Merge git://oss.sgi.com:8090/oss/git/xfs-2.6
[pandora-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/config.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/elf.h>
30 #include <linux/init.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/kprobes.h>
39
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/firmware.h>
51 #endif
52
53 extern unsigned long _get_SP(void);
54
55 #ifndef CONFIG_SMP
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 struct task_struct *last_task_used_spe = NULL;
59 #endif
60
61 /*
62  * Make sure the floating-point register state in the
63  * the thread_struct is up to date for task tsk.
64  */
65 void flush_fp_to_thread(struct task_struct *tsk)
66 {
67         if (tsk->thread.regs) {
68                 /*
69                  * We need to disable preemption here because if we didn't,
70                  * another process could get scheduled after the regs->msr
71                  * test but before we have finished saving the FP registers
72                  * to the thread_struct.  That process could take over the
73                  * FPU, and then when we get scheduled again we would store
74                  * bogus values for the remaining FP registers.
75                  */
76                 preempt_disable();
77                 if (tsk->thread.regs->msr & MSR_FP) {
78 #ifdef CONFIG_SMP
79                         /*
80                          * This should only ever be called for current or
81                          * for a stopped child process.  Since we save away
82                          * the FP register state on context switch on SMP,
83                          * there is something wrong if a stopped child appears
84                          * to still have its FP state in the CPU registers.
85                          */
86                         BUG_ON(tsk != current);
87 #endif
88                         giveup_fpu(current);
89                 }
90                 preempt_enable();
91         }
92 }
93
94 void enable_kernel_fp(void)
95 {
96         WARN_ON(preemptible());
97
98 #ifdef CONFIG_SMP
99         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
100                 giveup_fpu(current);
101         else
102                 giveup_fpu(NULL);       /* just enables FP for kernel */
103 #else
104         giveup_fpu(last_task_used_math);
105 #endif /* CONFIG_SMP */
106 }
107 EXPORT_SYMBOL(enable_kernel_fp);
108
109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
110 {
111         if (!tsk->thread.regs)
112                 return 0;
113         flush_fp_to_thread(current);
114
115         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
116
117         return 1;
118 }
119
120 #ifdef CONFIG_ALTIVEC
121 void enable_kernel_altivec(void)
122 {
123         WARN_ON(preemptible());
124
125 #ifdef CONFIG_SMP
126         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
127                 giveup_altivec(current);
128         else
129                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
130 #else
131         giveup_altivec(last_task_used_altivec);
132 #endif /* CONFIG_SMP */
133 }
134 EXPORT_SYMBOL(enable_kernel_altivec);
135
136 /*
137  * Make sure the VMX/Altivec register state in the
138  * the thread_struct is up to date for task tsk.
139  */
140 void flush_altivec_to_thread(struct task_struct *tsk)
141 {
142         if (tsk->thread.regs) {
143                 preempt_disable();
144                 if (tsk->thread.regs->msr & MSR_VEC) {
145 #ifdef CONFIG_SMP
146                         BUG_ON(tsk != current);
147 #endif
148                         giveup_altivec(current);
149                 }
150                 preempt_enable();
151         }
152 }
153
154 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
155 {
156         flush_altivec_to_thread(current);
157         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
158         return 1;
159 }
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_SPE
163
164 void enable_kernel_spe(void)
165 {
166         WARN_ON(preemptible());
167
168 #ifdef CONFIG_SMP
169         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
170                 giveup_spe(current);
171         else
172                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
173 #else
174         giveup_spe(last_task_used_spe);
175 #endif /* __SMP __ */
176 }
177 EXPORT_SYMBOL(enable_kernel_spe);
178
179 void flush_spe_to_thread(struct task_struct *tsk)
180 {
181         if (tsk->thread.regs) {
182                 preempt_disable();
183                 if (tsk->thread.regs->msr & MSR_SPE) {
184 #ifdef CONFIG_SMP
185                         BUG_ON(tsk != current);
186 #endif
187                         giveup_spe(current);
188                 }
189                 preempt_enable();
190         }
191 }
192
193 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
194 {
195         flush_spe_to_thread(current);
196         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
197         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
198         return 1;
199 }
200 #endif /* CONFIG_SPE */
201
202 #ifndef CONFIG_SMP
203 /*
204  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
205  * and the current task has some state, discard it.
206  */
207 void discard_lazy_cpu_state(void)
208 {
209         preempt_disable();
210         if (last_task_used_math == current)
211                 last_task_used_math = NULL;
212 #ifdef CONFIG_ALTIVEC
213         if (last_task_used_altivec == current)
214                 last_task_used_altivec = NULL;
215 #endif /* CONFIG_ALTIVEC */
216 #ifdef CONFIG_SPE
217         if (last_task_used_spe == current)
218                 last_task_used_spe = NULL;
219 #endif
220         preempt_enable();
221 }
222 #endif /* CONFIG_SMP */
223
224 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
225 int set_dabr(unsigned long dabr)
226 {
227         if (ppc_md.set_dabr)
228                 return ppc_md.set_dabr(dabr);
229
230         mtspr(SPRN_DABR, dabr);
231         return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
237 static DEFINE_PER_CPU(unsigned long, current_dabr);
238 #endif
239
240 struct task_struct *__switch_to(struct task_struct *prev,
241         struct task_struct *new)
242 {
243         struct thread_struct *new_thread, *old_thread;
244         unsigned long flags;
245         struct task_struct *last;
246
247 #ifdef CONFIG_SMP
248         /* avoid complexity of lazy save/restore of fpu
249          * by just saving it every time we switch out if
250          * this task used the fpu during the last quantum.
251          *
252          * If it tries to use the fpu again, it'll trap and
253          * reload its fp regs.  So we don't have to do a restore
254          * every switch, just a save.
255          *  -- Cort
256          */
257         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258                 giveup_fpu(prev);
259 #ifdef CONFIG_ALTIVEC
260         /*
261          * If the previous thread used altivec in the last quantum
262          * (thus changing altivec regs) then save them.
263          * We used to check the VRSAVE register but not all apps
264          * set it, so we don't rely on it now (and in fact we need
265          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
266          *
267          * On SMP we always save/restore altivec regs just to avoid the
268          * complexity of changing processors.
269          *  -- Cort
270          */
271         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
272                 giveup_altivec(prev);
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
275         /*
276          * If the previous thread used spe in the last quantum
277          * (thus changing spe regs) then save them.
278          *
279          * On SMP we always save/restore spe regs just to avoid the
280          * complexity of changing processors.
281          */
282         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283                 giveup_spe(prev);
284 #endif /* CONFIG_SPE */
285
286 #else  /* CONFIG_SMP */
287 #ifdef CONFIG_ALTIVEC
288         /* Avoid the trap.  On smp this this never happens since
289          * we don't set last_task_used_altivec -- Cort
290          */
291         if (new->thread.regs && last_task_used_altivec == new)
292                 new->thread.regs->msr |= MSR_VEC;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_SPE
295         /* Avoid the trap.  On smp this this never happens since
296          * we don't set last_task_used_spe
297          */
298         if (new->thread.regs && last_task_used_spe == new)
299                 new->thread.regs->msr |= MSR_SPE;
300 #endif /* CONFIG_SPE */
301
302 #endif /* CONFIG_SMP */
303
304 #ifdef CONFIG_PPC64     /* for now */
305         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
306                 set_dabr(new->thread.dabr);
307                 __get_cpu_var(current_dabr) = new->thread.dabr;
308         }
309
310         flush_tlb_pending();
311 #endif
312
313         new_thread = &new->thread;
314         old_thread = &current->thread;
315
316 #ifdef CONFIG_PPC64
317         /*
318          * Collect processor utilization data per process
319          */
320         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
321                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
322                 long unsigned start_tb, current_tb;
323                 start_tb = old_thread->start_tb;
324                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
325                 old_thread->accum_tb += (current_tb - start_tb);
326                 new_thread->start_tb = current_tb;
327         }
328 #endif
329
330         local_irq_save(flags);
331
332         account_system_vtime(current);
333         account_process_vtime(current);
334         calculate_steal_time();
335
336         last = _switch(old_thread, new_thread);
337
338         local_irq_restore(flags);
339
340         return last;
341 }
342
343 static int instructions_to_print = 16;
344
345 #ifdef CONFIG_PPC64
346 #define BAD_PC(pc)      ((REGION_ID(pc) != KERNEL_REGION_ID) && \
347                          (REGION_ID(pc) != VMALLOC_REGION_ID))
348 #else
349 #define BAD_PC(pc)      ((pc) < KERNELBASE)
350 #endif
351
352 static void show_instructions(struct pt_regs *regs)
353 {
354         int i;
355         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
356                         sizeof(int));
357
358         printk("Instruction dump:");
359
360         for (i = 0; i < instructions_to_print; i++) {
361                 int instr;
362
363                 if (!(i % 8))
364                         printk("\n");
365
366                 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
367                         printk("XXXXXXXX ");
368                 } else {
369                         if (regs->nip == pc)
370                                 printk("<%08x> ", instr);
371                         else
372                                 printk("%08x ", instr);
373                 }
374
375                 pc += sizeof(int);
376         }
377
378         printk("\n");
379 }
380
381 static struct regbit {
382         unsigned long bit;
383         const char *name;
384 } msr_bits[] = {
385         {MSR_EE,        "EE"},
386         {MSR_PR,        "PR"},
387         {MSR_FP,        "FP"},
388         {MSR_ME,        "ME"},
389         {MSR_IR,        "IR"},
390         {MSR_DR,        "DR"},
391         {0,             NULL}
392 };
393
394 static void printbits(unsigned long val, struct regbit *bits)
395 {
396         const char *sep = "";
397
398         printk("<");
399         for (; bits->bit; ++bits)
400                 if (val & bits->bit) {
401                         printk("%s%s", sep, bits->name);
402                         sep = ",";
403                 }
404         printk(">");
405 }
406
407 #ifdef CONFIG_PPC64
408 #define REG             "%016lX"
409 #define REGS_PER_LINE   4
410 #define LAST_VOLATILE   13
411 #else
412 #define REG             "%08lX"
413 #define REGS_PER_LINE   8
414 #define LAST_VOLATILE   12
415 #endif
416
417 void show_regs(struct pt_regs * regs)
418 {
419         int i, trap;
420
421         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
422                regs->nip, regs->link, regs->ctr);
423         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
424                regs, regs->trap, print_tainted(), system_utsname.release);
425         printk("MSR: "REG" ", regs->msr);
426         printbits(regs->msr, msr_bits);
427         printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
428         trap = TRAP(regs);
429         if (trap == 0x300 || trap == 0x600)
430                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
431         printk("TASK = %p[%d] '%s' THREAD: %p",
432                current, current->pid, current->comm, task_thread_info(current));
433
434 #ifdef CONFIG_SMP
435         printk(" CPU: %d", smp_processor_id());
436 #endif /* CONFIG_SMP */
437
438         for (i = 0;  i < 32;  i++) {
439                 if ((i % REGS_PER_LINE) == 0)
440                         printk("\n" KERN_INFO "GPR%02d: ", i);
441                 printk(REG " ", regs->gpr[i]);
442                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
443                         break;
444         }
445         printk("\n");
446 #ifdef CONFIG_KALLSYMS
447         /*
448          * Lookup NIP late so we have the best change of getting the
449          * above info out without failing
450          */
451         printk("NIP ["REG"] ", regs->nip);
452         print_symbol("%s\n", regs->nip);
453         printk("LR ["REG"] ", regs->link);
454         print_symbol("%s\n", regs->link);
455 #endif
456         show_stack(current, (unsigned long *) regs->gpr[1]);
457         if (!user_mode(regs))
458                 show_instructions(regs);
459 }
460
461 void exit_thread(void)
462 {
463         kprobe_flush_task(current);
464         discard_lazy_cpu_state();
465 }
466
467 void flush_thread(void)
468 {
469 #ifdef CONFIG_PPC64
470         struct thread_info *t = current_thread_info();
471
472         if (t->flags & _TIF_ABI_PENDING)
473                 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
474 #endif
475
476         discard_lazy_cpu_state();
477
478 #ifdef CONFIG_PPC64     /* for now */
479         if (current->thread.dabr) {
480                 current->thread.dabr = 0;
481                 set_dabr(0);
482         }
483 #endif
484 }
485
486 void
487 release_thread(struct task_struct *t)
488 {
489 }
490
491 /*
492  * This gets called before we allocate a new thread and copy
493  * the current task into it.
494  */
495 void prepare_to_copy(struct task_struct *tsk)
496 {
497         flush_fp_to_thread(current);
498         flush_altivec_to_thread(current);
499         flush_spe_to_thread(current);
500 }
501
502 /*
503  * Copy a thread..
504  */
505 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
506                 unsigned long unused, struct task_struct *p,
507                 struct pt_regs *regs)
508 {
509         struct pt_regs *childregs, *kregs;
510         extern void ret_from_fork(void);
511         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
512
513         CHECK_FULL_REGS(regs);
514         /* Copy registers */
515         sp -= sizeof(struct pt_regs);
516         childregs = (struct pt_regs *) sp;
517         *childregs = *regs;
518         if ((childregs->msr & MSR_PR) == 0) {
519                 /* for kernel thread, set `current' and stackptr in new task */
520                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
521 #ifdef CONFIG_PPC32
522                 childregs->gpr[2] = (unsigned long) p;
523 #else
524                 clear_tsk_thread_flag(p, TIF_32BIT);
525 #endif
526                 p->thread.regs = NULL;  /* no user register state */
527         } else {
528                 childregs->gpr[1] = usp;
529                 p->thread.regs = childregs;
530                 if (clone_flags & CLONE_SETTLS) {
531 #ifdef CONFIG_PPC64
532                         if (!test_thread_flag(TIF_32BIT))
533                                 childregs->gpr[13] = childregs->gpr[6];
534                         else
535 #endif
536                                 childregs->gpr[2] = childregs->gpr[6];
537                 }
538         }
539         childregs->gpr[3] = 0;  /* Result from fork() */
540         sp -= STACK_FRAME_OVERHEAD;
541
542         /*
543          * The way this works is that at some point in the future
544          * some task will call _switch to switch to the new task.
545          * That will pop off the stack frame created below and start
546          * the new task running at ret_from_fork.  The new task will
547          * do some house keeping and then return from the fork or clone
548          * system call, using the stack frame created above.
549          */
550         sp -= sizeof(struct pt_regs);
551         kregs = (struct pt_regs *) sp;
552         sp -= STACK_FRAME_OVERHEAD;
553         p->thread.ksp = sp;
554
555 #ifdef CONFIG_PPC64
556         if (cpu_has_feature(CPU_FTR_SLB)) {
557                 unsigned long sp_vsid = get_kernel_vsid(sp);
558                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
559
560                 sp_vsid <<= SLB_VSID_SHIFT;
561                 sp_vsid |= SLB_VSID_KERNEL | llp;
562                 p->thread.ksp_vsid = sp_vsid;
563         }
564
565         /*
566          * The PPC64 ABI makes use of a TOC to contain function 
567          * pointers.  The function (ret_from_except) is actually a pointer
568          * to the TOC entry.  The first entry is a pointer to the actual
569          * function.
570          */
571         kregs->nip = *((unsigned long *)ret_from_fork);
572 #else
573         kregs->nip = (unsigned long)ret_from_fork;
574         p->thread.last_syscall = -1;
575 #endif
576
577         return 0;
578 }
579
580 /*
581  * Set up a thread for executing a new program
582  */
583 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
584 {
585 #ifdef CONFIG_PPC64
586         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
587 #endif
588
589         set_fs(USER_DS);
590
591         /*
592          * If we exec out of a kernel thread then thread.regs will not be
593          * set.  Do it now.
594          */
595         if (!current->thread.regs) {
596                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
597                 current->thread.regs = regs - 1;
598         }
599
600         memset(regs->gpr, 0, sizeof(regs->gpr));
601         regs->ctr = 0;
602         regs->link = 0;
603         regs->xer = 0;
604         regs->ccr = 0;
605         regs->gpr[1] = sp;
606
607 #ifdef CONFIG_PPC32
608         regs->mq = 0;
609         regs->nip = start;
610         regs->msr = MSR_USER;
611 #else
612         if (!test_thread_flag(TIF_32BIT)) {
613                 unsigned long entry, toc;
614
615                 /* start is a relocated pointer to the function descriptor for
616                  * the elf _start routine.  The first entry in the function
617                  * descriptor is the entry address of _start and the second
618                  * entry is the TOC value we need to use.
619                  */
620                 __get_user(entry, (unsigned long __user *)start);
621                 __get_user(toc, (unsigned long __user *)start+1);
622
623                 /* Check whether the e_entry function descriptor entries
624                  * need to be relocated before we can use them.
625                  */
626                 if (load_addr != 0) {
627                         entry += load_addr;
628                         toc   += load_addr;
629                 }
630                 regs->nip = entry;
631                 regs->gpr[2] = toc;
632                 regs->msr = MSR_USER64;
633         } else {
634                 regs->nip = start;
635                 regs->gpr[2] = 0;
636                 regs->msr = MSR_USER32;
637         }
638 #endif
639
640         discard_lazy_cpu_state();
641         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
642         current->thread.fpscr.val = 0;
643 #ifdef CONFIG_ALTIVEC
644         memset(current->thread.vr, 0, sizeof(current->thread.vr));
645         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
646         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
647         current->thread.vrsave = 0;
648         current->thread.used_vr = 0;
649 #endif /* CONFIG_ALTIVEC */
650 #ifdef CONFIG_SPE
651         memset(current->thread.evr, 0, sizeof(current->thread.evr));
652         current->thread.acc = 0;
653         current->thread.spefscr = 0;
654         current->thread.used_spe = 0;
655 #endif /* CONFIG_SPE */
656 }
657
658 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
659                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
660
661 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
662 {
663         struct pt_regs *regs = tsk->thread.regs;
664
665         /* This is a bit hairy.  If we are an SPE enabled  processor
666          * (have embedded fp) we store the IEEE exception enable flags in
667          * fpexc_mode.  fpexc_mode is also used for setting FP exception
668          * mode (asyn, precise, disabled) for 'Classic' FP. */
669         if (val & PR_FP_EXC_SW_ENABLE) {
670 #ifdef CONFIG_SPE
671                 tsk->thread.fpexc_mode = val &
672                         (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
673                 return 0;
674 #else
675                 return -EINVAL;
676 #endif
677         }
678
679         /* on a CONFIG_SPE this does not hurt us.  The bits that
680          * __pack_fe01 use do not overlap with bits used for
681          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
682          * on CONFIG_SPE implementations are reserved so writing to
683          * them does not change anything */
684         if (val > PR_FP_EXC_PRECISE)
685                 return -EINVAL;
686         tsk->thread.fpexc_mode = __pack_fe01(val);
687         if (regs != NULL && (regs->msr & MSR_FP) != 0)
688                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
689                         | tsk->thread.fpexc_mode;
690         return 0;
691 }
692
693 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
694 {
695         unsigned int val;
696
697         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
698 #ifdef CONFIG_SPE
699                 val = tsk->thread.fpexc_mode;
700 #else
701                 return -EINVAL;
702 #endif
703         else
704                 val = __unpack_fe01(tsk->thread.fpexc_mode);
705         return put_user(val, (unsigned int __user *) adr);
706 }
707
708 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
709
710 int sys_clone(unsigned long clone_flags, unsigned long usp,
711               int __user *parent_tidp, void __user *child_threadptr,
712               int __user *child_tidp, int p6,
713               struct pt_regs *regs)
714 {
715         CHECK_FULL_REGS(regs);
716         if (usp == 0)
717                 usp = regs->gpr[1];     /* stack pointer for child */
718 #ifdef CONFIG_PPC64
719         if (test_thread_flag(TIF_32BIT)) {
720                 parent_tidp = TRUNC_PTR(parent_tidp);
721                 child_tidp = TRUNC_PTR(child_tidp);
722         }
723 #endif
724         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
725 }
726
727 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
728              unsigned long p4, unsigned long p5, unsigned long p6,
729              struct pt_regs *regs)
730 {
731         CHECK_FULL_REGS(regs);
732         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
733 }
734
735 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
736               unsigned long p4, unsigned long p5, unsigned long p6,
737               struct pt_regs *regs)
738 {
739         CHECK_FULL_REGS(regs);
740         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
741                         regs, 0, NULL, NULL);
742 }
743
744 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
745                unsigned long a3, unsigned long a4, unsigned long a5,
746                struct pt_regs *regs)
747 {
748         int error;
749         char *filename;
750
751         filename = getname((char __user *) a0);
752         error = PTR_ERR(filename);
753         if (IS_ERR(filename))
754                 goto out;
755         flush_fp_to_thread(current);
756         flush_altivec_to_thread(current);
757         flush_spe_to_thread(current);
758         error = do_execve(filename, (char __user * __user *) a1,
759                           (char __user * __user *) a2, regs);
760         if (error == 0) {
761                 task_lock(current);
762                 current->ptrace &= ~PT_DTRACE;
763                 task_unlock(current);
764         }
765         putname(filename);
766 out:
767         return error;
768 }
769
770 static int validate_sp(unsigned long sp, struct task_struct *p,
771                        unsigned long nbytes)
772 {
773         unsigned long stack_page = (unsigned long)task_stack_page(p);
774
775         if (sp >= stack_page + sizeof(struct thread_struct)
776             && sp <= stack_page + THREAD_SIZE - nbytes)
777                 return 1;
778
779 #ifdef CONFIG_IRQSTACKS
780         stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
781         if (sp >= stack_page + sizeof(struct thread_struct)
782             && sp <= stack_page + THREAD_SIZE - nbytes)
783                 return 1;
784
785         stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
786         if (sp >= stack_page + sizeof(struct thread_struct)
787             && sp <= stack_page + THREAD_SIZE - nbytes)
788                 return 1;
789 #endif
790
791         return 0;
792 }
793
794 #ifdef CONFIG_PPC64
795 #define MIN_STACK_FRAME 112     /* same as STACK_FRAME_OVERHEAD, in fact */
796 #define FRAME_LR_SAVE   2
797 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
798 #define REGS_MARKER     0x7265677368657265ul
799 #define FRAME_MARKER    12
800 #else
801 #define MIN_STACK_FRAME 16
802 #define FRAME_LR_SAVE   1
803 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
804 #define REGS_MARKER     0x72656773ul
805 #define FRAME_MARKER    2
806 #endif
807
808 unsigned long get_wchan(struct task_struct *p)
809 {
810         unsigned long ip, sp;
811         int count = 0;
812
813         if (!p || p == current || p->state == TASK_RUNNING)
814                 return 0;
815
816         sp = p->thread.ksp;
817         if (!validate_sp(sp, p, MIN_STACK_FRAME))
818                 return 0;
819
820         do {
821                 sp = *(unsigned long *)sp;
822                 if (!validate_sp(sp, p, MIN_STACK_FRAME))
823                         return 0;
824                 if (count > 0) {
825                         ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
826                         if (!in_sched_functions(ip))
827                                 return ip;
828                 }
829         } while (count++ < 16);
830         return 0;
831 }
832 EXPORT_SYMBOL(get_wchan);
833
834 static int kstack_depth_to_print = 64;
835
836 void show_stack(struct task_struct *tsk, unsigned long *stack)
837 {
838         unsigned long sp, ip, lr, newsp;
839         int count = 0;
840         int firstframe = 1;
841
842         sp = (unsigned long) stack;
843         if (tsk == NULL)
844                 tsk = current;
845         if (sp == 0) {
846                 if (tsk == current)
847                         asm("mr %0,1" : "=r" (sp));
848                 else
849                         sp = tsk->thread.ksp;
850         }
851
852         lr = 0;
853         printk("Call Trace:\n");
854         do {
855                 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
856                         return;
857
858                 stack = (unsigned long *) sp;
859                 newsp = stack[0];
860                 ip = stack[FRAME_LR_SAVE];
861                 if (!firstframe || ip != lr) {
862                         printk("["REG"] ["REG"] ", sp, ip);
863                         print_symbol("%s", ip);
864                         if (firstframe)
865                                 printk(" (unreliable)");
866                         printk("\n");
867                 }
868                 firstframe = 0;
869
870                 /*
871                  * See if this is an exception frame.
872                  * We look for the "regshere" marker in the current frame.
873                  */
874                 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
875                     && stack[FRAME_MARKER] == REGS_MARKER) {
876                         struct pt_regs *regs = (struct pt_regs *)
877                                 (sp + STACK_FRAME_OVERHEAD);
878                         printk("--- Exception: %lx", regs->trap);
879                         print_symbol(" at %s\n", regs->nip);
880                         lr = regs->link;
881                         print_symbol("    LR = %s\n", lr);
882                         firstframe = 1;
883                 }
884
885                 sp = newsp;
886         } while (count++ < kstack_depth_to_print);
887 }
888
889 void dump_stack(void)
890 {
891         show_stack(current, NULL);
892 }
893 EXPORT_SYMBOL(dump_stack);
894
895 #ifdef CONFIG_PPC64
896 void ppc64_runlatch_on(void)
897 {
898         unsigned long ctrl;
899
900         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
901                 HMT_medium();
902
903                 ctrl = mfspr(SPRN_CTRLF);
904                 ctrl |= CTRL_RUNLATCH;
905                 mtspr(SPRN_CTRLT, ctrl);
906
907                 set_thread_flag(TIF_RUNLATCH);
908         }
909 }
910
911 void ppc64_runlatch_off(void)
912 {
913         unsigned long ctrl;
914
915         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
916                 HMT_medium();
917
918                 clear_thread_flag(TIF_RUNLATCH);
919
920                 ctrl = mfspr(SPRN_CTRLF);
921                 ctrl &= ~CTRL_RUNLATCH;
922                 mtspr(SPRN_CTRLT, ctrl);
923         }
924 }
925 #endif