Merge branch 'vhost' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[pandora-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/syscalls.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #endif
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
56
57 extern unsigned long _get_SP(void);
58
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
64 #endif
65
66 /*
67  * Make sure the floating-point register state in the
68  * the thread_struct is up to date for task tsk.
69  */
70 void flush_fp_to_thread(struct task_struct *tsk)
71 {
72         if (tsk->thread.regs) {
73                 /*
74                  * We need to disable preemption here because if we didn't,
75                  * another process could get scheduled after the regs->msr
76                  * test but before we have finished saving the FP registers
77                  * to the thread_struct.  That process could take over the
78                  * FPU, and then when we get scheduled again we would store
79                  * bogus values for the remaining FP registers.
80                  */
81                 preempt_disable();
82                 if (tsk->thread.regs->msr & MSR_FP) {
83 #ifdef CONFIG_SMP
84                         /*
85                          * This should only ever be called for current or
86                          * for a stopped child process.  Since we save away
87                          * the FP register state on context switch on SMP,
88                          * there is something wrong if a stopped child appears
89                          * to still have its FP state in the CPU registers.
90                          */
91                         BUG_ON(tsk != current);
92 #endif
93                         giveup_fpu(tsk);
94                 }
95                 preempt_enable();
96         }
97 }
98
99 void enable_kernel_fp(void)
100 {
101         WARN_ON(preemptible());
102
103 #ifdef CONFIG_SMP
104         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
105                 giveup_fpu(current);
106         else
107                 giveup_fpu(NULL);       /* just enables FP for kernel */
108 #else
109         giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
111 }
112 EXPORT_SYMBOL(enable_kernel_fp);
113
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
116 {
117         WARN_ON(preemptible());
118
119 #ifdef CONFIG_SMP
120         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121                 giveup_altivec(current);
122         else
123                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
124 #else
125         giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
127 }
128 EXPORT_SYMBOL(enable_kernel_altivec);
129
130 /*
131  * Make sure the VMX/Altivec register state in the
132  * the thread_struct is up to date for task tsk.
133  */
134 void flush_altivec_to_thread(struct task_struct *tsk)
135 {
136         if (tsk->thread.regs) {
137                 preempt_disable();
138                 if (tsk->thread.regs->msr & MSR_VEC) {
139 #ifdef CONFIG_SMP
140                         BUG_ON(tsk != current);
141 #endif
142                         giveup_altivec(tsk);
143                 }
144                 preempt_enable();
145         }
146 }
147 #endif /* CONFIG_ALTIVEC */
148
149 #ifdef CONFIG_VSX
150 #if 0
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
153 {
154         WARN_ON(preemptible());
155
156 #ifdef CONFIG_SMP
157         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
158                 giveup_vsx(current);
159         else
160                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
161 #else
162         giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
164 }
165 EXPORT_SYMBOL(enable_kernel_vsx);
166 #endif
167
168 void giveup_vsx(struct task_struct *tsk)
169 {
170         giveup_fpu(tsk);
171         giveup_altivec(tsk);
172         __giveup_vsx(tsk);
173 }
174
175 void flush_vsx_to_thread(struct task_struct *tsk)
176 {
177         if (tsk->thread.regs) {
178                 preempt_disable();
179                 if (tsk->thread.regs->msr & MSR_VSX) {
180 #ifdef CONFIG_SMP
181                         BUG_ON(tsk != current);
182 #endif
183                         giveup_vsx(tsk);
184                 }
185                 preempt_enable();
186         }
187 }
188 #endif /* CONFIG_VSX */
189
190 #ifdef CONFIG_SPE
191
192 void enable_kernel_spe(void)
193 {
194         WARN_ON(preemptible());
195
196 #ifdef CONFIG_SMP
197         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
198                 giveup_spe(current);
199         else
200                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
201 #else
202         giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
204 }
205 EXPORT_SYMBOL(enable_kernel_spe);
206
207 void flush_spe_to_thread(struct task_struct *tsk)
208 {
209         if (tsk->thread.regs) {
210                 preempt_disable();
211                 if (tsk->thread.regs->msr & MSR_SPE) {
212 #ifdef CONFIG_SMP
213                         BUG_ON(tsk != current);
214 #endif
215                         giveup_spe(tsk);
216                 }
217                 preempt_enable();
218         }
219 }
220 #endif /* CONFIG_SPE */
221
222 #ifndef CONFIG_SMP
223 /*
224  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225  * and the current task has some state, discard it.
226  */
227 void discard_lazy_cpu_state(void)
228 {
229         preempt_disable();
230         if (last_task_used_math == current)
231                 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233         if (last_task_used_altivec == current)
234                 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_VSX
237         if (last_task_used_vsx == current)
238                 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
240 #ifdef CONFIG_SPE
241         if (last_task_used_spe == current)
242                 last_task_used_spe = NULL;
243 #endif
244         preempt_enable();
245 }
246 #endif /* CONFIG_SMP */
247
248 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
249 void do_send_trap(struct pt_regs *regs, unsigned long address,
250                   unsigned long error_code, int signal_code, int breakpt)
251 {
252         siginfo_t info;
253
254         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
255                         11, SIGSEGV) == NOTIFY_STOP)
256                 return;
257
258         /* Deliver the signal to userspace */
259         info.si_signo = SIGTRAP;
260         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
261         info.si_code = signal_code;
262         info.si_addr = (void __user *)address;
263         force_sig_info(SIGTRAP, &info, current);
264 }
265 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
266 void do_dabr(struct pt_regs *regs, unsigned long address,
267                     unsigned long error_code)
268 {
269         siginfo_t info;
270
271         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
272                         11, SIGSEGV) == NOTIFY_STOP)
273                 return;
274
275         if (debugger_dabr_match(regs))
276                 return;
277
278         /* Clear the DABR */
279         set_dabr(0);
280
281         /* Deliver the signal to userspace */
282         info.si_signo = SIGTRAP;
283         info.si_errno = 0;
284         info.si_code = TRAP_HWBKPT;
285         info.si_addr = (void __user *)address;
286         force_sig_info(SIGTRAP, &info, current);
287 }
288 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
289
290 static DEFINE_PER_CPU(unsigned long, current_dabr);
291
292 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
293 /*
294  * Set the debug registers back to their default "safe" values.
295  */
296 static void set_debug_reg_defaults(struct thread_struct *thread)
297 {
298         thread->iac1 = thread->iac2 = 0;
299 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
300         thread->iac3 = thread->iac4 = 0;
301 #endif
302         thread->dac1 = thread->dac2 = 0;
303 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
304         thread->dvc1 = thread->dvc2 = 0;
305 #endif
306         thread->dbcr0 = 0;
307 #ifdef CONFIG_BOOKE
308         /*
309          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
310          */
311         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
312                         DBCR1_IAC3US | DBCR1_IAC4US;
313         /*
314          * Force Data Address Compare User/Supervisor bits to be User-only
315          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
316          */
317         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
318 #else
319         thread->dbcr1 = 0;
320 #endif
321 }
322
323 static void prime_debug_regs(struct thread_struct *thread)
324 {
325         mtspr(SPRN_IAC1, thread->iac1);
326         mtspr(SPRN_IAC2, thread->iac2);
327 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
328         mtspr(SPRN_IAC3, thread->iac3);
329         mtspr(SPRN_IAC4, thread->iac4);
330 #endif
331         mtspr(SPRN_DAC1, thread->dac1);
332         mtspr(SPRN_DAC2, thread->dac2);
333 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
334         mtspr(SPRN_DVC1, thread->dvc1);
335         mtspr(SPRN_DVC2, thread->dvc2);
336 #endif
337         mtspr(SPRN_DBCR0, thread->dbcr0);
338         mtspr(SPRN_DBCR1, thread->dbcr1);
339 #ifdef CONFIG_BOOKE
340         mtspr(SPRN_DBCR2, thread->dbcr2);
341 #endif
342 }
343 /*
344  * Unless neither the old or new thread are making use of the
345  * debug registers, set the debug registers from the values
346  * stored in the new thread.
347  */
348 static void switch_booke_debug_regs(struct thread_struct *new_thread)
349 {
350         if ((current->thread.dbcr0 & DBCR0_IDM)
351                 || (new_thread->dbcr0 & DBCR0_IDM))
352                         prime_debug_regs(new_thread);
353 }
354 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357         if (thread->dabr) {
358                 thread->dabr = 0;
359                 set_dabr(0);
360         }
361 }
362 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
363
364 int set_dabr(unsigned long dabr)
365 {
366         __get_cpu_var(current_dabr) = dabr;
367
368         if (ppc_md.set_dabr)
369                 return ppc_md.set_dabr(dabr);
370
371         /* XXX should we have a CPU_FTR_HAS_DABR ? */
372 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
373         mtspr(SPRN_DAC1, dabr);
374 #elif defined(CONFIG_PPC_BOOK3S)
375         mtspr(SPRN_DABR, dabr);
376 #endif
377
378
379         return 0;
380 }
381
382 #ifdef CONFIG_PPC64
383 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
384 #endif
385
386 struct task_struct *__switch_to(struct task_struct *prev,
387         struct task_struct *new)
388 {
389         struct thread_struct *new_thread, *old_thread;
390         unsigned long flags;
391         struct task_struct *last;
392
393 #ifdef CONFIG_SMP
394         /* avoid complexity of lazy save/restore of fpu
395          * by just saving it every time we switch out if
396          * this task used the fpu during the last quantum.
397          *
398          * If it tries to use the fpu again, it'll trap and
399          * reload its fp regs.  So we don't have to do a restore
400          * every switch, just a save.
401          *  -- Cort
402          */
403         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
404                 giveup_fpu(prev);
405 #ifdef CONFIG_ALTIVEC
406         /*
407          * If the previous thread used altivec in the last quantum
408          * (thus changing altivec regs) then save them.
409          * We used to check the VRSAVE register but not all apps
410          * set it, so we don't rely on it now (and in fact we need
411          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
412          *
413          * On SMP we always save/restore altivec regs just to avoid the
414          * complexity of changing processors.
415          *  -- Cort
416          */
417         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
418                 giveup_altivec(prev);
419 #endif /* CONFIG_ALTIVEC */
420 #ifdef CONFIG_VSX
421         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
422                 /* VMX and FPU registers are already save here */
423                 __giveup_vsx(prev);
424 #endif /* CONFIG_VSX */
425 #ifdef CONFIG_SPE
426         /*
427          * If the previous thread used spe in the last quantum
428          * (thus changing spe regs) then save them.
429          *
430          * On SMP we always save/restore spe regs just to avoid the
431          * complexity of changing processors.
432          */
433         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
434                 giveup_spe(prev);
435 #endif /* CONFIG_SPE */
436
437 #else  /* CONFIG_SMP */
438 #ifdef CONFIG_ALTIVEC
439         /* Avoid the trap.  On smp this this never happens since
440          * we don't set last_task_used_altivec -- Cort
441          */
442         if (new->thread.regs && last_task_used_altivec == new)
443                 new->thread.regs->msr |= MSR_VEC;
444 #endif /* CONFIG_ALTIVEC */
445 #ifdef CONFIG_VSX
446         if (new->thread.regs && last_task_used_vsx == new)
447                 new->thread.regs->msr |= MSR_VSX;
448 #endif /* CONFIG_VSX */
449 #ifdef CONFIG_SPE
450         /* Avoid the trap.  On smp this this never happens since
451          * we don't set last_task_used_spe
452          */
453         if (new->thread.regs && last_task_used_spe == new)
454                 new->thread.regs->msr |= MSR_SPE;
455 #endif /* CONFIG_SPE */
456
457 #endif /* CONFIG_SMP */
458
459 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
460         switch_booke_debug_regs(&new->thread);
461 #else
462         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
463                 set_dabr(new->thread.dabr);
464 #endif
465
466
467         new_thread = &new->thread;
468         old_thread = &current->thread;
469
470 #ifdef CONFIG_PPC64
471         /*
472          * Collect processor utilization data per process
473          */
474         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
475                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
476                 long unsigned start_tb, current_tb;
477                 start_tb = old_thread->start_tb;
478                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
479                 old_thread->accum_tb += (current_tb - start_tb);
480                 new_thread->start_tb = current_tb;
481         }
482 #endif
483
484         local_irq_save(flags);
485
486         account_system_vtime(current);
487         account_process_vtime(current);
488         calculate_steal_time();
489
490         /*
491          * We can't take a PMU exception inside _switch() since there is a
492          * window where the kernel stack SLB and the kernel stack are out
493          * of sync. Hard disable here.
494          */
495         hard_irq_disable();
496         last = _switch(old_thread, new_thread);
497
498         local_irq_restore(flags);
499
500         return last;
501 }
502
503 static int instructions_to_print = 16;
504
505 static void show_instructions(struct pt_regs *regs)
506 {
507         int i;
508         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
509                         sizeof(int));
510
511         printk("Instruction dump:");
512
513         for (i = 0; i < instructions_to_print; i++) {
514                 int instr;
515
516                 if (!(i % 8))
517                         printk("\n");
518
519 #if !defined(CONFIG_BOOKE)
520                 /* If executing with the IMMU off, adjust pc rather
521                  * than print XXXXXXXX.
522                  */
523                 if (!(regs->msr & MSR_IR))
524                         pc = (unsigned long)phys_to_virt(pc);
525 #endif
526
527                 /* We use __get_user here *only* to avoid an OOPS on a
528                  * bad address because the pc *should* only be a
529                  * kernel address.
530                  */
531                 if (!__kernel_text_address(pc) ||
532                      __get_user(instr, (unsigned int __user *)pc)) {
533                         printk("XXXXXXXX ");
534                 } else {
535                         if (regs->nip == pc)
536                                 printk("<%08x> ", instr);
537                         else
538                                 printk("%08x ", instr);
539                 }
540
541                 pc += sizeof(int);
542         }
543
544         printk("\n");
545 }
546
547 static struct regbit {
548         unsigned long bit;
549         const char *name;
550 } msr_bits[] = {
551         {MSR_EE,        "EE"},
552         {MSR_PR,        "PR"},
553         {MSR_FP,        "FP"},
554         {MSR_VEC,       "VEC"},
555         {MSR_VSX,       "VSX"},
556         {MSR_ME,        "ME"},
557         {MSR_CE,        "CE"},
558         {MSR_DE,        "DE"},
559         {MSR_IR,        "IR"},
560         {MSR_DR,        "DR"},
561         {0,             NULL}
562 };
563
564 static void printbits(unsigned long val, struct regbit *bits)
565 {
566         const char *sep = "";
567
568         printk("<");
569         for (; bits->bit; ++bits)
570                 if (val & bits->bit) {
571                         printk("%s%s", sep, bits->name);
572                         sep = ",";
573                 }
574         printk(">");
575 }
576
577 #ifdef CONFIG_PPC64
578 #define REG             "%016lx"
579 #define REGS_PER_LINE   4
580 #define LAST_VOLATILE   13
581 #else
582 #define REG             "%08lx"
583 #define REGS_PER_LINE   8
584 #define LAST_VOLATILE   12
585 #endif
586
587 void show_regs(struct pt_regs * regs)
588 {
589         int i, trap;
590
591         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
592                regs->nip, regs->link, regs->ctr);
593         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
594                regs, regs->trap, print_tainted(), init_utsname()->release);
595         printk("MSR: "REG" ", regs->msr);
596         printbits(regs->msr, msr_bits);
597         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
598         trap = TRAP(regs);
599         if (trap == 0x300 || trap == 0x600)
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
602 #else
603                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
604 #endif
605         printk("TASK = %p[%d] '%s' THREAD: %p",
606                current, task_pid_nr(current), current->comm, task_thread_info(current));
607
608 #ifdef CONFIG_SMP
609         printk(" CPU: %d", raw_smp_processor_id());
610 #endif /* CONFIG_SMP */
611
612         for (i = 0;  i < 32;  i++) {
613                 if ((i % REGS_PER_LINE) == 0)
614                         printk("\nGPR%02d: ", i);
615                 printk(REG " ", regs->gpr[i]);
616                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
617                         break;
618         }
619         printk("\n");
620 #ifdef CONFIG_KALLSYMS
621         /*
622          * Lookup NIP late so we have the best change of getting the
623          * above info out without failing
624          */
625         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
626         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
627 #endif
628         show_stack(current, (unsigned long *) regs->gpr[1]);
629         if (!user_mode(regs))
630                 show_instructions(regs);
631 }
632
633 void exit_thread(void)
634 {
635         discard_lazy_cpu_state();
636 }
637
638 void flush_thread(void)
639 {
640         discard_lazy_cpu_state();
641
642         set_debug_reg_defaults(&current->thread);
643 }
644
645 void
646 release_thread(struct task_struct *t)
647 {
648 }
649
650 /*
651  * This gets called before we allocate a new thread and copy
652  * the current task into it.
653  */
654 void prepare_to_copy(struct task_struct *tsk)
655 {
656         flush_fp_to_thread(current);
657         flush_altivec_to_thread(current);
658         flush_vsx_to_thread(current);
659         flush_spe_to_thread(current);
660 }
661
662 /*
663  * Copy a thread..
664  */
665 int copy_thread(unsigned long clone_flags, unsigned long usp,
666                 unsigned long unused, struct task_struct *p,
667                 struct pt_regs *regs)
668 {
669         struct pt_regs *childregs, *kregs;
670         extern void ret_from_fork(void);
671         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
672
673         CHECK_FULL_REGS(regs);
674         /* Copy registers */
675         sp -= sizeof(struct pt_regs);
676         childregs = (struct pt_regs *) sp;
677         *childregs = *regs;
678         if ((childregs->msr & MSR_PR) == 0) {
679                 /* for kernel thread, set `current' and stackptr in new task */
680                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
681 #ifdef CONFIG_PPC32
682                 childregs->gpr[2] = (unsigned long) p;
683 #else
684                 clear_tsk_thread_flag(p, TIF_32BIT);
685 #endif
686                 p->thread.regs = NULL;  /* no user register state */
687         } else {
688                 childregs->gpr[1] = usp;
689                 p->thread.regs = childregs;
690                 if (clone_flags & CLONE_SETTLS) {
691 #ifdef CONFIG_PPC64
692                         if (!test_thread_flag(TIF_32BIT))
693                                 childregs->gpr[13] = childregs->gpr[6];
694                         else
695 #endif
696                                 childregs->gpr[2] = childregs->gpr[6];
697                 }
698         }
699         childregs->gpr[3] = 0;  /* Result from fork() */
700         sp -= STACK_FRAME_OVERHEAD;
701
702         /*
703          * The way this works is that at some point in the future
704          * some task will call _switch to switch to the new task.
705          * That will pop off the stack frame created below and start
706          * the new task running at ret_from_fork.  The new task will
707          * do some house keeping and then return from the fork or clone
708          * system call, using the stack frame created above.
709          */
710         sp -= sizeof(struct pt_regs);
711         kregs = (struct pt_regs *) sp;
712         sp -= STACK_FRAME_OVERHEAD;
713         p->thread.ksp = sp;
714         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
715                                 _ALIGN_UP(sizeof(struct thread_info), 16);
716
717 #ifdef CONFIG_PPC_STD_MMU_64
718         if (cpu_has_feature(CPU_FTR_SLB)) {
719                 unsigned long sp_vsid;
720                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
721
722                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
723                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
724                                 << SLB_VSID_SHIFT_1T;
725                 else
726                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
727                                 << SLB_VSID_SHIFT;
728                 sp_vsid |= SLB_VSID_KERNEL | llp;
729                 p->thread.ksp_vsid = sp_vsid;
730         }
731 #endif /* CONFIG_PPC_STD_MMU_64 */
732
733         /*
734          * The PPC64 ABI makes use of a TOC to contain function 
735          * pointers.  The function (ret_from_except) is actually a pointer
736          * to the TOC entry.  The first entry is a pointer to the actual
737          * function.
738          */
739 #ifdef CONFIG_PPC64
740         kregs->nip = *((unsigned long *)ret_from_fork);
741 #else
742         kregs->nip = (unsigned long)ret_from_fork;
743 #endif
744
745         return 0;
746 }
747
748 /*
749  * Set up a thread for executing a new program
750  */
751 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
752 {
753 #ifdef CONFIG_PPC64
754         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
755 #endif
756
757         set_fs(USER_DS);
758
759         /*
760          * If we exec out of a kernel thread then thread.regs will not be
761          * set.  Do it now.
762          */
763         if (!current->thread.regs) {
764                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
765                 current->thread.regs = regs - 1;
766         }
767
768         memset(regs->gpr, 0, sizeof(regs->gpr));
769         regs->ctr = 0;
770         regs->link = 0;
771         regs->xer = 0;
772         regs->ccr = 0;
773         regs->gpr[1] = sp;
774
775         /*
776          * We have just cleared all the nonvolatile GPRs, so make
777          * FULL_REGS(regs) return true.  This is necessary to allow
778          * ptrace to examine the thread immediately after exec.
779          */
780         regs->trap &= ~1UL;
781
782 #ifdef CONFIG_PPC32
783         regs->mq = 0;
784         regs->nip = start;
785         regs->msr = MSR_USER;
786 #else
787         if (!test_thread_flag(TIF_32BIT)) {
788                 unsigned long entry, toc;
789
790                 /* start is a relocated pointer to the function descriptor for
791                  * the elf _start routine.  The first entry in the function
792                  * descriptor is the entry address of _start and the second
793                  * entry is the TOC value we need to use.
794                  */
795                 __get_user(entry, (unsigned long __user *)start);
796                 __get_user(toc, (unsigned long __user *)start+1);
797
798                 /* Check whether the e_entry function descriptor entries
799                  * need to be relocated before we can use them.
800                  */
801                 if (load_addr != 0) {
802                         entry += load_addr;
803                         toc   += load_addr;
804                 }
805                 regs->nip = entry;
806                 regs->gpr[2] = toc;
807                 regs->msr = MSR_USER64;
808         } else {
809                 regs->nip = start;
810                 regs->gpr[2] = 0;
811                 regs->msr = MSR_USER32;
812         }
813 #endif
814
815         discard_lazy_cpu_state();
816 #ifdef CONFIG_VSX
817         current->thread.used_vsr = 0;
818 #endif
819         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
820         current->thread.fpscr.val = 0;
821 #ifdef CONFIG_ALTIVEC
822         memset(current->thread.vr, 0, sizeof(current->thread.vr));
823         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
824         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
825         current->thread.vrsave = 0;
826         current->thread.used_vr = 0;
827 #endif /* CONFIG_ALTIVEC */
828 #ifdef CONFIG_SPE
829         memset(current->thread.evr, 0, sizeof(current->thread.evr));
830         current->thread.acc = 0;
831         current->thread.spefscr = 0;
832         current->thread.used_spe = 0;
833 #endif /* CONFIG_SPE */
834 }
835
836 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
837                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
838
839 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
840 {
841         struct pt_regs *regs = tsk->thread.regs;
842
843         /* This is a bit hairy.  If we are an SPE enabled  processor
844          * (have embedded fp) we store the IEEE exception enable flags in
845          * fpexc_mode.  fpexc_mode is also used for setting FP exception
846          * mode (asyn, precise, disabled) for 'Classic' FP. */
847         if (val & PR_FP_EXC_SW_ENABLE) {
848 #ifdef CONFIG_SPE
849                 if (cpu_has_feature(CPU_FTR_SPE)) {
850                         tsk->thread.fpexc_mode = val &
851                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
852                         return 0;
853                 } else {
854                         return -EINVAL;
855                 }
856 #else
857                 return -EINVAL;
858 #endif
859         }
860
861         /* on a CONFIG_SPE this does not hurt us.  The bits that
862          * __pack_fe01 use do not overlap with bits used for
863          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
864          * on CONFIG_SPE implementations are reserved so writing to
865          * them does not change anything */
866         if (val > PR_FP_EXC_PRECISE)
867                 return -EINVAL;
868         tsk->thread.fpexc_mode = __pack_fe01(val);
869         if (regs != NULL && (regs->msr & MSR_FP) != 0)
870                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
871                         | tsk->thread.fpexc_mode;
872         return 0;
873 }
874
875 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
876 {
877         unsigned int val;
878
879         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
880 #ifdef CONFIG_SPE
881                 if (cpu_has_feature(CPU_FTR_SPE))
882                         val = tsk->thread.fpexc_mode;
883                 else
884                         return -EINVAL;
885 #else
886                 return -EINVAL;
887 #endif
888         else
889                 val = __unpack_fe01(tsk->thread.fpexc_mode);
890         return put_user(val, (unsigned int __user *) adr);
891 }
892
893 int set_endian(struct task_struct *tsk, unsigned int val)
894 {
895         struct pt_regs *regs = tsk->thread.regs;
896
897         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
898             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
899                 return -EINVAL;
900
901         if (regs == NULL)
902                 return -EINVAL;
903
904         if (val == PR_ENDIAN_BIG)
905                 regs->msr &= ~MSR_LE;
906         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
907                 regs->msr |= MSR_LE;
908         else
909                 return -EINVAL;
910
911         return 0;
912 }
913
914 int get_endian(struct task_struct *tsk, unsigned long adr)
915 {
916         struct pt_regs *regs = tsk->thread.regs;
917         unsigned int val;
918
919         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
920             !cpu_has_feature(CPU_FTR_REAL_LE))
921                 return -EINVAL;
922
923         if (regs == NULL)
924                 return -EINVAL;
925
926         if (regs->msr & MSR_LE) {
927                 if (cpu_has_feature(CPU_FTR_REAL_LE))
928                         val = PR_ENDIAN_LITTLE;
929                 else
930                         val = PR_ENDIAN_PPC_LITTLE;
931         } else
932                 val = PR_ENDIAN_BIG;
933
934         return put_user(val, (unsigned int __user *)adr);
935 }
936
937 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
938 {
939         tsk->thread.align_ctl = val;
940         return 0;
941 }
942
943 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
944 {
945         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
946 }
947
948 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
949
950 int sys_clone(unsigned long clone_flags, unsigned long usp,
951               int __user *parent_tidp, void __user *child_threadptr,
952               int __user *child_tidp, int p6,
953               struct pt_regs *regs)
954 {
955         CHECK_FULL_REGS(regs);
956         if (usp == 0)
957                 usp = regs->gpr[1];     /* stack pointer for child */
958 #ifdef CONFIG_PPC64
959         if (test_thread_flag(TIF_32BIT)) {
960                 parent_tidp = TRUNC_PTR(parent_tidp);
961                 child_tidp = TRUNC_PTR(child_tidp);
962         }
963 #endif
964         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
965 }
966
967 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
968              unsigned long p4, unsigned long p5, unsigned long p6,
969              struct pt_regs *regs)
970 {
971         CHECK_FULL_REGS(regs);
972         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
973 }
974
975 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
976               unsigned long p4, unsigned long p5, unsigned long p6,
977               struct pt_regs *regs)
978 {
979         CHECK_FULL_REGS(regs);
980         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
981                         regs, 0, NULL, NULL);
982 }
983
984 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
985                unsigned long a3, unsigned long a4, unsigned long a5,
986                struct pt_regs *regs)
987 {
988         int error;
989         char *filename;
990
991         filename = getname((char __user *) a0);
992         error = PTR_ERR(filename);
993         if (IS_ERR(filename))
994                 goto out;
995         flush_fp_to_thread(current);
996         flush_altivec_to_thread(current);
997         flush_spe_to_thread(current);
998         error = do_execve(filename, (char __user * __user *) a1,
999                           (char __user * __user *) a2, regs);
1000         putname(filename);
1001 out:
1002         return error;
1003 }
1004
1005 #ifdef CONFIG_IRQSTACKS
1006 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1007                                   unsigned long nbytes)
1008 {
1009         unsigned long stack_page;
1010         unsigned long cpu = task_cpu(p);
1011
1012         /*
1013          * Avoid crashing if the stack has overflowed and corrupted
1014          * task_cpu(p), which is in the thread_info struct.
1015          */
1016         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1017                 stack_page = (unsigned long) hardirq_ctx[cpu];
1018                 if (sp >= stack_page + sizeof(struct thread_struct)
1019                     && sp <= stack_page + THREAD_SIZE - nbytes)
1020                         return 1;
1021
1022                 stack_page = (unsigned long) softirq_ctx[cpu];
1023                 if (sp >= stack_page + sizeof(struct thread_struct)
1024                     && sp <= stack_page + THREAD_SIZE - nbytes)
1025                         return 1;
1026         }
1027         return 0;
1028 }
1029
1030 #else
1031 #define valid_irq_stack(sp, p, nb)      0
1032 #endif /* CONFIG_IRQSTACKS */
1033
1034 int validate_sp(unsigned long sp, struct task_struct *p,
1035                        unsigned long nbytes)
1036 {
1037         unsigned long stack_page = (unsigned long)task_stack_page(p);
1038
1039         if (sp >= stack_page + sizeof(struct thread_struct)
1040             && sp <= stack_page + THREAD_SIZE - nbytes)
1041                 return 1;
1042
1043         return valid_irq_stack(sp, p, nbytes);
1044 }
1045
1046 EXPORT_SYMBOL(validate_sp);
1047
1048 unsigned long get_wchan(struct task_struct *p)
1049 {
1050         unsigned long ip, sp;
1051         int count = 0;
1052
1053         if (!p || p == current || p->state == TASK_RUNNING)
1054                 return 0;
1055
1056         sp = p->thread.ksp;
1057         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1058                 return 0;
1059
1060         do {
1061                 sp = *(unsigned long *)sp;
1062                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1063                         return 0;
1064                 if (count > 0) {
1065                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1066                         if (!in_sched_functions(ip))
1067                                 return ip;
1068                 }
1069         } while (count++ < 16);
1070         return 0;
1071 }
1072
1073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1074
1075 void show_stack(struct task_struct *tsk, unsigned long *stack)
1076 {
1077         unsigned long sp, ip, lr, newsp;
1078         int count = 0;
1079         int firstframe = 1;
1080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1081         int curr_frame = current->curr_ret_stack;
1082         extern void return_to_handler(void);
1083         unsigned long rth = (unsigned long)return_to_handler;
1084         unsigned long mrth = -1;
1085 #ifdef CONFIG_PPC64
1086         extern void mod_return_to_handler(void);
1087         rth = *(unsigned long *)rth;
1088         mrth = (unsigned long)mod_return_to_handler;
1089         mrth = *(unsigned long *)mrth;
1090 #endif
1091 #endif
1092
1093         sp = (unsigned long) stack;
1094         if (tsk == NULL)
1095                 tsk = current;
1096         if (sp == 0) {
1097                 if (tsk == current)
1098                         asm("mr %0,1" : "=r" (sp));
1099                 else
1100                         sp = tsk->thread.ksp;
1101         }
1102
1103         lr = 0;
1104         printk("Call Trace:\n");
1105         do {
1106                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1107                         return;
1108
1109                 stack = (unsigned long *) sp;
1110                 newsp = stack[0];
1111                 ip = stack[STACK_FRAME_LR_SAVE];
1112                 if (!firstframe || ip != lr) {
1113                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1114 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1115                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1116                                 printk(" (%pS)",
1117                                        (void *)current->ret_stack[curr_frame].ret);
1118                                 curr_frame--;
1119                         }
1120 #endif
1121                         if (firstframe)
1122                                 printk(" (unreliable)");
1123                         printk("\n");
1124                 }
1125                 firstframe = 0;
1126
1127                 /*
1128                  * See if this is an exception frame.
1129                  * We look for the "regshere" marker in the current frame.
1130                  */
1131                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1132                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1133                         struct pt_regs *regs = (struct pt_regs *)
1134                                 (sp + STACK_FRAME_OVERHEAD);
1135                         lr = regs->link;
1136                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1137                                regs->trap, (void *)regs->nip, (void *)lr);
1138                         firstframe = 1;
1139                 }
1140
1141                 sp = newsp;
1142         } while (count++ < kstack_depth_to_print);
1143 }
1144
1145 void dump_stack(void)
1146 {
1147         show_stack(current, NULL);
1148 }
1149 EXPORT_SYMBOL(dump_stack);
1150
1151 #ifdef CONFIG_PPC64
1152 void ppc64_runlatch_on(void)
1153 {
1154         unsigned long ctrl;
1155
1156         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1157                 HMT_medium();
1158
1159                 ctrl = mfspr(SPRN_CTRLF);
1160                 ctrl |= CTRL_RUNLATCH;
1161                 mtspr(SPRN_CTRLT, ctrl);
1162
1163                 set_thread_flag(TIF_RUNLATCH);
1164         }
1165 }
1166
1167 void ppc64_runlatch_off(void)
1168 {
1169         unsigned long ctrl;
1170
1171         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1172                 HMT_medium();
1173
1174                 clear_thread_flag(TIF_RUNLATCH);
1175
1176                 ctrl = mfspr(SPRN_CTRLF);
1177                 ctrl &= ~CTRL_RUNLATCH;
1178                 mtspr(SPRN_CTRLT, ctrl);
1179         }
1180 }
1181 #endif
1182
1183 #if THREAD_SHIFT < PAGE_SHIFT
1184
1185 static struct kmem_cache *thread_info_cache;
1186
1187 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1188 {
1189         struct thread_info *ti;
1190
1191         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1192         if (unlikely(ti == NULL))
1193                 return NULL;
1194 #ifdef CONFIG_DEBUG_STACK_USAGE
1195         memset(ti, 0, THREAD_SIZE);
1196 #endif
1197         return ti;
1198 }
1199
1200 void free_thread_info(struct thread_info *ti)
1201 {
1202         kmem_cache_free(thread_info_cache, ti);
1203 }
1204
1205 void thread_info_cache_init(void)
1206 {
1207         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1208                                               THREAD_SIZE, 0, NULL);
1209         BUG_ON(thread_info_cache == NULL);
1210 }
1211
1212 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1213
1214 unsigned long arch_align_stack(unsigned long sp)
1215 {
1216         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1217                 sp -= get_random_int() & ~PAGE_MASK;
1218         return sp & ~0xf;
1219 }
1220
1221 static inline unsigned long brk_rnd(void)
1222 {
1223         unsigned long rnd = 0;
1224
1225         /* 8MB for 32bit, 1GB for 64bit */
1226         if (is_32bit_task())
1227                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1228         else
1229                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1230
1231         return rnd << PAGE_SHIFT;
1232 }
1233
1234 unsigned long arch_randomize_brk(struct mm_struct *mm)
1235 {
1236         unsigned long base = mm->brk;
1237         unsigned long ret;
1238
1239 #ifdef CONFIG_PPC_STD_MMU_64
1240         /*
1241          * If we are using 1TB segments and we are allowed to randomise
1242          * the heap, we can put it above 1TB so it is backed by a 1TB
1243          * segment. Otherwise the heap will be in the bottom 1TB
1244          * which always uses 256MB segments and this may result in a
1245          * performance penalty.
1246          */
1247         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1248                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1249 #endif
1250
1251         ret = PAGE_ALIGN(base + brk_rnd());
1252
1253         if (ret < mm->brk)
1254                 return mm->brk;
1255
1256         return ret;
1257 }
1258
1259 unsigned long randomize_et_dyn(unsigned long base)
1260 {
1261         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1262
1263         if (ret < base)
1264                 return base;
1265
1266         return ret;
1267 }