intlen; ++i, ints += intrcells) {
360                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
361                 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362                 if (n <= 0)
363                         continue;
364
365                 /* don't map IRQ numbers under a cascaded 8259 controller */
366                 if (ic && device_is_compatible(ic, "chrp,iic")) {
367                         np->intrs[intrcount].line = irq[0];
368                         sense = (n > 1)? (irq[1] & 3): 3;
369                         np->intrs[intrcount].sense = map_isa_senses[sense];
370                 } else {
371                         virq = virt_irq_create_mapping(irq[0]);
372                         TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374                         if (virq == NO_IRQ) {
375                                 printk(KERN_CRIT "Could not allocate interrupt"
376                                        " number for %s\n", np->full_name);
377                                 continue;
378                         }
379 #endif
380                         np->intrs[intrcount].line = irq_offset_up(virq);
381                         sense = (n > 1)? (irq[1] & 3): 1;
382
383                         /* Apple uses bits in there in a different way, let's
384                          * only keep the real sense bit on macs
385                          */
386                         if (machine_is(powermac))
387                                 sense &= 0x1;
388                         np->intrs[intrcount].sense = map_mpic_senses[sense];
389                 }
390
391 #ifdef CONFIG_PPC64
392                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393                 if (machine_is(powermac) && ic && ic->parent) {
394                         char *name = get_property(ic->parent, "name", NULL);
395                         if (name && !strcmp(name, "u3"))
396                                 np->intrs[intrcount].line += 128;
397                         else if (!(name && (!strcmp(name, "mac-io") ||
398                                             !strcmp(name, "u4"))))
399                                 /* ignore other cascaded controllers, such as
400                                    the k2-sata-root */
401                                 break;
402                 }
403 #endif /* CONFIG_PPC64 */
404                 if (n > 2) {
405                         printk("hmmm, got %d intr cells for %s:", n,
406                                np->full_name);
407                         for (j = 0; j < n; ++j)
408                                 printk(" %d", irq[j]);
409                         printk("\n");
410                 }
411                 ++intrcount;
412         }
413         np->n_intrs = intrcount;
414
415         return 0;
416 }
417
418 static int __devinit finish_node(struct device_node *np,
419                                  unsigned long *mem_start,
420                                  int measure_only)
421 {
422         struct device_node *child;
423         int rc = 0;
424
425         rc = finish_node_interrupts(np, mem_start, measure_only);
426         if (rc)
427                 goto out;
428
429         for (child = np->child; child != NULL; child = child->sibling) {
430                 rc = finish_node(child, mem_start, measure_only);
431                 if (rc)
432                         goto out;
433         }
434 out:
435         return rc;
436 }
437
438 static void __init scan_interrupt_controllers(void)
439 {
440         struct device_node *np;
441         int n = 0;
442         char *name, *ic;
443         int iclen;
444
445         for (np = allnodes; np != NULL; np = np->allnext) {
446                 ic = get_property(np, "interrupt-controller", &iclen);
447                 name = get_property(np, "name", NULL);
448                 /* checking iclen makes sure we don't get a false
449                    match on /chosen.interrupt_controller */
450                 if ((name != NULL
451                      && strcmp(name, "interrupt-controller") == 0)
452                     || (ic != NULL && iclen == 0
453                         && strcmp(name, "AppleKiwi"))) {
454                         if (n == 0)
455                                 dflt_interrupt_controller = np;
456                         ++n;
457                 }
458         }
459         num_interrupt_controllers = n;
460 }
461
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471         unsigned long start, end, size = 0;
472
473         DBG(" -> finish_device_tree\n");
474
475 #ifdef CONFIG_PPC64
476         /* Initialize virtual IRQ map */
477         virt_irq_init();
478 #endif
479         scan_interrupt_controllers();
480
481         /*
482          * Finish device-tree (pre-parsing some properties etc...)
483          * We do this in 2 passes. One with "measure_only" set, which
484          * will only measure the amount of memory needed, then we can
485          * allocate that memory, and call finish_node again. However,
486          * we must be careful as most routines will fail nowadays when
487          * prom_alloc() returns 0, so we must make sure our first pass
488          * doesn't start at 0. We pre-initialize size to 16 for that
489          * reason and then remove those additional 16 bytes
490          */
491         size = 16;
492         finish_node(allnodes, &size, 1);
493         size -= 16;
494
495         if (0 == size)
496                 end = start = 0;
497         else
498                 end = start = (unsigned long)__va(lmb_alloc(size, 128));
499
500         finish_node(allnodes, &end, 0);
501         BUG_ON(end != start + size);
502
503         DBG(" <- finish_device_tree\n");
504 }
505
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508         return ((char *)initial_boot_params) +
509                 initial_boot_params->off_dt_strings + offset;
510 }
511
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518                                      const char *uname, int depth,
519                                      void *data),
520                            void *data)
521 {
522         unsigned long p = ((unsigned long)initial_boot_params) +
523                 initial_boot_params->off_dt_struct;
524         int rc = 0;
525         int depth = -1;
526
527         do {
528                 u32 tag = *((u32 *)p);
529                 char *pathp;
530                 
531                 p += 4;
532                 if (tag == OF_DT_END_NODE) {
533                         depth --;
534                         continue;
535                 }
536                 if (tag == OF_DT_NOP)
537                         continue;
538                 if (tag == OF_DT_END)
539                         break;
540                 if (tag == OF_DT_PROP) {
541                         u32 sz = *((u32 *)p);
542                         p += 8;
543                         if (initial_boot_params->version < 0x10)
544                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545                         p += sz;
546                         p = _ALIGN(p, 4);
547                         continue;
548                 }
549                 if (tag != OF_DT_BEGIN_NODE) {
550                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
551                                " device tree !\n", tag);
552                         return -EINVAL;
553                 }
554                 depth++;
555                 pathp = (char *)p;
556                 p = _ALIGN(p + strlen(pathp) + 1, 4);
557                 if ((*pathp) == '/') {
558                         char *lp, *np;
559                         for (lp = NULL, np = pathp; *np; np++)
560                                 if ((*np) == '/')
561                                         lp = np+1;
562                         if (lp != NULL)
563                                 pathp = lp;
564                 }
565                 rc = it(p, pathp, depth, data);
566                 if (rc != 0)
567                         break;          
568         } while(1);
569
570         return rc;
571 }
572
573 unsigned long __init of_get_flat_dt_root(void)
574 {
575         unsigned long p = ((unsigned long)initial_boot_params) +
576                 initial_boot_params->off_dt_struct;
577
578         while(*((u32 *)p) == OF_DT_NOP)
579                 p += 4;
580         BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
581         p += 4;
582         return _ALIGN(p + strlen((char *)p) + 1, 4);
583 }
584
585 /**
586  * This  function can be used within scan_flattened_dt callback to get
587  * access to properties
588  */
589 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
590                                  unsigned long *size)
591 {
592         unsigned long p = node;
593
594         do {
595                 u32 tag = *((u32 *)p);
596                 u32 sz, noff;
597                 const char *nstr;
598
599                 p += 4;
600                 if (tag == OF_DT_NOP)
601                         continue;
602                 if (tag != OF_DT_PROP)
603                         return NULL;
604
605                 sz = *((u32 *)p);
606                 noff = *((u32 *)(p + 4));
607                 p += 8;
608                 if (initial_boot_params->version < 0x10)
609                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
610
611                 nstr = find_flat_dt_string(noff);
612                 if (nstr == NULL) {
613                         printk(KERN_WARNING "Can't find property index"
614                                " name !\n");
615                         return NULL;
616                 }
617                 if (strcmp(name, nstr) == 0) {
618                         if (size)
619                                 *size = sz;
620                         return (void *)p;
621                 }
622                 p += sz;
623                 p = _ALIGN(p, 4);
624         } while(1);
625 }
626
627 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
628 {
629         const char* cp;
630         unsigned long cplen, l;
631
632         cp = of_get_flat_dt_prop(node, "compatible", &cplen);
633         if (cp == NULL)
634                 return 0;
635         while (cplen > 0) {
636                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
637                         return 1;
638                 l = strlen(cp) + 1;
639                 cp += l;
640                 cplen -= l;
641         }
642
643         return 0;
644 }
645
646 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
647                                        unsigned long align)
648 {
649         void *res;
650
651         *mem = _ALIGN(*mem, align);
652         res = (void *)*mem;
653         *mem += size;
654
655         return res;
656 }
657
658 static unsigned long __init unflatten_dt_node(unsigned long mem,
659                                               unsigned long *p,
660                                               struct device_node *dad,
661                                               struct device_node ***allnextpp,
662                                               unsigned long fpsize)
663 {
664         struct device_node *np;
665         struct property *pp, **prev_pp = NULL;
666         char *pathp;
667         u32 tag;
668         unsigned int l, allocl;
669         int has_name = 0;
670         int new_format = 0;
671
672         tag = *((u32 *)(*p));
673         if (tag != OF_DT_BEGIN_NODE) {
674                 printk("Weird tag at start of node: %x\n", tag);
675                 return mem;
676         }
677         *p += 4;
678         pathp = (char *)*p;
679         l = allocl = strlen(pathp) + 1;
680         *p = _ALIGN(*p + l, 4);
681
682         /* version 0x10 has a more compact unit name here instead of the full
683          * path. we accumulate the full path size using "fpsize", we'll rebuild
684          * it later. We detect this because the first character of the name is
685          * not '/'.
686          */
687         if ((*pathp) != '/') {
688                 new_format = 1;
689                 if (fpsize == 0) {
690                         /* root node: special case. fpsize accounts for path
691                          * plus terminating zero. root node only has '/', so
692                          * fpsize should be 2, but we want to avoid the first
693                          * level nodes to have two '/' so we use fpsize 1 here
694                          */
695                         fpsize = 1;
696                         allocl = 2;
697                 } else {
698                         /* account for '/' and path size minus terminal 0
699                          * already in 'l'
700                          */
701                         fpsize += l;
702                         allocl = fpsize;
703                 }
704         }
705
706
707         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
708                                 __alignof__(struct device_node));
709         if (allnextpp) {
710                 memset(np, 0, sizeof(*np));
711                 np->full_name = ((char*)np) + sizeof(struct device_node);
712                 if (new_format) {
713                         char *p = np->full_name;
714                         /* rebuild full path for new format */
715                         if (dad && dad->parent) {
716                                 strcpy(p, dad->full_name);
717 #ifdef DEBUG
718                                 if ((strlen(p) + l + 1) != allocl) {
719                                         DBG("%s: p: %d, l: %d, a: %d\n",
720                                             pathp, (int)strlen(p), l, allocl);
721                                 }
722 #endif
723                                 p += strlen(p);
724                         }
725                         *(p++) = '/';
726                         memcpy(p, pathp, l);
727                 } else
728                         memcpy(np->full_name, pathp, l);
729                 prev_pp = &np->properties;
730                 **allnextpp = np;
731                 *allnextpp = &np->allnext;
732                 if (dad != NULL) {
733                         np->parent = dad;
734                         /* we temporarily use the next field as `last_child'*/
735                         if (dad->next == 0)
736                                 dad->child = np;
737                         else
738                                 dad->next->sibling = np;
739                         dad->next = np;
740                 }
741                 kref_init(&np->kref);
742         }
743         while(1) {
744                 u32 sz, noff;
745                 char *pname;
746
747                 tag = *((u32 *)(*p));
748                 if (tag == OF_DT_NOP) {
749                         *p += 4;
750                         continue;
751                 }
752                 if (tag != OF_DT_PROP)
753                         break;
754                 *p += 4;
755                 sz = *((u32 *)(*p));
756                 noff = *((u32 *)((*p) + 4));
757                 *p += 8;
758                 if (initial_boot_params->version < 0x10)
759                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
760
761                 pname = find_flat_dt_string(noff);
762                 if (pname == NULL) {
763                         printk("Can't find property name in list !\n");
764                         break;
765                 }
766                 if (strcmp(pname, "name") == 0)
767                         has_name = 1;
768                 l = strlen(pname) + 1;
769                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
770                                         __alignof__(struct property));
771                 if (allnextpp) {
772                         if (strcmp(pname, "linux,phandle") == 0) {
773                                 np->node = *((u32 *)*p);
774                                 if (np->linux_phandle == 0)
775                                         np->linux_phandle = np->node;
776                         }
777                         if (strcmp(pname, "ibm,phandle") == 0)
778                                 np->linux_phandle = *((u32 *)*p);
779                         pp->name = pname;
780                         pp->length = sz;
781                         pp->value = (void *)*p;
782                         *prev_pp = pp;
783                         prev_pp = &pp->next;
784                 }
785                 *p = _ALIGN((*p) + sz, 4);
786         }
787         /* with version 0x10 we may not have the name property, recreate
788          * it here from the unit name if absent
789          */
790         if (!has_name) {
791                 char *p = pathp, *ps = pathp, *pa = NULL;
792                 int sz;
793
794                 while (*p) {
795                         if ((*p) == '@')
796                                 pa = p;
797                         if ((*p) == '/')
798                                 ps = p + 1;
799                         p++;
800                 }
801                 if (pa < ps)
802                         pa = p;
803                 sz = (pa - ps) + 1;
804                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
805                                         __alignof__(struct property));
806                 if (allnextpp) {
807                         pp->name = "name";
808                         pp->length = sz;
809                         pp->value = (unsigned char *)(pp + 1);
810                         *prev_pp = pp;
811                         prev_pp = &pp->next;
812                         memcpy(pp->value, ps, sz - 1);
813                         ((char *)pp->value)[sz - 1] = 0;
814                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
815                 }
816         }
817         if (allnextpp) {
818                 *prev_pp = NULL;
819                 np->name = get_property(np, "name", NULL);
820                 np->type = get_property(np, "device_type", NULL);
821
822                 if (!np->name)
823                         np->name = "<NULL>";
824                 if (!np->type)
825                         np->type = "<NULL>";
826         }
827         while (tag == OF_DT_BEGIN_NODE) {
828                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
829                 tag = *((u32 *)(*p));
830         }
831         if (tag != OF_DT_END_NODE) {
832                 printk("Weird tag at end of node: %x\n", tag);
833                 return mem;
834         }
835         *p += 4;
836         return mem;
837 }
838
839
840 /**
841  * unflattens the device-tree passed by the firmware, creating the
842  * tree of struct device_node. It also fills the "name" and "type"
843  * pointers of the nodes so the normal device-tree walking functions
844  * can be used (this used to be done by finish_device_tree)
845  */
846 void __init unflatten_device_tree(void)
847 {
848         unsigned long start, mem, size;
849         struct device_node **allnextp = &allnodes;
850
851         DBG(" -> unflatten_device_tree()\n");
852
853         /* First pass, scan for size */
854         start = ((unsigned long)initial_boot_params) +
855                 initial_boot_params->off_dt_struct;
856         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
857         size = (size | 3) + 1;
858
859         DBG("  size is %lx, allocating...\n", size);
860
861         /* Allocate memory for the expanded device tree */
862         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
863         mem = (unsigned long) __va(mem);
864
865         ((u32 *)mem)[size / 4] = 0xdeadbeef;
866
867         DBG("  unflattening %lx...\n", mem);
868
869         /* Second pass, do actual unflattening */
870         start = ((unsigned long)initial_boot_params) +
871                 initial_boot_params->off_dt_struct;
872         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
873         if (*((u32 *)start) != OF_DT_END)
874                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
875         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
876                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
877                        ((u32 *)mem)[size / 4] );
878         *allnextp = NULL;
879
880         /* Get pointer to OF "/chosen" node for use everywhere */
881         of_chosen = of_find_node_by_path("/chosen");
882         if (of_chosen == NULL)
883                 of_chosen = of_find_node_by_path("/chosen@0");
884
885         DBG(" <- unflatten_device_tree()\n");
886 }
887
888 /*
889  * ibm,pa-features is a per-cpu property that contains a string of
890  * attribute descriptors, each of which has a 2 byte header plus up
891  * to 254 bytes worth of processor attribute bits.  First header
892  * byte specifies the number of bytes following the header.
893  * Second header byte is an "attribute-specifier" type, of which
894  * zero is the only currently-defined value.
895  * Implementation:  Pass in the byte and bit offset for the feature
896  * that we are interested in.  The function will return -1 if the
897  * pa-features property is missing, or a 1/0 to indicate if the feature
898  * is supported/not supported.  Note that the bit numbers are
899  * big-endian to match the definition in PAPR.
900  */
901 static struct ibm_pa_feature {
902         unsigned long   cpu_features;   /* CPU_FTR_xxx bit */
903         unsigned int    cpu_user_ftrs;  /* PPC_FEATURE_xxx bit */
904         unsigned char   pabyte;         /* byte number in ibm,pa-features */
905         unsigned char   pabit;          /* bit number (big-endian) */
906         unsigned char   invert;         /* if 1, pa bit set => clear feature */
907 } ibm_pa_features[] __initdata = {
908         {0, PPC_FEATURE_HAS_MMU,        0, 0, 0},
909         {0, PPC_FEATURE_HAS_FPU,        0, 1, 0},
910         {CPU_FTR_SLB, 0,                0, 2, 0},
911         {CPU_FTR_CTRL, 0,               0, 3, 0},
912         {CPU_FTR_NOEXECUTE, 0,          0, 6, 0},
913         {CPU_FTR_NODSISRALIGN, 0,       1, 1, 1},
914         {CPU_FTR_CI_LARGE_PAGE, 0,      1, 2, 0},
915 };
916
917 static void __init check_cpu_pa_features(unsigned long node)
918 {
919         unsigned char *pa_ftrs;
920         unsigned long len, tablelen, i, bit;
921
922         pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
923         if (pa_ftrs == NULL)
924                 return;
925
926         /* find descriptor with type == 0 */
927         for (;;) {
928                 if (tablelen < 3)
929                         return;
930                 len = 2 + pa_ftrs[0];
931                 if (tablelen < len)
932                         return;         /* descriptor 0 not found */
933                 if (pa_ftrs[1] == 0)
934                         break;
935                 tablelen -= len;
936                 pa_ftrs += len;
937         }
938
939         /* loop over bits we know about */
940         for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
941                 struct ibm_pa_feature *fp = &ibm_pa_features[i];
942
943                 if (fp->pabyte >= pa_ftrs[0])
944                         continue;
945                 bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
946                 if (bit ^ fp->invert) {
947                         cur_cpu_spec->cpu_features |= fp->cpu_features;
948                         cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
949                 } else {
950                         cur_cpu_spec->cpu_features &= ~fp->cpu_features;
951                         cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
952                 }
953         }
954 }
955
956 static int __init early_init_dt_scan_cpus(unsigned long node,
957                                           const char *uname, int depth,
958                                           void *data)
959 {
960         static int logical_cpuid = 0;
961         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
962 #ifdef CONFIG_ALTIVEC
963         u32 *prop;
964 #endif
965         u32 *intserv;
966         int i, nthreads;
967         unsigned long len;
968         int found = 0;
969
970         /* We are scanning "cpu" nodes only */
971         if (type == NULL || strcmp(type, "cpu") != 0)
972                 return 0;
973
974         /* Get physical cpuid */
975         intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
976         if (intserv) {
977                 nthreads = len / sizeof(int);
978         } else {
979                 intserv = of_get_flat_dt_prop(node, "reg", NULL);
980                 nthreads = 1;
981         }
982
983         /*
984          * Now see if any of these threads match our boot cpu.
985          * NOTE: This must match the parsing done in smp_setup_cpu_maps.
986          */
987         for (i = 0; i < nthreads; i++) {
988                 /*
989                  * version 2 of the kexec param format adds the phys cpuid of
990                  * booted proc.
991                  */
992                 if (initial_boot_params && initial_boot_params->version >= 2) {
993                         if (intserv[i] ==
994                                         initial_boot_params->boot_cpuid_phys) {
995                                 found = 1;
996                                 break;
997                         }
998                 } else {
999                         /*
1000                          * Check if it's the boot-cpu, set it's hw index now,
1001                          * unfortunately this format did not support booting
1002                          * off secondary threads.
1003                          */
1004                         if (of_get_flat_dt_prop(node,
1005                                         "linux,boot-cpu", NULL) != NULL) {
1006                                 found = 1;
1007                                 break;
1008                         }
1009                 }
1010
1011 #ifdef CONFIG_SMP
1012                 /* logical cpu id is always 0 on UP kernels */
1013                 logical_cpuid++;
1014 #endif
1015         }
1016
1017         if (found) {
1018                 DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
1019                         intserv[i]);
1020                 boot_cpuid = logical_cpuid;
1021                 set_hard_smp_processor_id(boot_cpuid, intserv[i]);
1022         }
1023
1024 #ifdef CONFIG_ALTIVEC
1025         /* Check if we have a VMX and eventually update CPU features */
1026         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1027         if (prop && (*prop) > 0) {
1028                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1029                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1030         }
1031
1032         /* Same goes for Apple's "altivec" property */
1033         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1034         if (prop) {
1035                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1036                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1037         }
1038 #endif /* CONFIG_ALTIVEC */
1039
1040         check_cpu_pa_features(node);
1041
1042 #ifdef CONFIG_PPC_PSERIES
1043         if (nthreads > 1)
1044                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1045         else
1046                 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1047 #endif
1048
1049         return 0;
1050 }
1051
1052 static int __init early_init_dt_scan_chosen(unsigned long node,
1053                                             const char *uname, int depth, void *data)
1054 {
1055         unsigned long *lprop;
1056         unsigned long l;
1057         char *p;
1058
1059         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1060
1061         if (depth != 1 ||
1062             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1063                 return 0;
1064
1065 #ifdef CONFIG_PPC64
1066         /* check if iommu is forced on or off */
1067         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1068                 iommu_is_off = 1;
1069         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1070                 iommu_force_on = 1;
1071 #endif
1072
1073         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1074         if (lprop)
1075                 memory_limit = *lprop;
1076
1077 #ifdef CONFIG_PPC64
1078         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1079         if (lprop)
1080                 tce_alloc_start = *lprop;
1081         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1082         if (lprop)
1083                 tce_alloc_end = *lprop;
1084 #endif
1085
1086 #ifdef CONFIG_PPC_RTAS
1087         /* To help early debugging via the front panel, we retrieve a minimal
1088          * set of RTAS infos now if available
1089          */
1090         {
1091                 u64 *basep, *entryp, *sizep;
1092
1093                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1094                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1095                 sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1096                 if (basep && entryp && sizep) {
1097                         rtas.base = *basep;
1098                         rtas.entry = *entryp;
1099                         rtas.size = *sizep;
1100                 }
1101         }
1102 #endif /* CONFIG_PPC_RTAS */
1103
1104 #ifdef CONFIG_KEXEC
1105        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1106        if (lprop)
1107                crashk_res.start = *lprop;
1108
1109        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1110        if (lprop)
1111                crashk_res.end = crashk_res.start + *lprop - 1;
1112 #endif
1113
1114         /* Retreive command line */
1115         p = of_get_flat_dt_prop(node, "bootargs", &l);
1116         if (p != NULL && l > 0)
1117                 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1118
1119 #ifdef CONFIG_CMDLINE
1120         if (l == 0 || (l == 1 && (*p) == 0))
1121                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1122 #endif /* CONFIG_CMDLINE */
1123
1124         DBG("Command line is: %s\n", cmd_line);
1125
1126         if (strstr(cmd_line, "mem=")) {
1127                 char *p, *q;
1128
1129                 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1130                         q = p + 4;
1131                         if (p > cmd_line && p[-1] != ' ')
1132                                 continue;
1133                         memory_limit = memparse(q, &q);
1134                 }
1135         }
1136
1137         /* break now */
1138         return 1;
1139 }
1140
1141 static int __init early_init_dt_scan_root(unsigned long node,
1142                                           const char *uname, int depth, void *data)
1143 {
1144         u32 *prop;
1145
1146         if (depth != 0)
1147                 return 0;
1148
1149         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1150         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1151         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1152
1153         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1154         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1155         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1156         
1157         /* break now */
1158         return 1;
1159 }
1160
1161 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1162 {
1163         cell_t *p = *cellp;
1164         unsigned long r;
1165
1166         /* Ignore more than 2 cells */
1167         while (s > sizeof(unsigned long) / 4) {
1168                 p++;
1169                 s--;
1170         }
1171         r = *p++;
1172 #ifdef CONFIG_PPC64
1173         if (s > 1) {
1174                 r <<= 32;
1175                 r |= *(p++);
1176                 s--;
1177         }
1178 #endif
1179
1180         *cellp = p;
1181         return r;
1182 }
1183
1184
1185 static int __init early_init_dt_scan_memory(unsigned long node,
1186                                             const char *uname, int depth, void *data)
1187 {
1188         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1189         cell_t *reg, *endp;
1190         unsigned long l;
1191
1192         /* We are scanning "memory" nodes only */
1193         if (type == NULL) {
1194                 /*
1195                  * The longtrail doesn't have a device_type on the
1196                  * /memory node, so look for the node called /memory@0.
1197                  */
1198                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1199                         return 0;
1200         } else if (strcmp(type, "memory") != 0)
1201                 return 0;
1202
1203         reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1204         if (reg == NULL)
1205                 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1206         if (reg == NULL)
1207                 return 0;
1208
1209         endp = reg + (l / sizeof(cell_t));
1210
1211         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1212             uname, l, reg[0], reg[1], reg[2], reg[3]);
1213
1214         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1215                 unsigned long base, size;
1216
1217                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1218                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1219
1220                 if (size == 0)
1221                         continue;
1222                 DBG(" - %lx ,  %lx\n", base, size);
1223 #ifdef CONFIG_PPC64
1224                 if (iommu_is_off) {
1225                         if (base >= 0x80000000ul)
1226                                 continue;
1227                         if ((base + size) > 0x80000000ul)
1228                                 size = 0x80000000ul - base;
1229                 }
1230 #endif
1231                 lmb_add(base, size);
1232         }
1233         return 0;
1234 }
1235
1236 static void __init early_reserve_mem(void)
1237 {
1238         u64 base, size;
1239         u64 *reserve_map;
1240
1241         reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1242                                         initial_boot_params->off_mem_rsvmap);
1243 #ifdef CONFIG_PPC32
1244         /* 
1245          * Handle the case where we might be booting from an old kexec
1246          * image that setup the mem_rsvmap as pairs of 32-bit values
1247          */
1248         if (*reserve_map > 0xffffffffull) {
1249                 u32 base_32, size_32;
1250                 u32 *reserve_map_32 = (u32 *)reserve_map;
1251
1252                 while (1) {
1253                         base_32 = *(reserve_map_32++);
1254                         size_32 = *(reserve_map_32++);
1255                         if (size_32 == 0)
1256                                 break;
1257                         DBG("reserving: %x -> %x\n", base_32, size_32);
1258                         lmb_reserve(base_32, size_32);
1259                 }
1260                 return;
1261         }
1262 #endif
1263         while (1) {
1264                 base = *(reserve_map++);
1265                 size = *(reserve_map++);
1266                 if (size == 0)
1267                         break;
1268                 DBG("reserving: %llx -> %llx\n", base, size);
1269                 lmb_reserve(base, size);
1270         }
1271
1272 #if 0
1273         DBG("memory reserved, lmbs :\n");
1274         lmb_dump_all();
1275 #endif
1276 }
1277
1278 void __init early_init_devtree(void *params)
1279 {
1280         DBG(" -> early_init_devtree()\n");
1281
1282         /* Setup flat device-tree pointer */
1283         initial_boot_params = params;
1284
1285         /* Retrieve various informations from the /chosen node of the
1286          * device-tree, including the platform type, initrd location and
1287          * size, TCE reserve, and more ...
1288          */
1289         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1290
1291         /* Scan memory nodes and rebuild LMBs */
1292         lmb_init();
1293         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1294         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1295
1296         /* Save command line for /proc/cmdline and then parse parameters */
1297         strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
1298         parse_early_param();
1299
1300         lmb_enforce_memory_limit(memory_limit);
1301         lmb_analyze();
1302
1303         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1304
1305         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1306         lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1307 #ifdef CONFIG_CRASH_DUMP
1308         lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1309 #endif
1310         early_reserve_mem();
1311
1312         DBG("Scanning CPUs ...\n");
1313
1314         /* Retreive CPU related informations from the flat tree
1315          * (altivec support, boot CPU ID, ...)
1316          */
1317         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1318
1319         DBG(" <- early_init_devtree()\n");
1320 }
1321
1322 #undef printk
1323
1324 int
1325 prom_n_addr_cells(struct device_node* np)
1326 {
1327         int* ip;
1328         do {
1329                 if (np->parent)
1330                         np = np->parent;
1331                 ip = (int *) get_property(np, "#address-cells", NULL);
1332                 if (ip != NULL)
1333                         return *ip;
1334         } while (np->parent);
1335         /* No #address-cells property for the root node, default to 1 */
1336         return 1;
1337 }
1338 EXPORT_SYMBOL(prom_n_addr_cells);
1339
1340 int
1341 prom_n_size_cells(struct device_node* np)
1342 {
1343         int* ip;
1344         do {
1345                 if (np->parent)
1346                         np = np->parent;
1347                 ip = (int *) get_property(np, "#size-cells", NULL);
1348                 if (ip != NULL)
1349                         return *ip;
1350         } while (np->parent);
1351         /* No #size-cells property for the root node, default to 1 */
1352         return 1;
1353 }
1354 EXPORT_SYMBOL(prom_n_size_cells);
1355
1356 /**
1357  * Work out the sense (active-low level / active-high edge)
1358  * of each interrupt from the device tree.
1359  */
1360 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1361 {
1362         struct device_node *np;
1363         int i, j;
1364
1365         /* default to level-triggered */
1366         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1367
1368         for (np = allnodes; np != 0; np = np->allnext) {
1369                 for (j = 0; j < np->n_intrs; j++) {
1370                         i = np->intrs[j].line;
1371                         if (i >= off && i < max)
1372                                 senses[i-off] = np->intrs[j].sense;
1373                 }
1374         }
1375 }
1376
1377 /**
1378  * Construct and return a list of the device_nodes with a given name.
1379  */
1380 struct device_node *find_devices(const char *name)
1381 {
1382         struct device_node *head, **prevp, *np;
1383
1384         prevp = &head;
1385         for (np = allnodes; np != 0; np = np->allnext) {
1386                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1387                         *prevp = np;
1388                         prevp = &np->next;
1389                 }
1390         }
1391         *prevp = NULL;
1392         return head;
1393 }
1394 EXPORT_SYMBOL(find_devices);
1395
1396 /**
1397  * Construct and return a list of the device_nodes with a given type.
1398  */
1399 struct device_node *find_type_devices(const char *type)
1400 {
1401         struct device_node *head, **prevp, *np;
1402
1403         prevp = &head;
1404         for (np = allnodes; np != 0; np = np->allnext) {
1405                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1406                         *prevp = np;
1407                         prevp = &np->next;
1408                 }
1409         }
1410         *prevp = NULL;
1411         return head;
1412 }
1413 EXPORT_SYMBOL(find_type_devices);
1414
1415 /**
1416  * Returns all nodes linked together
1417  */
1418 struct device_node *find_all_nodes(void)
1419 {
1420         struct device_node *head, **prevp, *np;
1421
1422         prevp = &head;
1423         for (np = allnodes; np != 0; np = np->allnext) {
1424                 *prevp = np;
1425                 prevp = &np->next;
1426         }
1427         *prevp = NULL;
1428         return head;
1429 }
1430 EXPORT_SYMBOL(find_all_nodes);
1431
1432 /** Checks if the given "compat" string matches one of the strings in
1433  * the device's "compatible" property
1434  */
1435 int device_is_compatible(struct device_node *device, const char *compat)
1436 {
1437         const char* cp;
1438         int cplen, l;
1439
1440         cp = (char *) get_property(device, "compatible", &cplen);
1441         if (cp == NULL)
1442                 return 0;
1443         while (cplen > 0) {
1444                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1445                         return 1;
1446                 l = strlen(cp) + 1;
1447                 cp += l;
1448                 cplen -= l;
1449         }
1450
1451         return 0;
1452 }
1453 EXPORT_SYMBOL(device_is_compatible);
1454
1455
1456 /**
1457  * Indicates whether the root node has a given value in its
1458  * compatible property.
1459  */
1460 int machine_is_compatible(const char *compat)
1461 {
1462         struct device_node *root;
1463         int rc = 0;
1464
1465         root = of_find_node_by_path("/");
1466         if (root) {
1467                 rc = device_is_compatible(root, compat);
1468                 of_node_put(root);
1469         }
1470         return rc;
1471 }
1472 EXPORT_SYMBOL(machine_is_compatible);
1473
1474 /**
1475  * Construct and return a list of the device_nodes with a given type
1476  * and compatible property.
1477  */
1478 struct device_node *find_compatible_devices(const char *type,
1479                                             const char *compat)
1480 {
1481         struct device_node *head, **prevp, *np;
1482
1483         prevp = &head;
1484         for (np = allnodes; np != 0; np = np->allnext) {
1485                 if (type != NULL
1486                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1487                         continue;
1488                 if (device_is_compatible(np, compat)) {
1489                         *prevp = np;
1490                         prevp = &np->next;
1491                 }
1492         }
1493         *prevp = NULL;
1494         return head;
1495 }
1496 EXPORT_SYMBOL(find_compatible_devices);
1497
1498 /**
1499  * Find the device_node with a given full_name.
1500  */
1501 struct device_node *find_path_device(const char *path)
1502 {
1503         struct device_node *np;
1504
1505         for (np = allnodes; np != 0; np = np->allnext)
1506                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1507                         return np;
1508         return NULL;
1509 }
1510 EXPORT_SYMBOL(find_path_device);
1511
1512 /*******
1513  *
1514  * New implementation of the OF "find" APIs, return a refcounted
1515  * object, call of_node_put() when done.  The device tree and list
1516  * are protected by a rw_lock.
1517  *
1518  * Note that property management will need some locking as well,
1519  * this isn't dealt with yet.
1520  *
1521  *******/
1522
1523 /**
1524  *      of_find_node_by_name - Find a node by its "name" property
1525  *      @from:  The node to start searching from or NULL, the node
1526  *              you pass will not be searched, only the next one
1527  *              will; typically, you pass what the previous call
1528  *              returned. of_node_put() will be called on it
1529  *      @name:  The name string to match against
1530  *
1531  *      Returns a node pointer with refcount incremented, use
1532  *      of_node_put() on it when done.
1533  */
1534 struct device_node *of_find_node_by_name(struct device_node *from,
1535         const char *name)
1536 {
1537         struct device_node *np;
1538
1539         read_lock(&devtree_lock);
1540         np = from ? from->allnext : allnodes;
1541         for (; np != NULL; np = np->allnext)
1542                 if (np->name != NULL && strcasecmp(np->name, name) == 0
1543                     && of_node_get(np))
1544                         break;
1545         if (from)
1546                 of_node_put(from);
1547         read_unlock(&devtree_lock);
1548         return np;
1549 }
1550 EXPORT_SYMBOL(of_find_node_by_name);
1551
1552 /**
1553  *      of_find_node_by_type - Find a node by its "device_type" property
1554  *      @from:  The node to start searching from or NULL, the node
1555  *              you pass will not be searched, only the next one
1556  *              will; typically, you pass what the previous call
1557  *              returned. of_node_put() will be called on it
1558  *      @name:  The type string to match against
1559  *
1560  *      Returns a node pointer with refcount incremented, use
1561  *      of_node_put() on it when done.
1562  */
1563 struct device_node *of_find_node_by_type(struct device_node *from,
1564         const char *type)
1565 {
1566         struct device_node *np;
1567
1568         read_lock(&devtree_lock);
1569         np = from ? from->allnext : allnodes;
1570         for (; np != 0; np = np->allnext)
1571                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1572                     && of_node_get(np))
1573                         break;
1574         if (from)
1575                 of_node_put(from);
1576         read_unlock(&devtree_lock);
1577         return np;
1578 }
1579 EXPORT_SYMBOL(of_find_node_by_type);
1580
1581 /**
1582  *      of_find_compatible_node - Find a node based on type and one of the
1583  *                                tokens in its "compatible" property
1584  *      @from:          The node to start searching from or NULL, the node
1585  *                      you pass will not be searched, only the next one
1586  *                      will; typically, you pass what the previous call
1587  *                      returned. of_node_put() will be called on it
1588  *      @type:          The type string to match "device_type" or NULL to ignore
1589  *      @compatible:    The string to match to one of the tokens in the device
1590  *                      "compatible" list.
1591  *
1592  *      Returns a node pointer with refcount incremented, use
1593  *      of_node_put() on it when done.
1594  */
1595 struct device_node *of_find_compatible_node(struct device_node *from,
1596         const char *type, const char *compatible)
1597 {
1598         struct device_node *np;
1599
1600         read_lock(&devtree_lock);
1601         np = from ? from->allnext : allnodes;
1602         for (; np != 0; np = np->allnext) {
1603                 if (type != NULL
1604                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1605                         continue;
1606                 if (device_is_compatible(np, compatible) && of_node_get(np))
1607                         break;
1608         }
1609         if (from)
1610                 of_node_put(from);
1611         read_unlock(&devtree_lock);
1612         return np;
1613 }
1614 EXPORT_SYMBOL(of_find_compatible_node);
1615
1616 /**
1617  *      of_find_node_by_path - Find a node matching a full OF path
1618  *      @path:  The full path to match
1619  *
1620  *      Returns a node pointer with refcount incremented, use
1621  *      of_node_put() on it when done.
1622  */
1623 struct device_node *of_find_node_by_path(const char *path)
1624 {
1625         struct device_node *np = allnodes;
1626
1627         read_lock(&devtree_lock);
1628         for (; np != 0; np = np->allnext) {
1629                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1630                     && of_node_get(np))
1631                         break;
1632         }
1633         read_unlock(&devtree_lock);
1634         return np;
1635 }
1636 EXPORT_SYMBOL(of_find_node_by_path);
1637
1638 /**
1639  *      of_find_node_by_phandle - Find a node given a phandle
1640  *      @handle:        phandle of the node to find
1641  *
1642  *      Returns a node pointer with refcount incremented, use
1643  *      of_node_put() on it when done.
1644  */
1645 struct device_node *of_find_node_by_phandle(phandle handle)
1646 {
1647         struct device_node *np;
1648
1649         read_lock(&devtree_lock);
1650         for (np = allnodes; np != 0; np = np->allnext)
1651                 if (np->linux_phandle == handle)
1652                         break;
1653         if (np)
1654                 of_node_get(np);
1655         read_unlock(&devtree_lock);
1656         return np;
1657 }
1658 EXPORT_SYMBOL(of_find_node_by_phandle);
1659
1660 /**
1661  *      of_find_all_nodes - Get next node in global list
1662  *      @prev:  Previous node or NULL to start iteration
1663  *              of_node_put() will be called on it
1664  *
1665  *      Returns a node pointer with refcount incremented, use
1666  *      of_node_put() on it when done.
1667  */
1668 struct device_node *of_find_all_nodes(struct device_node *prev)
1669 {
1670         struct device_node *np;
1671
1672         read_lock(&devtree_lock);
1673         np = prev ? prev->allnext : allnodes;
1674         for (; np != 0; np = np->allnext)
1675                 if (of_node_get(np))
1676                         break;
1677         if (prev)
1678                 of_node_put(prev);
1679         read_unlock(&devtree_lock);
1680         return np;
1681 }
1682 EXPORT_SYMBOL(of_find_all_nodes);
1683
1684 /**
1685  *      of_get_parent - Get a node's parent if any
1686  *      @node:  Node to get parent
1687  *
1688  *      Returns a node pointer with refcount incremented, use
1689  *      of_node_put() on it when done.
1690  */
1691 struct device_node *of_get_parent(const struct device_node *node)
1692 {
1693         struct device_node *np;
1694
1695         if (!node)
1696                 return NULL;
1697
1698         read_lock(&devtree_lock);
1699         np = of_node_get(node->parent);
1700         read_unlock(&devtree_lock);
1701         return np;
1702 }
1703 EXPORT_SYMBOL(of_get_parent);
1704
1705 /**
1706  *      of_get_next_child - Iterate a node childs
1707  *      @node:  parent node
1708  *      @prev:  previous child of the parent node, or NULL to get first
1709  *
1710  *      Returns a node pointer with refcount incremented, use
1711  *      of_node_put() on it when done.
1712  */
1713 struct device_node *of_get_next_child(const struct device_node *node,
1714         struct device_node *prev)
1715 {
1716         struct device_node *next;
1717
1718         read_lock(&devtree_lock);
1719         next = prev ? prev->sibling : node->child;
1720         for (; next != 0; next = next->sibling)
1721                 if (of_node_get(next))
1722                         break;
1723         if (prev)
1724                 of_node_put(prev);
1725         read_unlock(&devtree_lock);
1726         return next;
1727 }
1728 EXPORT_SYMBOL(of_get_next_child);
1729
1730 /**
1731  *      of_node_get - Increment refcount of a node
1732  *      @node:  Node to inc refcount, NULL is supported to
1733  *              simplify writing of callers
1734  *
1735  *      Returns node.
1736  */
1737 struct device_node *of_node_get(struct device_node *node)
1738 {
1739         if (node)
1740                 kref_get(&node->kref);
1741         return node;
1742 }
1743 EXPORT_SYMBOL(of_node_get);
1744
1745 static inline struct device_node * kref_to_device_node(struct kref *kref)
1746 {
1747         return container_of(kref, struct device_node, kref);
1748 }
1749
1750 /**
1751  *      of_node_release - release a dynamically allocated node
1752  *      @kref:  kref element of the node to be released
1753  *
1754  *      In of_node_put() this function is passed to kref_put()
1755  *      as the destructor.
1756  */
1757 static void of_node_release(struct kref *kref)
1758 {
1759         struct device_node *node = kref_to_device_node(kref);
1760         struct property *prop = node->properties;
1761
1762         if (!OF_IS_DYNAMIC(node))
1763                 return;
1764         while (prop) {
1765                 struct property *next = prop->next;
1766                 kfree(prop->name);
1767                 kfree(prop->value);
1768                 kfree(prop);
1769                 prop = next;
1770
1771                 if (!prop) {
1772                         prop = node->deadprops;
1773                         node->deadprops = NULL;
1774                 }
1775         }
1776         kfree(node->intrs);
1777         kfree(node->full_name);
1778         kfree(node->data);
1779         kfree(node);
1780 }
1781
1782 /**
1783  *      of_node_put - Decrement refcount of a node
1784  *      @node:  Node to dec refcount, NULL is supported to
1785  *              simplify writing of callers
1786  *
1787  */
1788 void of_node_put(struct device_node *node)
1789 {
1790         if (node)
1791                 kref_put(&node->kref, of_node_release);
1792 }
1793 EXPORT_SYMBOL(of_node_put);
1794
1795 /*
1796  * Plug a device node into the tree and global list.
1797  */
1798 void of_attach_node(struct device_node *np)
1799 {
1800         write_lock(&devtree_lock);
1801         np->sibling = np->parent->child;
1802         np->allnext = allnodes;
1803         np->parent->child = np;
1804         allnodes = np;
1805         write_unlock(&devtree_lock);
1806 }
1807
1808 /*
1809  * "Unplug" a node from the device tree.  The caller must hold
1810  * a reference to the node.  The memory associated with the node
1811  * is not freed until its refcount goes to zero.
1812  */
1813 void of_detach_node(const struct device_node *np)
1814 {
1815         struct device_node *parent;
1816
1817         write_lock(&devtree_lock);
1818
1819         parent = np->parent;
1820
1821         if (allnodes == np)
1822                 allnodes = np->allnext;
1823         else {
1824                 struct device_node *prev;
1825                 for (prev = allnodes;
1826                      prev->allnext != np;
1827                      prev = prev->allnext)
1828                         ;
1829                 prev->allnext = np->allnext;
1830         }
1831
1832         if (parent->child == np)
1833                 parent->child = np->sibling;
1834         else {
1835                 struct device_node *prevsib;
1836                 for (prevsib = np->parent->child;
1837                      prevsib->sibling != np;
1838                      prevsib = prevsib->sibling)
1839                         ;
1840                 prevsib->sibling = np->sibling;
1841         }
1842
1843         write_unlock(&devtree_lock);
1844 }
1845
1846 #ifdef CONFIG_PPC_PSERIES
1847 /*
1848  * Fix up the uninitialized fields in a new device node:
1849  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1850  *
1851  * A lot of boot-time code is duplicated here, because functions such
1852  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1853  * slab allocator.
1854  *
1855  * This should probably be split up into smaller chunks.
1856  */
1857
1858 static int of_finish_dynamic_node(struct device_node *node)
1859 {
1860         struct device_node *parent = of_get_parent(node);
1861         int err = 0;
1862         phandle *ibm_phandle;
1863
1864         node->name = get_property(node, "name", NULL);
1865         node->type = get_property(node, "device_type", NULL);
1866
1867         if (!parent) {
1868                 err = -ENODEV;
1869                 goto out;
1870         }
1871
1872         /* We don't support that function on PowerMac, at least
1873          * not yet
1874          */
1875         if (machine_is(powermac))
1876                 return -ENODEV;
1877
1878         /* fix up new node's linux_phandle field */
1879         if ((ibm_phandle = (unsigned int *)get_property(node,
1880                                                         "ibm,phandle", NULL)))
1881                 node->linux_phandle = *ibm_phandle;
1882
1883 out:
1884         of_node_put(parent);
1885         return err;
1886 }
1887
1888 static int prom_reconfig_notifier(struct notifier_block *nb,
1889                                   unsigned long action, void *node)
1890 {
1891         int err;
1892
1893         switch (action) {
1894         case PSERIES_RECONFIG_ADD:
1895                 err = of_finish_dynamic_node(node);
1896                 if (!err)
1897                         finish_node(node, NULL, 0);
1898                 if (err < 0) {
1899                         printk(KERN_ERR "finish_node returned %d\n", err);
1900                         err = NOTIFY_BAD;
1901                 }
1902                 break;
1903         default:
1904                 err = NOTIFY_DONE;
1905                 break;
1906         }
1907         return err;
1908 }
1909
1910 static struct notifier_block prom_reconfig_nb = {
1911         .notifier_call = prom_reconfig_notifier,
1912         .priority = 10, /* This one needs to run first */
1913 };
1914
1915 static int __init prom_reconfig_setup(void)
1916 {
1917         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1918 }
1919 __initcall(prom_reconfig_setup);
1920 #endif
1921
1922 struct property *of_find_property(struct device_node *np, const char *name,
1923                                   int *lenp)
1924 {
1925         struct property *pp;
1926
1927         read_lock(&devtree_lock);
1928         for (pp = np->properties; pp != 0; pp = pp->next)
1929                 if (strcmp(pp->name, name) == 0) {
1930                         if (lenp != 0)
1931                                 *lenp = pp->length;
1932                         break;
1933                 }
1934         read_unlock(&devtree_lock);
1935
1936         return pp;
1937 }
1938
1939 /*
1940  * Find a property with a given name for a given node
1941  * and return the value.
1942  */
1943 unsigned char *get_property(struct device_node *np, const char *name,
1944                             int *lenp)
1945 {
1946         struct property *pp = of_find_property(np,name,lenp);
1947         return pp ? pp->value : NULL;
1948 }
1949 EXPORT_SYMBOL(get_property);
1950
1951 /*
1952  * Add a property to a node
1953  */
1954 int prom_add_property(struct device_node* np, struct property* prop)
1955 {
1956         struct property **next;
1957
1958         prop->next = NULL;      
1959         write_lock(&devtree_lock);
1960         next = &np->properties;
1961         while (*next) {
1962                 if (strcmp(prop->name, (*next)->name) == 0) {
1963                         /* duplicate ! don't insert it */
1964                         write_unlock(&devtree_lock);
1965                         return -1;
1966                 }
1967                 next = &(*next)->next;
1968         }
1969         *next = prop;
1970         write_unlock(&devtree_lock);
1971
1972 #ifdef CONFIG_PROC_DEVICETREE
1973         /* try to add to proc as well if it was initialized */
1974         if (np->pde)
1975                 proc_device_tree_add_prop(np->pde, prop);
1976 #endif /* CONFIG_PROC_DEVICETREE */
1977
1978         return 0;
1979 }
1980
1981 /*
1982  * Remove a property from a node.  Note that we don't actually
1983  * remove it, since we have given out who-knows-how-many pointers
1984  * to the data using get-property.  Instead we just move the property
1985  * to the "dead properties" list, so it won't be found any more.
1986  */
1987 int prom_remove_property(struct device_node *np, struct property *prop)
1988 {
1989         struct property **next;
1990         int found = 0;
1991
1992         write_lock(&devtree_lock);
1993         next = &np->properties;
1994         while (*next) {
1995                 if (*next == prop) {
1996                         /* found the node */
1997                         *next = prop->next;
1998                         prop->next = np->deadprops;
1999                         np->deadprops = prop;
2000                         found = 1;
2001                         break;
2002                 }
2003                 next = &(*next)->next;
2004         }
2005         write_unlock(&devtree_lock);
2006
2007         if (!found)
2008                 return -ENODEV;
2009
2010 #ifdef CONFIG_PROC_DEVICETREE
2011         /* try to remove the proc node as well */
2012         if (np->pde)
2013                 proc_device_tree_remove_prop(np->pde, prop);
2014 #endif /* CONFIG_PROC_DEVICETREE */
2015
2016         return 0;
2017 }
2018
2019 /*
2020  * Update a property in a node.  Note that we don't actually
2021  * remove it, since we have given out who-knows-how-many pointers
2022  * to the data using get-property.  Instead we just move the property
2023  * to the "dead properties" list, and add the new property to the
2024  * property list
2025  */
2026 int prom_update_property(struct device_node *np,
2027                          struct property *newprop,
2028                          struct property *oldprop)
2029 {
2030         struct property **next;
2031         int found = 0;
2032
2033         write_lock(&devtree_lock);
2034         next = &np->properties;
2035         while (*next) {
2036                 if (*next == oldprop) {
2037                         /* found the node */
2038                         newprop->next = oldprop->next;
2039                         *next = newprop;
2040                         oldprop->next = np->deadprops;
2041                         np->deadprops = oldprop;
2042                         found = 1;
2043                         break;
2044                 }
2045                 next = &(*next)->next;
2046         }
2047         write_unlock(&devtree_lock);
2048
2049         if (!found)
2050                 return -ENODEV;
2051
2052 #ifdef CONFIG_PROC_DEVICETREE
2053         /* try to add to proc as well if it was initialized */
2054         if (np->pde)
2055                 proc_device_tree_update_prop(np->pde, newprop, oldprop);
2056 #endif /* CONFIG_PROC_DEVICETREE */
2057
2058         return 0;
2059 }
2060
2061 #ifdef CONFIG_KEXEC
2062 /* We may have allocated the flat device tree inside the crash kernel region
2063  * in prom_init. If so we need to move it out into regular memory. */
2064 void kdump_move_device_tree(void)
2065 {
2066         unsigned long start, end;
2067         struct boot_param_header *new;
2068
2069         start = __pa((unsigned long)initial_boot_params);
2070         end = start + initial_boot_params->totalsize;
2071
2072         if (end < crashk_res.start || start > crashk_res.end)
2073                 return;
2074
2075         new = (struct boot_param_header*)
2076                 __va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
2077
2078         memcpy(new, initial_boot_params, initial_boot_params->totalsize);
2079
2080         initial_boot_params = new;
2081
2082         DBG("Flat device tree blob moved to %p\n", initial_boot_params);
2083
2084         /* XXX should we unreserve the old DT? */
2085 }
2086 #endif /* CONFIG_KEXEC */