Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[pandora-kernel.git] / arch / mips / mm / c-r4k.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15
16 #include <asm/bcache.h>
17 #include <asm/bootinfo.h>
18 #include <asm/cache.h>
19 #include <asm/cacheops.h>
20 #include <asm/cpu.h>
21 #include <asm/cpu-features.h>
22 #include <asm/io.h>
23 #include <asm/page.h>
24 #include <asm/pgtable.h>
25 #include <asm/r4kcache.h>
26 #include <asm/system.h>
27 #include <asm/mmu_context.h>
28 #include <asm/war.h>
29 #include <asm/cacheflush.h> /* for run_uncached() */
30
31
32 /*
33  * Special Variant of smp_call_function for use by cache functions:
34  *
35  *  o No return value
36  *  o collapses to normal function call on UP kernels
37  *  o collapses to normal function call on systems with a single shared
38  *    primary cache.
39  */
40 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info,
41                                    int retry, int wait)
42 {
43         preempt_disable();
44
45 #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
46         smp_call_function(func, info, retry, wait);
47 #endif
48         func(info);
49         preempt_enable();
50 }
51
52 /*
53  * Must die.
54  */
55 static unsigned long icache_size __read_mostly;
56 static unsigned long dcache_size __read_mostly;
57 static unsigned long scache_size __read_mostly;
58
59 /*
60  * Dummy cache handling routines for machines without boardcaches
61  */
62 static void cache_noop(void) {}
63
64 static struct bcache_ops no_sc_ops = {
65         .bc_enable = (void *)cache_noop,
66         .bc_disable = (void *)cache_noop,
67         .bc_wback_inv = (void *)cache_noop,
68         .bc_inv = (void *)cache_noop
69 };
70
71 struct bcache_ops *bcops = &no_sc_ops;
72
73 #define cpu_is_r4600_v1_x()     ((read_c0_prid() & 0xfffffff0) == 0x00002010)
74 #define cpu_is_r4600_v2_x()     ((read_c0_prid() & 0xfffffff0) == 0x00002020)
75
76 #define R4600_HIT_CACHEOP_WAR_IMPL                                      \
77 do {                                                                    \
78         if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())            \
79                 *(volatile unsigned long *)CKSEG1;                      \
80         if (R4600_V1_HIT_CACHEOP_WAR)                                   \
81                 __asm__ __volatile__("nop;nop;nop;nop");                \
82 } while (0)
83
84 static void (*r4k_blast_dcache_page)(unsigned long addr);
85
86 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
87 {
88         R4600_HIT_CACHEOP_WAR_IMPL;
89         blast_dcache32_page(addr);
90 }
91
92 static inline void r4k_blast_dcache_page_setup(void)
93 {
94         unsigned long  dc_lsize = cpu_dcache_line_size();
95
96         if (dc_lsize == 0)
97                 r4k_blast_dcache_page = (void *)cache_noop;
98         else if (dc_lsize == 16)
99                 r4k_blast_dcache_page = blast_dcache16_page;
100         else if (dc_lsize == 32)
101                 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
102 }
103
104 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
105
106 static inline void r4k_blast_dcache_page_indexed_setup(void)
107 {
108         unsigned long dc_lsize = cpu_dcache_line_size();
109
110         if (dc_lsize == 0)
111                 r4k_blast_dcache_page_indexed = (void *)cache_noop;
112         else if (dc_lsize == 16)
113                 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
114         else if (dc_lsize == 32)
115                 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
116 }
117
118 static void (* r4k_blast_dcache)(void);
119
120 static inline void r4k_blast_dcache_setup(void)
121 {
122         unsigned long dc_lsize = cpu_dcache_line_size();
123
124         if (dc_lsize == 0)
125                 r4k_blast_dcache = (void *)cache_noop;
126         else if (dc_lsize == 16)
127                 r4k_blast_dcache = blast_dcache16;
128         else if (dc_lsize == 32)
129                 r4k_blast_dcache = blast_dcache32;
130 }
131
132 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
133 #define JUMP_TO_ALIGN(order) \
134         __asm__ __volatile__( \
135                 "b\t1f\n\t" \
136                 ".align\t" #order "\n\t" \
137                 "1:\n\t" \
138                 )
139 #define CACHE32_UNROLL32_ALIGN  JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
140 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
141
142 static inline void blast_r4600_v1_icache32(void)
143 {
144         unsigned long flags;
145
146         local_irq_save(flags);
147         blast_icache32();
148         local_irq_restore(flags);
149 }
150
151 static inline void tx49_blast_icache32(void)
152 {
153         unsigned long start = INDEX_BASE;
154         unsigned long end = start + current_cpu_data.icache.waysize;
155         unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
156         unsigned long ws_end = current_cpu_data.icache.ways <<
157                                current_cpu_data.icache.waybit;
158         unsigned long ws, addr;
159
160         CACHE32_UNROLL32_ALIGN2;
161         /* I'm in even chunk.  blast odd chunks */
162         for (ws = 0; ws < ws_end; ws += ws_inc)
163                 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
164                         cache32_unroll32(addr|ws,Index_Invalidate_I);
165         CACHE32_UNROLL32_ALIGN;
166         /* I'm in odd chunk.  blast even chunks */
167         for (ws = 0; ws < ws_end; ws += ws_inc)
168                 for (addr = start; addr < end; addr += 0x400 * 2)
169                         cache32_unroll32(addr|ws,Index_Invalidate_I);
170 }
171
172 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
173 {
174         unsigned long flags;
175
176         local_irq_save(flags);
177         blast_icache32_page_indexed(page);
178         local_irq_restore(flags);
179 }
180
181 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
182 {
183         unsigned long indexmask = current_cpu_data.icache.waysize - 1;
184         unsigned long start = INDEX_BASE + (page & indexmask);
185         unsigned long end = start + PAGE_SIZE;
186         unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
187         unsigned long ws_end = current_cpu_data.icache.ways <<
188                                current_cpu_data.icache.waybit;
189         unsigned long ws, addr;
190
191         CACHE32_UNROLL32_ALIGN2;
192         /* I'm in even chunk.  blast odd chunks */
193         for (ws = 0; ws < ws_end; ws += ws_inc)
194                 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
195                         cache32_unroll32(addr|ws,Index_Invalidate_I);
196         CACHE32_UNROLL32_ALIGN;
197         /* I'm in odd chunk.  blast even chunks */
198         for (ws = 0; ws < ws_end; ws += ws_inc)
199                 for (addr = start; addr < end; addr += 0x400 * 2)
200                         cache32_unroll32(addr|ws,Index_Invalidate_I);
201 }
202
203 static void (* r4k_blast_icache_page)(unsigned long addr);
204
205 static inline void r4k_blast_icache_page_setup(void)
206 {
207         unsigned long ic_lsize = cpu_icache_line_size();
208
209         if (ic_lsize == 0)
210                 r4k_blast_icache_page = (void *)cache_noop;
211         else if (ic_lsize == 16)
212                 r4k_blast_icache_page = blast_icache16_page;
213         else if (ic_lsize == 32)
214                 r4k_blast_icache_page = blast_icache32_page;
215         else if (ic_lsize == 64)
216                 r4k_blast_icache_page = blast_icache64_page;
217 }
218
219
220 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
221
222 static inline void r4k_blast_icache_page_indexed_setup(void)
223 {
224         unsigned long ic_lsize = cpu_icache_line_size();
225
226         if (ic_lsize == 0)
227                 r4k_blast_icache_page_indexed = (void *)cache_noop;
228         else if (ic_lsize == 16)
229                 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
230         else if (ic_lsize == 32) {
231                 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
232                         r4k_blast_icache_page_indexed =
233                                 blast_icache32_r4600_v1_page_indexed;
234                 else if (TX49XX_ICACHE_INDEX_INV_WAR)
235                         r4k_blast_icache_page_indexed =
236                                 tx49_blast_icache32_page_indexed;
237                 else
238                         r4k_blast_icache_page_indexed =
239                                 blast_icache32_page_indexed;
240         } else if (ic_lsize == 64)
241                 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
242 }
243
244 static void (* r4k_blast_icache)(void);
245
246 static inline void r4k_blast_icache_setup(void)
247 {
248         unsigned long ic_lsize = cpu_icache_line_size();
249
250         if (ic_lsize == 0)
251                 r4k_blast_icache = (void *)cache_noop;
252         else if (ic_lsize == 16)
253                 r4k_blast_icache = blast_icache16;
254         else if (ic_lsize == 32) {
255                 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
256                         r4k_blast_icache = blast_r4600_v1_icache32;
257                 else if (TX49XX_ICACHE_INDEX_INV_WAR)
258                         r4k_blast_icache = tx49_blast_icache32;
259                 else
260                         r4k_blast_icache = blast_icache32;
261         } else if (ic_lsize == 64)
262                 r4k_blast_icache = blast_icache64;
263 }
264
265 static void (* r4k_blast_scache_page)(unsigned long addr);
266
267 static inline void r4k_blast_scache_page_setup(void)
268 {
269         unsigned long sc_lsize = cpu_scache_line_size();
270
271         if (scache_size == 0)
272                 r4k_blast_scache_page = (void *)cache_noop;
273         else if (sc_lsize == 16)
274                 r4k_blast_scache_page = blast_scache16_page;
275         else if (sc_lsize == 32)
276                 r4k_blast_scache_page = blast_scache32_page;
277         else if (sc_lsize == 64)
278                 r4k_blast_scache_page = blast_scache64_page;
279         else if (sc_lsize == 128)
280                 r4k_blast_scache_page = blast_scache128_page;
281 }
282
283 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
284
285 static inline void r4k_blast_scache_page_indexed_setup(void)
286 {
287         unsigned long sc_lsize = cpu_scache_line_size();
288
289         if (scache_size == 0)
290                 r4k_blast_scache_page_indexed = (void *)cache_noop;
291         else if (sc_lsize == 16)
292                 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
293         else if (sc_lsize == 32)
294                 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
295         else if (sc_lsize == 64)
296                 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
297         else if (sc_lsize == 128)
298                 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
299 }
300
301 static void (* r4k_blast_scache)(void);
302
303 static inline void r4k_blast_scache_setup(void)
304 {
305         unsigned long sc_lsize = cpu_scache_line_size();
306
307         if (scache_size == 0)
308                 r4k_blast_scache = (void *)cache_noop;
309         else if (sc_lsize == 16)
310                 r4k_blast_scache = blast_scache16;
311         else if (sc_lsize == 32)
312                 r4k_blast_scache = blast_scache32;
313         else if (sc_lsize == 64)
314                 r4k_blast_scache = blast_scache64;
315         else if (sc_lsize == 128)
316                 r4k_blast_scache = blast_scache128;
317 }
318
319 /*
320  * This is former mm's flush_cache_all() which really should be
321  * flush_cache_vunmap these days ...
322  */
323 static inline void local_r4k_flush_cache_all(void * args)
324 {
325         r4k_blast_dcache();
326         r4k_blast_icache();
327 }
328
329 static void r4k_flush_cache_all(void)
330 {
331         if (!cpu_has_dc_aliases)
332                 return;
333
334         r4k_on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
335 }
336
337 static inline void local_r4k___flush_cache_all(void * args)
338 {
339         r4k_blast_dcache();
340         r4k_blast_icache();
341
342         switch (current_cpu_data.cputype) {
343         case CPU_R4000SC:
344         case CPU_R4000MC:
345         case CPU_R4400SC:
346         case CPU_R4400MC:
347         case CPU_R10000:
348         case CPU_R12000:
349         case CPU_R14000:
350                 r4k_blast_scache();
351         }
352 }
353
354 static void r4k___flush_cache_all(void)
355 {
356         r4k_on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
357 }
358
359 static inline void local_r4k_flush_cache_range(void * args)
360 {
361         struct vm_area_struct *vma = args;
362         int exec;
363
364         if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
365                 return;
366
367         exec = vma->vm_flags & VM_EXEC;
368         if (cpu_has_dc_aliases || exec)
369                 r4k_blast_dcache();
370         if (exec)
371                 r4k_blast_icache();
372 }
373
374 static void r4k_flush_cache_range(struct vm_area_struct *vma,
375         unsigned long start, unsigned long end)
376 {
377         r4k_on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
378 }
379
380 static inline void local_r4k_flush_cache_mm(void * args)
381 {
382         struct mm_struct *mm = args;
383
384         if (!cpu_context(smp_processor_id(), mm))
385                 return;
386
387         r4k_blast_dcache();
388         r4k_blast_icache();
389
390         /*
391          * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
392          * only flush the primary caches but R10000 and R12000 behave sane ...
393          */
394         if (current_cpu_data.cputype == CPU_R4000SC ||
395             current_cpu_data.cputype == CPU_R4000MC ||
396             current_cpu_data.cputype == CPU_R4400SC ||
397             current_cpu_data.cputype == CPU_R4400MC)
398                 r4k_blast_scache();
399 }
400
401 static void r4k_flush_cache_mm(struct mm_struct *mm)
402 {
403         if (!cpu_has_dc_aliases)
404                 return;
405
406         r4k_on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
407 }
408
409 struct flush_cache_page_args {
410         struct vm_area_struct *vma;
411         unsigned long addr;
412         unsigned long pfn;
413 };
414
415 static inline void local_r4k_flush_cache_page(void *args)
416 {
417         struct flush_cache_page_args *fcp_args = args;
418         struct vm_area_struct *vma = fcp_args->vma;
419         unsigned long addr = fcp_args->addr;
420         unsigned long paddr = fcp_args->pfn << PAGE_SHIFT;
421         int exec = vma->vm_flags & VM_EXEC;
422         struct mm_struct *mm = vma->vm_mm;
423         pgd_t *pgdp;
424         pud_t *pudp;
425         pmd_t *pmdp;
426         pte_t *ptep;
427
428         /*
429          * If ownes no valid ASID yet, cannot possibly have gotten
430          * this page into the cache.
431          */
432         if (cpu_context(smp_processor_id(), mm) == 0)
433                 return;
434
435         addr &= PAGE_MASK;
436         pgdp = pgd_offset(mm, addr);
437         pudp = pud_offset(pgdp, addr);
438         pmdp = pmd_offset(pudp, addr);
439         ptep = pte_offset(pmdp, addr);
440
441         /*
442          * If the page isn't marked valid, the page cannot possibly be
443          * in the cache.
444          */
445         if (!(pte_val(*ptep) & _PAGE_PRESENT))
446                 return;
447
448         /*
449          * Doing flushes for another ASID than the current one is
450          * too difficult since stupid R4k caches do a TLB translation
451          * for every cache flush operation.  So we do indexed flushes
452          * in that case, which doesn't overly flush the cache too much.
453          */
454         if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
455                 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
456                         r4k_blast_dcache_page(addr);
457                         if (exec && !cpu_icache_snoops_remote_store)
458                                 r4k_blast_scache_page(addr);
459                 }
460                 if (exec)
461                         r4k_blast_icache_page(addr);
462
463                 return;
464         }
465
466         /*
467          * Do indexed flush, too much work to get the (possible) TLB refills
468          * to work correctly.
469          */
470         if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
471                 r4k_blast_dcache_page_indexed(cpu_has_pindexed_dcache ?
472                                               paddr : addr);
473                 if (exec && !cpu_icache_snoops_remote_store) {
474                         r4k_blast_scache_page_indexed(paddr);
475                 }
476         }
477         if (exec) {
478                 if (cpu_has_vtag_icache) {
479                         int cpu = smp_processor_id();
480
481                         if (cpu_context(cpu, mm) != 0)
482                                 drop_mmu_context(mm, cpu);
483                 } else
484                         r4k_blast_icache_page_indexed(addr);
485         }
486 }
487
488 static void r4k_flush_cache_page(struct vm_area_struct *vma,
489         unsigned long addr, unsigned long pfn)
490 {
491         struct flush_cache_page_args args;
492
493         args.vma = vma;
494         args.addr = addr;
495         args.pfn = pfn;
496
497         r4k_on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
498 }
499
500 static inline void local_r4k_flush_data_cache_page(void * addr)
501 {
502         r4k_blast_dcache_page((unsigned long) addr);
503 }
504
505 static void r4k_flush_data_cache_page(unsigned long addr)
506 {
507         r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
508 }
509
510 struct flush_icache_range_args {
511         unsigned long start;
512         unsigned long end;
513 };
514
515 static inline void local_r4k_flush_icache_range(void *args)
516 {
517         struct flush_icache_range_args *fir_args = args;
518         unsigned long start = fir_args->start;
519         unsigned long end = fir_args->end;
520
521         if (!cpu_has_ic_fills_f_dc) {
522                 if (end - start >= dcache_size) {
523                         r4k_blast_dcache();
524                 } else {
525                         R4600_HIT_CACHEOP_WAR_IMPL;
526                         protected_blast_dcache_range(start, end);
527                 }
528
529                 if (!cpu_icache_snoops_remote_store && scache_size) {
530                         if (end - start > scache_size)
531                                 r4k_blast_scache();
532                         else
533                                 protected_blast_scache_range(start, end);
534                 }
535         }
536
537         if (end - start > icache_size)
538                 r4k_blast_icache();
539         else
540                 protected_blast_icache_range(start, end);
541 }
542
543 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
544 {
545         struct flush_icache_range_args args;
546
547         args.start = start;
548         args.end = end;
549
550         r4k_on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
551         instruction_hazard();
552 }
553
554 /*
555  * Ok, this seriously sucks.  We use them to flush a user page but don't
556  * know the virtual address, so we have to blast away the whole icache
557  * which is significantly more expensive than the real thing.  Otoh we at
558  * least know the kernel address of the page so we can flush it
559  * selectivly.
560  */
561
562 struct flush_icache_page_args {
563         struct vm_area_struct *vma;
564         struct page *page;
565 };
566
567 static inline void local_r4k_flush_icache_page(void *args)
568 {
569         struct flush_icache_page_args *fip_args = args;
570         struct vm_area_struct *vma = fip_args->vma;
571         struct page *page = fip_args->page;
572
573         /*
574          * Tricky ...  Because we don't know the virtual address we've got the
575          * choice of either invalidating the entire primary and secondary
576          * caches or invalidating the secondary caches also.  With the subset
577          * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
578          * secondary cache will result in any entries in the primary caches
579          * also getting invalidated which hopefully is a bit more economical.
580          */
581         if (cpu_has_subset_pcaches) {
582                 unsigned long addr = (unsigned long) page_address(page);
583
584                 r4k_blast_scache_page(addr);
585                 ClearPageDcacheDirty(page);
586
587                 return;
588         }
589
590         if (!cpu_has_ic_fills_f_dc) {
591                 unsigned long addr = (unsigned long) page_address(page);
592                 r4k_blast_dcache_page(addr);
593                 if (!cpu_icache_snoops_remote_store)
594                         r4k_blast_scache_page(addr);
595                 ClearPageDcacheDirty(page);
596         }
597
598         /*
599          * We're not sure of the virtual address(es) involved here, so
600          * we have to flush the entire I-cache.
601          */
602         if (cpu_has_vtag_icache) {
603                 int cpu = smp_processor_id();
604
605                 if (cpu_context(cpu, vma->vm_mm) != 0)
606                         drop_mmu_context(vma->vm_mm, cpu);
607         } else
608                 r4k_blast_icache();
609 }
610
611 static void r4k_flush_icache_page(struct vm_area_struct *vma,
612         struct page *page)
613 {
614         struct flush_icache_page_args args;
615
616         /*
617          * If there's no context yet, or the page isn't executable, no I-cache
618          * flush is needed.
619          */
620         if (!(vma->vm_flags & VM_EXEC))
621                 return;
622
623         args.vma = vma;
624         args.page = page;
625
626         r4k_on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
627 }
628
629
630 #ifdef CONFIG_DMA_NONCOHERENT
631
632 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
633 {
634         /* Catch bad driver code */
635         BUG_ON(size == 0);
636
637         if (cpu_has_subset_pcaches) {
638                 if (size >= scache_size)
639                         r4k_blast_scache();
640                 else
641                         blast_scache_range(addr, addr + size);
642                 return;
643         }
644
645         /*
646          * Either no secondary cache or the available caches don't have the
647          * subset property so we have to flush the primary caches
648          * explicitly
649          */
650         if (size >= dcache_size) {
651                 r4k_blast_dcache();
652         } else {
653                 R4600_HIT_CACHEOP_WAR_IMPL;
654                 blast_dcache_range(addr, addr + size);
655         }
656
657         bc_wback_inv(addr, size);
658 }
659
660 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
661 {
662         /* Catch bad driver code */
663         BUG_ON(size == 0);
664
665         if (cpu_has_subset_pcaches) {
666                 if (size >= scache_size)
667                         r4k_blast_scache();
668                 else
669                         blast_scache_range(addr, addr + size);
670                 return;
671         }
672
673         if (size >= dcache_size) {
674                 r4k_blast_dcache();
675         } else {
676                 R4600_HIT_CACHEOP_WAR_IMPL;
677                 blast_dcache_range(addr, addr + size);
678         }
679
680         bc_inv(addr, size);
681 }
682 #endif /* CONFIG_DMA_NONCOHERENT */
683
684 /*
685  * While we're protected against bad userland addresses we don't care
686  * very much about what happens in that case.  Usually a segmentation
687  * fault will dump the process later on anyway ...
688  */
689 static void local_r4k_flush_cache_sigtramp(void * arg)
690 {
691         unsigned long ic_lsize = cpu_icache_line_size();
692         unsigned long dc_lsize = cpu_dcache_line_size();
693         unsigned long sc_lsize = cpu_scache_line_size();
694         unsigned long addr = (unsigned long) arg;
695
696         R4600_HIT_CACHEOP_WAR_IMPL;
697         if (dc_lsize)
698                 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
699         if (!cpu_icache_snoops_remote_store && scache_size)
700                 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
701         if (ic_lsize)
702                 protected_flush_icache_line(addr & ~(ic_lsize - 1));
703         if (MIPS4K_ICACHE_REFILL_WAR) {
704                 __asm__ __volatile__ (
705                         ".set push\n\t"
706                         ".set noat\n\t"
707                         ".set mips3\n\t"
708 #ifdef CONFIG_32BIT
709                         "la     $at,1f\n\t"
710 #endif
711 #ifdef CONFIG_64BIT
712                         "dla    $at,1f\n\t"
713 #endif
714                         "cache  %0,($at)\n\t"
715                         "nop; nop; nop\n"
716                         "1:\n\t"
717                         ".set pop"
718                         :
719                         : "i" (Hit_Invalidate_I));
720         }
721         if (MIPS_CACHE_SYNC_WAR)
722                 __asm__ __volatile__ ("sync");
723 }
724
725 static void r4k_flush_cache_sigtramp(unsigned long addr)
726 {
727         r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
728 }
729
730 static void r4k_flush_icache_all(void)
731 {
732         if (cpu_has_vtag_icache)
733                 r4k_blast_icache();
734 }
735
736 static inline void rm7k_erratum31(void)
737 {
738         const unsigned long ic_lsize = 32;
739         unsigned long addr;
740
741         /* RM7000 erratum #31. The icache is screwed at startup. */
742         write_c0_taglo(0);
743         write_c0_taghi(0);
744
745         for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
746                 __asm__ __volatile__ (
747                         ".set push\n\t"
748                         ".set noreorder\n\t"
749                         ".set mips3\n\t"
750                         "cache\t%1, 0(%0)\n\t"
751                         "cache\t%1, 0x1000(%0)\n\t"
752                         "cache\t%1, 0x2000(%0)\n\t"
753                         "cache\t%1, 0x3000(%0)\n\t"
754                         "cache\t%2, 0(%0)\n\t"
755                         "cache\t%2, 0x1000(%0)\n\t"
756                         "cache\t%2, 0x2000(%0)\n\t"
757                         "cache\t%2, 0x3000(%0)\n\t"
758                         "cache\t%1, 0(%0)\n\t"
759                         "cache\t%1, 0x1000(%0)\n\t"
760                         "cache\t%1, 0x2000(%0)\n\t"
761                         "cache\t%1, 0x3000(%0)\n\t"
762                         ".set pop\n"
763                         :
764                         : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
765         }
766 }
767
768 static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
769         "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
770 };
771
772 static void __init probe_pcache(void)
773 {
774         struct cpuinfo_mips *c = &current_cpu_data;
775         unsigned int config = read_c0_config();
776         unsigned int prid = read_c0_prid();
777         unsigned long config1;
778         unsigned int lsize;
779
780         switch (c->cputype) {
781         case CPU_R4600:                 /* QED style two way caches? */
782         case CPU_R4700:
783         case CPU_R5000:
784         case CPU_NEVADA:
785                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
786                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
787                 c->icache.ways = 2;
788                 c->icache.waybit = __ffs(icache_size/2);
789
790                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
791                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
792                 c->dcache.ways = 2;
793                 c->dcache.waybit= __ffs(dcache_size/2);
794
795                 c->options |= MIPS_CPU_CACHE_CDEX_P;
796                 break;
797
798         case CPU_R5432:
799         case CPU_R5500:
800                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
801                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
802                 c->icache.ways = 2;
803                 c->icache.waybit= 0;
804
805                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
806                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
807                 c->dcache.ways = 2;
808                 c->dcache.waybit = 0;
809
810                 c->options |= MIPS_CPU_CACHE_CDEX_P;
811                 break;
812
813         case CPU_TX49XX:
814                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
815                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
816                 c->icache.ways = 4;
817                 c->icache.waybit= 0;
818
819                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
820                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
821                 c->dcache.ways = 4;
822                 c->dcache.waybit = 0;
823
824                 c->options |= MIPS_CPU_CACHE_CDEX_P;
825                 c->options |= MIPS_CPU_PREFETCH;
826                 break;
827
828         case CPU_R4000PC:
829         case CPU_R4000SC:
830         case CPU_R4000MC:
831         case CPU_R4400PC:
832         case CPU_R4400SC:
833         case CPU_R4400MC:
834         case CPU_R4300:
835                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
836                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
837                 c->icache.ways = 1;
838                 c->icache.waybit = 0;   /* doesn't matter */
839
840                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
841                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
842                 c->dcache.ways = 1;
843                 c->dcache.waybit = 0;   /* does not matter */
844
845                 c->options |= MIPS_CPU_CACHE_CDEX_P;
846                 break;
847
848         case CPU_R10000:
849         case CPU_R12000:
850         case CPU_R14000:
851                 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
852                 c->icache.linesz = 64;
853                 c->icache.ways = 2;
854                 c->icache.waybit = 0;
855
856                 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
857                 c->dcache.linesz = 32;
858                 c->dcache.ways = 2;
859                 c->dcache.waybit = 0;
860
861                 c->options |= MIPS_CPU_PREFETCH;
862                 break;
863
864         case CPU_VR4133:
865                 write_c0_config(config & ~CONF_EB);
866         case CPU_VR4131:
867                 /* Workaround for cache instruction bug of VR4131 */
868                 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
869                     c->processor_id == 0x0c82U) {
870                         config &= ~0x00000030U;
871                         config |= 0x00410000U;
872                         write_c0_config(config);
873                 }
874                 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
875                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
876                 c->icache.ways = 2;
877                 c->icache.waybit = __ffs(icache_size/2);
878
879                 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
880                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
881                 c->dcache.ways = 2;
882                 c->dcache.waybit = __ffs(dcache_size/2);
883
884                 c->options |= MIPS_CPU_CACHE_CDEX_P;
885                 break;
886
887         case CPU_VR41XX:
888         case CPU_VR4111:
889         case CPU_VR4121:
890         case CPU_VR4122:
891         case CPU_VR4181:
892         case CPU_VR4181A:
893                 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
894                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
895                 c->icache.ways = 1;
896                 c->icache.waybit = 0;   /* doesn't matter */
897
898                 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
899                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
900                 c->dcache.ways = 1;
901                 c->dcache.waybit = 0;   /* does not matter */
902
903                 c->options |= MIPS_CPU_CACHE_CDEX_P;
904                 break;
905
906         case CPU_RM7000:
907                 rm7k_erratum31();
908
909         case CPU_RM9000:
910                 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
911                 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
912                 c->icache.ways = 4;
913                 c->icache.waybit = __ffs(icache_size / c->icache.ways);
914
915                 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
916                 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
917                 c->dcache.ways = 4;
918                 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
919
920 #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
921                 c->options |= MIPS_CPU_CACHE_CDEX_P;
922 #endif
923                 c->options |= MIPS_CPU_PREFETCH;
924                 break;
925
926         default:
927                 if (!(config & MIPS_CONF_M))
928                         panic("Don't know how to probe P-caches on this cpu.");
929
930                 /*
931                  * So we seem to be a MIPS32 or MIPS64 CPU
932                  * So let's probe the I-cache ...
933                  */
934                 config1 = read_c0_config1();
935
936                 if ((lsize = ((config1 >> 19) & 7)))
937                         c->icache.linesz = 2 << lsize;
938                 else
939                         c->icache.linesz = lsize;
940                 c->icache.sets = 64 << ((config1 >> 22) & 7);
941                 c->icache.ways = 1 + ((config1 >> 16) & 7);
942
943                 icache_size = c->icache.sets *
944                               c->icache.ways *
945                               c->icache.linesz;
946                 c->icache.waybit = __ffs(icache_size/c->icache.ways);
947
948                 if (config & 0x8)               /* VI bit */
949                         c->icache.flags |= MIPS_CACHE_VTAG;
950
951                 /*
952                  * Now probe the MIPS32 / MIPS64 data cache.
953                  */
954                 c->dcache.flags = 0;
955
956                 if ((lsize = ((config1 >> 10) & 7)))
957                         c->dcache.linesz = 2 << lsize;
958                 else
959                         c->dcache.linesz= lsize;
960                 c->dcache.sets = 64 << ((config1 >> 13) & 7);
961                 c->dcache.ways = 1 + ((config1 >> 7) & 7);
962
963                 dcache_size = c->dcache.sets *
964                               c->dcache.ways *
965                               c->dcache.linesz;
966                 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
967
968                 c->options |= MIPS_CPU_PREFETCH;
969                 break;
970         }
971
972         /*
973          * Processor configuration sanity check for the R4000SC erratum
974          * #5.  With page sizes larger than 32kB there is no possibility
975          * to get a VCE exception anymore so we don't care about this
976          * misconfiguration.  The case is rather theoretical anyway;
977          * presumably no vendor is shipping his hardware in the "bad"
978          * configuration.
979          */
980         if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
981             !(config & CONF_SC) && c->icache.linesz != 16 &&
982             PAGE_SIZE <= 0x8000)
983                 panic("Improper R4000SC processor configuration detected");
984
985         /* compute a couple of other cache variables */
986         c->icache.waysize = icache_size / c->icache.ways;
987         c->dcache.waysize = dcache_size / c->dcache.ways;
988
989         c->icache.sets = c->icache.linesz ?
990                 icache_size / (c->icache.linesz * c->icache.ways) : 0;
991         c->dcache.sets = c->dcache.linesz ?
992                 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
993
994         /*
995          * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
996          * 2-way virtually indexed so normally would suffer from aliases.  So
997          * normally they'd suffer from aliases but magic in the hardware deals
998          * with that for us so we don't need to take care ourselves.
999          */
1000         switch (c->cputype) {
1001         case CPU_20KC:
1002         case CPU_25KF:
1003                 c->dcache.flags |= MIPS_CACHE_PINDEX;
1004         case CPU_R10000:
1005         case CPU_R12000:
1006         case CPU_R14000:
1007         case CPU_SB1:
1008                 break;
1009         case CPU_24K:
1010         case CPU_34K:
1011         case CPU_74K:
1012                 if ((read_c0_config7() & (1 << 16))) {
1013                         /* effectively physically indexed dcache,
1014                            thus no virtual aliases. */
1015                         c->dcache.flags |= MIPS_CACHE_PINDEX;
1016                         break;
1017                 }
1018         default:
1019                 if (c->dcache.waysize > PAGE_SIZE)
1020                         c->dcache.flags |= MIPS_CACHE_ALIASES;
1021         }
1022
1023         switch (c->cputype) {
1024         case CPU_20KC:
1025                 /*
1026                  * Some older 20Kc chips doesn't have the 'VI' bit in
1027                  * the config register.
1028                  */
1029                 c->icache.flags |= MIPS_CACHE_VTAG;
1030                 break;
1031
1032         case CPU_AU1000:
1033         case CPU_AU1500:
1034         case CPU_AU1100:
1035         case CPU_AU1550:
1036         case CPU_AU1200:
1037                 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1038                 break;
1039         }
1040
1041         printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1042                icache_size >> 10,
1043                cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
1044                way_string[c->icache.ways], c->icache.linesz);
1045
1046         printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
1047                dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
1048 }
1049
1050 /*
1051  * If you even _breathe_ on this function, look at the gcc output and make sure
1052  * it does not pop things on and off the stack for the cache sizing loop that
1053  * executes in KSEG1 space or else you will crash and burn badly.  You have
1054  * been warned.
1055  */
1056 static int __init probe_scache(void)
1057 {
1058         extern unsigned long stext;
1059         unsigned long flags, addr, begin, end, pow2;
1060         unsigned int config = read_c0_config();
1061         struct cpuinfo_mips *c = &current_cpu_data;
1062         int tmp;
1063
1064         if (config & CONF_SC)
1065                 return 0;
1066
1067         begin = (unsigned long) &stext;
1068         begin &= ~((4 * 1024 * 1024) - 1);
1069         end = begin + (4 * 1024 * 1024);
1070
1071         /*
1072          * This is such a bitch, you'd think they would make it easy to do
1073          * this.  Away you daemons of stupidity!
1074          */
1075         local_irq_save(flags);
1076
1077         /* Fill each size-multiple cache line with a valid tag. */
1078         pow2 = (64 * 1024);
1079         for (addr = begin; addr < end; addr = (begin + pow2)) {
1080                 unsigned long *p = (unsigned long *) addr;
1081                 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1082                 pow2 <<= 1;
1083         }
1084
1085         /* Load first line with zero (therefore invalid) tag. */
1086         write_c0_taglo(0);
1087         write_c0_taghi(0);
1088         __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1089         cache_op(Index_Store_Tag_I, begin);
1090         cache_op(Index_Store_Tag_D, begin);
1091         cache_op(Index_Store_Tag_SD, begin);
1092
1093         /* Now search for the wrap around point. */
1094         pow2 = (128 * 1024);
1095         tmp = 0;
1096         for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1097                 cache_op(Index_Load_Tag_SD, addr);
1098                 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1099                 if (!read_c0_taglo())
1100                         break;
1101                 pow2 <<= 1;
1102         }
1103         local_irq_restore(flags);
1104         addr -= begin;
1105
1106         scache_size = addr;
1107         c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1108         c->scache.ways = 1;
1109         c->dcache.waybit = 0;           /* does not matter */
1110
1111         return 1;
1112 }
1113
1114 extern int r5k_sc_init(void);
1115 extern int rm7k_sc_init(void);
1116 extern int mips_sc_init(void);
1117
1118 static void __init setup_scache(void)
1119 {
1120         struct cpuinfo_mips *c = &current_cpu_data;
1121         unsigned int config = read_c0_config();
1122         int sc_present = 0;
1123
1124         /*
1125          * Do the probing thing on R4000SC and R4400SC processors.  Other
1126          * processors don't have a S-cache that would be relevant to the
1127          * Linux memory managment.
1128          */
1129         switch (c->cputype) {
1130         case CPU_R4000SC:
1131         case CPU_R4000MC:
1132         case CPU_R4400SC:
1133         case CPU_R4400MC:
1134                 sc_present = run_uncached(probe_scache);
1135                 if (sc_present)
1136                         c->options |= MIPS_CPU_CACHE_CDEX_S;
1137                 break;
1138
1139         case CPU_R10000:
1140         case CPU_R12000:
1141         case CPU_R14000:
1142                 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1143                 c->scache.linesz = 64 << ((config >> 13) & 1);
1144                 c->scache.ways = 2;
1145                 c->scache.waybit= 0;
1146                 sc_present = 1;
1147                 break;
1148
1149         case CPU_R5000:
1150         case CPU_NEVADA:
1151 #ifdef CONFIG_R5000_CPU_SCACHE
1152                 r5k_sc_init();
1153 #endif
1154                 return;
1155
1156         case CPU_RM7000:
1157         case CPU_RM9000:
1158 #ifdef CONFIG_RM7000_CPU_SCACHE
1159                 rm7k_sc_init();
1160 #endif
1161                 return;
1162
1163         default:
1164                 if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
1165                     c->isa_level == MIPS_CPU_ISA_M32R2 ||
1166                     c->isa_level == MIPS_CPU_ISA_M64R1 ||
1167                     c->isa_level == MIPS_CPU_ISA_M64R2) {
1168 #ifdef CONFIG_MIPS_CPU_SCACHE
1169                         if (mips_sc_init ()) {
1170                                 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1171                                 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1172                                        scache_size >> 10,
1173                                        way_string[c->scache.ways], c->scache.linesz);
1174                         }
1175 #else
1176                         if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1177                                 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1178 #endif
1179                         return;
1180                 }
1181                 sc_present = 0;
1182         }
1183
1184         if (!sc_present)
1185                 return;
1186
1187         /* compute a couple of other cache variables */
1188         c->scache.waysize = scache_size / c->scache.ways;
1189
1190         c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1191
1192         printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1193                scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1194
1195         c->options |= MIPS_CPU_SUBSET_CACHES;
1196 }
1197
1198 void au1x00_fixup_config_od(void)
1199 {
1200         /*
1201          * c0_config.od (bit 19) was write only (and read as 0)
1202          * on the early revisions of Alchemy SOCs.  It disables the bus
1203          * transaction overlapping and needs to be set to fix various errata.
1204          */
1205         switch (read_c0_prid()) {
1206         case 0x00030100: /* Au1000 DA */
1207         case 0x00030201: /* Au1000 HA */
1208         case 0x00030202: /* Au1000 HB */
1209         case 0x01030200: /* Au1500 AB */
1210         /*
1211          * Au1100 errata actually keeps silence about this bit, so we set it
1212          * just in case for those revisions that require it to be set according
1213          * to arch/mips/au1000/common/cputable.c
1214          */
1215         case 0x02030200: /* Au1100 AB */
1216         case 0x02030201: /* Au1100 BA */
1217         case 0x02030202: /* Au1100 BC */
1218                 set_c0_config(1 << 19);
1219                 break;
1220         }
1221 }
1222
1223 static inline void coherency_setup(void)
1224 {
1225         change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1226
1227         /*
1228          * c0_status.cu=0 specifies that updates by the sc instruction use
1229          * the coherency mode specified by the TLB; 1 means cachable
1230          * coherent update on write will be used.  Not all processors have
1231          * this bit and; some wire it to zero, others like Toshiba had the
1232          * silly idea of putting something else there ...
1233          */
1234         switch (current_cpu_data.cputype) {
1235         case CPU_R4000PC:
1236         case CPU_R4000SC:
1237         case CPU_R4000MC:
1238         case CPU_R4400PC:
1239         case CPU_R4400SC:
1240         case CPU_R4400MC:
1241                 clear_c0_config(CONF_CU);
1242                 break;
1243         /*
1244          * We need to catch the ealry Alchemy SOCs with
1245          * the write-only co_config.od bit and set it back to one...
1246          */
1247         case CPU_AU1000: /* rev. DA, HA, HB */
1248         case CPU_AU1100: /* rev. AB, BA, BC ?? */
1249         case CPU_AU1500: /* rev. AB */
1250                 au1x00_fixup_config_od();
1251                 break;
1252         }
1253 }
1254
1255 void __init r4k_cache_init(void)
1256 {
1257         extern void build_clear_page(void);
1258         extern void build_copy_page(void);
1259         extern char except_vec2_generic;
1260         struct cpuinfo_mips *c = &current_cpu_data;
1261
1262         /* Default cache error handler for R4000 and R5000 family */
1263         set_uncached_handler (0x100, &except_vec2_generic, 0x80);
1264
1265         probe_pcache();
1266         setup_scache();
1267
1268         r4k_blast_dcache_page_setup();
1269         r4k_blast_dcache_page_indexed_setup();
1270         r4k_blast_dcache_setup();
1271         r4k_blast_icache_page_setup();
1272         r4k_blast_icache_page_indexed_setup();
1273         r4k_blast_icache_setup();
1274         r4k_blast_scache_page_setup();
1275         r4k_blast_scache_page_indexed_setup();
1276         r4k_blast_scache_setup();
1277
1278         /*
1279          * Some MIPS32 and MIPS64 processors have physically indexed caches.
1280          * This code supports virtually indexed processors and will be
1281          * unnecessarily inefficient on physically indexed processors.
1282          */
1283         if (c->dcache.linesz)
1284                 shm_align_mask = max_t( unsigned long,
1285                                         c->dcache.sets * c->dcache.linesz - 1,
1286                                         PAGE_SIZE - 1);
1287         else
1288                 shm_align_mask = PAGE_SIZE-1;
1289         flush_cache_all         = r4k_flush_cache_all;
1290         __flush_cache_all       = r4k___flush_cache_all;
1291         flush_cache_mm          = r4k_flush_cache_mm;
1292         flush_cache_page        = r4k_flush_cache_page;
1293         flush_icache_page       = r4k_flush_icache_page;
1294         flush_cache_range       = r4k_flush_cache_range;
1295
1296         flush_cache_sigtramp    = r4k_flush_cache_sigtramp;
1297         flush_icache_all        = r4k_flush_icache_all;
1298         local_flush_data_cache_page     = local_r4k_flush_data_cache_page;
1299         flush_data_cache_page   = r4k_flush_data_cache_page;
1300         flush_icache_range      = r4k_flush_icache_range;
1301
1302 #ifdef CONFIG_DMA_NONCOHERENT
1303         _dma_cache_wback_inv    = r4k_dma_cache_wback_inv;
1304         _dma_cache_wback        = r4k_dma_cache_wback_inv;
1305         _dma_cache_inv          = r4k_dma_cache_inv;
1306 #endif
1307
1308         build_clear_page();
1309         build_copy_page();
1310         local_r4k___flush_cache_all(NULL);
1311         coherency_setup();
1312 }