Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[pandora-kernel.git] / arch / mips / mm / dma-default.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18
19 #include <asm/cache.h>
20 #include <asm/io.h>
21
22 #include <dma-coherence.h>
23
24 static inline unsigned long dma_addr_to_virt(struct device *dev,
25         dma_addr_t dma_addr)
26 {
27         unsigned long addr = plat_dma_addr_to_phys(dev, dma_addr);
28
29         return (unsigned long)phys_to_virt(addr);
30 }
31
32 /*
33  * Warning on the terminology - Linux calls an uncached area coherent;
34  * MIPS terminology calls memory areas with hardware maintained coherency
35  * coherent.
36  */
37
38 static inline int cpu_is_noncoherent_r10000(struct device *dev)
39 {
40         return !plat_device_is_coherent(dev) &&
41                (current_cpu_type() == CPU_R10000 ||
42                current_cpu_type() == CPU_R12000);
43 }
44
45 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
46 {
47         gfp_t dma_flag;
48
49         /* ignore region specifiers */
50         gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
51
52 #ifdef CONFIG_ISA
53         if (dev == NULL)
54                 dma_flag = __GFP_DMA;
55         else
56 #endif
57 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
58              if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
59                         dma_flag = __GFP_DMA;
60         else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
61                         dma_flag = __GFP_DMA32;
62         else
63 #endif
64 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
65              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
66                 dma_flag = __GFP_DMA32;
67         else
68 #endif
69 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
70              if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
71                 dma_flag = __GFP_DMA;
72         else
73 #endif
74                 dma_flag = 0;
75
76         /* Don't invoke OOM killer */
77         gfp |= __GFP_NORETRY;
78
79         return gfp | dma_flag;
80 }
81
82 void *dma_alloc_noncoherent(struct device *dev, size_t size,
83         dma_addr_t * dma_handle, gfp_t gfp)
84 {
85         void *ret;
86
87         gfp = massage_gfp_flags(dev, gfp);
88
89         ret = (void *) __get_free_pages(gfp, get_order(size));
90
91         if (ret != NULL) {
92                 memset(ret, 0, size);
93                 *dma_handle = plat_map_dma_mem(dev, ret, size);
94         }
95
96         return ret;
97 }
98
99 EXPORT_SYMBOL(dma_alloc_noncoherent);
100
101 void *dma_alloc_coherent(struct device *dev, size_t size,
102         dma_addr_t * dma_handle, gfp_t gfp)
103 {
104         void *ret;
105
106         if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
107                 return ret;
108
109         gfp = massage_gfp_flags(dev, gfp);
110
111         ret = (void *) __get_free_pages(gfp, get_order(size));
112
113         if (ret) {
114                 memset(ret, 0, size);
115                 *dma_handle = plat_map_dma_mem(dev, ret, size);
116
117                 if (!plat_device_is_coherent(dev)) {
118                         dma_cache_wback_inv((unsigned long) ret, size);
119                         ret = UNCAC_ADDR(ret);
120                 }
121         }
122
123         return ret;
124 }
125
126 EXPORT_SYMBOL(dma_alloc_coherent);
127
128 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
129         dma_addr_t dma_handle)
130 {
131         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
132         free_pages((unsigned long) vaddr, get_order(size));
133 }
134
135 EXPORT_SYMBOL(dma_free_noncoherent);
136
137 void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
138         dma_addr_t dma_handle)
139 {
140         unsigned long addr = (unsigned long) vaddr;
141         int order = get_order(size);
142
143         if (dma_release_from_coherent(dev, order, vaddr))
144                 return;
145
146         plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
147
148         if (!plat_device_is_coherent(dev))
149                 addr = CAC_ADDR(addr);
150
151         free_pages(addr, get_order(size));
152 }
153
154 EXPORT_SYMBOL(dma_free_coherent);
155
156 static inline void __dma_sync(unsigned long addr, size_t size,
157         enum dma_data_direction direction)
158 {
159         switch (direction) {
160         case DMA_TO_DEVICE:
161                 dma_cache_wback(addr, size);
162                 break;
163
164         case DMA_FROM_DEVICE:
165                 dma_cache_inv(addr, size);
166                 break;
167
168         case DMA_BIDIRECTIONAL:
169                 dma_cache_wback_inv(addr, size);
170                 break;
171
172         default:
173                 BUG();
174         }
175 }
176
177 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
178         enum dma_data_direction direction)
179 {
180         unsigned long addr = (unsigned long) ptr;
181
182         if (!plat_device_is_coherent(dev))
183                 __dma_sync(addr, size, direction);
184
185         return plat_map_dma_mem(dev, ptr, size);
186 }
187
188 EXPORT_SYMBOL(dma_map_single);
189
190 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
191         enum dma_data_direction direction)
192 {
193         if (cpu_is_noncoherent_r10000(dev))
194                 __dma_sync(dma_addr_to_virt(dev, dma_addr), size,
195                            direction);
196
197         plat_unmap_dma_mem(dev, dma_addr, size, direction);
198 }
199
200 EXPORT_SYMBOL(dma_unmap_single);
201
202 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
203         enum dma_data_direction direction)
204 {
205         int i;
206
207         BUG_ON(direction == DMA_NONE);
208
209         for (i = 0; i < nents; i++, sg++) {
210                 unsigned long addr;
211
212                 addr = (unsigned long) sg_virt(sg);
213                 if (!plat_device_is_coherent(dev) && addr)
214                         __dma_sync(addr, sg->length, direction);
215                 sg->dma_address = plat_map_dma_mem(dev,
216                                                    (void *)addr, sg->length);
217         }
218
219         return nents;
220 }
221
222 EXPORT_SYMBOL(dma_map_sg);
223
224 dma_addr_t dma_map_page(struct device *dev, struct page *page,
225         unsigned long offset, size_t size, enum dma_data_direction direction)
226 {
227         BUG_ON(direction == DMA_NONE);
228
229         if (!plat_device_is_coherent(dev)) {
230                 unsigned long addr;
231
232                 addr = (unsigned long) page_address(page) + offset;
233                 __dma_sync(addr, size, direction);
234         }
235
236         return plat_map_dma_mem_page(dev, page) + offset;
237 }
238
239 EXPORT_SYMBOL(dma_map_page);
240
241 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
242         enum dma_data_direction direction)
243 {
244         unsigned long addr;
245         int i;
246
247         BUG_ON(direction == DMA_NONE);
248
249         for (i = 0; i < nhwentries; i++, sg++) {
250                 if (!plat_device_is_coherent(dev) &&
251                     direction != DMA_TO_DEVICE) {
252                         addr = (unsigned long) sg_virt(sg);
253                         if (addr)
254                                 __dma_sync(addr, sg->length, direction);
255                 }
256                 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257         }
258 }
259
260 EXPORT_SYMBOL(dma_unmap_sg);
261
262 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
263         size_t size, enum dma_data_direction direction)
264 {
265         BUG_ON(direction == DMA_NONE);
266
267         if (cpu_is_noncoherent_r10000(dev)) {
268                 unsigned long addr;
269
270                 addr = dma_addr_to_virt(dev, dma_handle);
271                 __dma_sync(addr, size, direction);
272         }
273 }
274
275 EXPORT_SYMBOL(dma_sync_single_for_cpu);
276
277 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
278         size_t size, enum dma_data_direction direction)
279 {
280         BUG_ON(direction == DMA_NONE);
281
282         plat_extra_sync_for_device(dev);
283         if (!plat_device_is_coherent(dev)) {
284                 unsigned long addr;
285
286                 addr = dma_addr_to_virt(dev, dma_handle);
287                 __dma_sync(addr, size, direction);
288         }
289 }
290
291 EXPORT_SYMBOL(dma_sync_single_for_device);
292
293 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
294         unsigned long offset, size_t size, enum dma_data_direction direction)
295 {
296         BUG_ON(direction == DMA_NONE);
297
298         if (cpu_is_noncoherent_r10000(dev)) {
299                 unsigned long addr;
300
301                 addr = dma_addr_to_virt(dev, dma_handle);
302                 __dma_sync(addr + offset, size, direction);
303         }
304 }
305
306 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
307
308 void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
309         unsigned long offset, size_t size, enum dma_data_direction direction)
310 {
311         BUG_ON(direction == DMA_NONE);
312
313         plat_extra_sync_for_device(dev);
314         if (!plat_device_is_coherent(dev)) {
315                 unsigned long addr;
316
317                 addr = dma_addr_to_virt(dev, dma_handle);
318                 __dma_sync(addr + offset, size, direction);
319         }
320 }
321
322 EXPORT_SYMBOL(dma_sync_single_range_for_device);
323
324 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
325         enum dma_data_direction direction)
326 {
327         int i;
328
329         BUG_ON(direction == DMA_NONE);
330
331         /* Make sure that gcc doesn't leave the empty loop body.  */
332         for (i = 0; i < nelems; i++, sg++) {
333                 if (cpu_is_noncoherent_r10000(dev))
334                         __dma_sync((unsigned long)page_address(sg_page(sg)),
335                                    sg->length, direction);
336         }
337 }
338
339 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
340
341 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
342         enum dma_data_direction direction)
343 {
344         int i;
345
346         BUG_ON(direction == DMA_NONE);
347
348         /* Make sure that gcc doesn't leave the empty loop body.  */
349         for (i = 0; i < nelems; i++, sg++) {
350                 if (!plat_device_is_coherent(dev))
351                         __dma_sync((unsigned long)page_address(sg_page(sg)),
352                                    sg->length, direction);
353         }
354 }
355
356 EXPORT_SYMBOL(dma_sync_sg_for_device);
357
358 int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
359 {
360         return plat_dma_mapping_error(dev, dma_addr);
361 }
362
363 EXPORT_SYMBOL(dma_mapping_error);
364
365 int dma_supported(struct device *dev, u64 mask)
366 {
367         return plat_dma_supported(dev, mask);
368 }
369
370 EXPORT_SYMBOL(dma_supported);
371
372 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
373                enum dma_data_direction direction)
374 {
375         BUG_ON(direction == DMA_NONE);
376
377         plat_extra_sync_for_device(dev);
378         if (!plat_device_is_coherent(dev))
379                 __dma_sync((unsigned long)vaddr, size, direction);
380 }
381
382 EXPORT_SYMBOL(dma_cache_sync);