Merge tag 'mfd-for-linus-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[pandora-kernel.git] / arch / metag / include / asm / pgtable.h
1 /*
2  * Macros and functions to manipulate Meta page tables.
3  */
4
5 #ifndef _METAG_PGTABLE_H
6 #define _METAG_PGTABLE_H
7
8 #include <asm-generic/pgtable-nopmd.h>
9
10 /* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */
11 #if PAGE_OFFSET >= LINGLOBAL_BASE
12 #define CONSISTENT_START        0xF7000000
13 #define CONSISTENT_END          0xF73FFFFF
14 #define VMALLOC_START           0xF8000000
15 #define VMALLOC_END             0xFFFEFFFF
16 #else
17 #define CONSISTENT_START        0x77000000
18 #define CONSISTENT_END          0x773FFFFF
19 #define VMALLOC_START           0x78000000
20 #define VMALLOC_END             0x7FFFFFFF
21 #endif
22
23 /*
24  * Definitions for MMU descriptors
25  *
26  * These are the hardware bits in the MMCU pte entries.
27  * Derived from the Meta toolkit headers.
28  */
29 #define _PAGE_PRESENT           MMCU_ENTRY_VAL_BIT
30 #define _PAGE_WRITE             MMCU_ENTRY_WR_BIT
31 #define _PAGE_PRIV              MMCU_ENTRY_PRIV_BIT
32 /* Write combine bit - this can cause writes to occur out of order */
33 #define _PAGE_WR_COMBINE        MMCU_ENTRY_WRC_BIT
34 /* Sys coherent bit - this bit is never used by Linux */
35 #define _PAGE_SYS_COHERENT      MMCU_ENTRY_SYS_BIT
36 #define _PAGE_ALWAYS_ZERO_1     0x020
37 #define _PAGE_CACHE_CTRL0       0x040
38 #define _PAGE_CACHE_CTRL1       0x080
39 #define _PAGE_ALWAYS_ZERO_2     0x100
40 #define _PAGE_ALWAYS_ZERO_3     0x200
41 #define _PAGE_ALWAYS_ZERO_4     0x400
42 #define _PAGE_ALWAYS_ZERO_5     0x800
43
44 /* These are software bits that we stuff into the gaps in the hardware
45  * pte entries that are not used.  Note, these DO get stored in the actual
46  * hardware, but the hardware just does not use them.
47  */
48 #define _PAGE_ACCESSED          _PAGE_ALWAYS_ZERO_1
49 #define _PAGE_DIRTY             _PAGE_ALWAYS_ZERO_2
50
51 /* Pages owned, and protected by, the kernel. */
52 #define _PAGE_KERNEL            _PAGE_PRIV
53
54 /* No cacheing of this page */
55 #define _PAGE_CACHE_WIN0        (MMCU_CWIN_UNCACHED << MMCU_ENTRY_CWIN_S)
56 /* burst cacheing - good for data streaming */
57 #define _PAGE_CACHE_WIN1        (MMCU_CWIN_BURST << MMCU_ENTRY_CWIN_S)
58 /* One cache way per thread */
59 #define _PAGE_CACHE_WIN2        (MMCU_CWIN_C1SET << MMCU_ENTRY_CWIN_S)
60 /* Full on cacheing */
61 #define _PAGE_CACHE_WIN3        (MMCU_CWIN_CACHED << MMCU_ENTRY_CWIN_S)
62
63 #define _PAGE_CACHEABLE         (_PAGE_CACHE_WIN3 | _PAGE_WR_COMBINE)
64
65 /* which bits are used for cache control ... */
66 #define _PAGE_CACHE_MASK        (_PAGE_CACHE_CTRL0 | _PAGE_CACHE_CTRL1 | \
67                                  _PAGE_WR_COMBINE)
68
69 /* This is a mask of the bits that pte_modify is allowed to change. */
70 #define _PAGE_CHG_MASK          (PAGE_MASK)
71
72 #define _PAGE_SZ_SHIFT          1
73 #define _PAGE_SZ_4K             (0x0)
74 #define _PAGE_SZ_8K             (0x1 << _PAGE_SZ_SHIFT)
75 #define _PAGE_SZ_16K            (0x2 << _PAGE_SZ_SHIFT)
76 #define _PAGE_SZ_32K            (0x3 << _PAGE_SZ_SHIFT)
77 #define _PAGE_SZ_64K            (0x4 << _PAGE_SZ_SHIFT)
78 #define _PAGE_SZ_128K           (0x5 << _PAGE_SZ_SHIFT)
79 #define _PAGE_SZ_256K           (0x6 << _PAGE_SZ_SHIFT)
80 #define _PAGE_SZ_512K           (0x7 << _PAGE_SZ_SHIFT)
81 #define _PAGE_SZ_1M             (0x8 << _PAGE_SZ_SHIFT)
82 #define _PAGE_SZ_2M             (0x9 << _PAGE_SZ_SHIFT)
83 #define _PAGE_SZ_4M             (0xa << _PAGE_SZ_SHIFT)
84 #define _PAGE_SZ_MASK           (0xf << _PAGE_SZ_SHIFT)
85
86 #if defined(CONFIG_PAGE_SIZE_4K)
87 #define _PAGE_SZ                (_PAGE_SZ_4K)
88 #elif defined(CONFIG_PAGE_SIZE_8K)
89 #define _PAGE_SZ                (_PAGE_SZ_8K)
90 #elif defined(CONFIG_PAGE_SIZE_16K)
91 #define _PAGE_SZ                (_PAGE_SZ_16K)
92 #endif
93 #define _PAGE_TABLE             (_PAGE_SZ | _PAGE_PRESENT)
94
95 #if defined(CONFIG_HUGETLB_PAGE_SIZE_8K)
96 # define _PAGE_SZHUGE           (_PAGE_SZ_8K)
97 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_16K)
98 # define _PAGE_SZHUGE           (_PAGE_SZ_16K)
99 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_32K)
100 # define _PAGE_SZHUGE           (_PAGE_SZ_32K)
101 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
102 # define _PAGE_SZHUGE           (_PAGE_SZ_64K)
103 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_128K)
104 # define _PAGE_SZHUGE           (_PAGE_SZ_128K)
105 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_256K)
106 # define _PAGE_SZHUGE           (_PAGE_SZ_256K)
107 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108 # define _PAGE_SZHUGE           (_PAGE_SZ_512K)
109 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1M)
110 # define _PAGE_SZHUGE           (_PAGE_SZ_1M)
111 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_2M)
112 # define _PAGE_SZHUGE           (_PAGE_SZ_2M)
113 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4M)
114 # define _PAGE_SZHUGE           (_PAGE_SZ_4M)
115 #endif
116
117 /*
118  * The Linux memory management assumes a three-level page table setup. On
119  * Meta, we use that, but "fold" the mid level into the top-level page
120  * table.
121  */
122
123 /* PGDIR_SHIFT determines the size of the area a second-level page table can
124  * map. This is always 4MB.
125  */
126
127 #define PGDIR_SHIFT     22
128 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
129 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
130
131 /*
132  * Entries per page directory level: we use a two-level, so
133  * we don't really have any PMD directory physically. First level tables
134  * always map 2Gb (local or global) at a granularity of 4MB, second-level
135  * tables map 4MB with a granularity between 4MB and 4kB (between 1 and
136  * 1024 entries).
137  */
138 #define PTRS_PER_PTE    (PGDIR_SIZE/PAGE_SIZE)
139 #define HPTRS_PER_PTE   (PGDIR_SIZE/HPAGE_SIZE)
140 #define PTRS_PER_PGD    512
141
142 #define USER_PTRS_PER_PGD       256
143 #define FIRST_USER_ADDRESS      META_MEMORY_BASE
144 #define FIRST_USER_PGD_NR       pgd_index(FIRST_USER_ADDRESS)
145
146 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
147                                  _PAGE_CACHEABLE)
148
149 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \
150                                  _PAGE_ACCESSED | _PAGE_CACHEABLE)
151 #define PAGE_SHARED_C   PAGE_SHARED
152 #define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
153                                  _PAGE_CACHEABLE)
154 #define PAGE_COPY_C     PAGE_COPY
155
156 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
157                                  _PAGE_CACHEABLE)
158 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \
159                                  _PAGE_ACCESSED | _PAGE_WRITE | \
160                                  _PAGE_CACHEABLE | _PAGE_KERNEL)
161
162 #define __P000  PAGE_NONE
163 #define __P001  PAGE_READONLY
164 #define __P010  PAGE_COPY
165 #define __P011  PAGE_COPY
166 #define __P100  PAGE_READONLY
167 #define __P101  PAGE_READONLY
168 #define __P110  PAGE_COPY_C
169 #define __P111  PAGE_COPY_C
170
171 #define __S000  PAGE_NONE
172 #define __S001  PAGE_READONLY
173 #define __S010  PAGE_SHARED
174 #define __S011  PAGE_SHARED
175 #define __S100  PAGE_READONLY
176 #define __S101  PAGE_READONLY
177 #define __S110  PAGE_SHARED_C
178 #define __S111  PAGE_SHARED_C
179
180 #ifndef __ASSEMBLY__
181
182 #include <asm/page.h>
183
184 /* zero page used for uninitialized stuff */
185 extern unsigned long empty_zero_page;
186 #define ZERO_PAGE(vaddr)        (virt_to_page(empty_zero_page))
187
188 /* Certain architectures need to do special things when pte's
189  * within a page table are directly modified.  Thus, the following
190  * hook is made available.
191  */
192 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
193 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
194
195 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
196
197 #define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
198
199 #define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
200
201 #define pte_none(x)             (!pte_val(x))
202 #define pte_present(x)          (pte_val(x) & _PAGE_PRESENT)
203 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
204
205 #define pmd_none(x)             (!pmd_val(x))
206 #define pmd_bad(x)              ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \
207                                         != (_PAGE_TABLE & ~_PAGE_SZ_MASK))
208 #define pmd_present(x)          (pmd_val(x) & _PAGE_PRESENT)
209 #define pmd_clear(xp)           do { pmd_val(*(xp)) = 0; } while (0)
210
211 #define pte_page(x)             pfn_to_page(pte_pfn(x))
212
213 /*
214  * The following only work if pte_present() is true.
215  * Undefined behaviour if not..
216  */
217
218 static inline int pte_write(pte_t pte)   { return pte_val(pte) & _PAGE_WRITE; }
219 static inline int pte_dirty(pte_t pte)   { return pte_val(pte) & _PAGE_DIRTY; }
220 static inline int pte_young(pte_t pte)   { return pte_val(pte) & _PAGE_ACCESSED; }
221 static inline int pte_special(pte_t pte) { return 0; }
222
223 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; }
224 static inline pte_t pte_mkclean(pte_t pte)   { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
225 static inline pte_t pte_mkold(pte_t pte)     { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
226 static inline pte_t pte_mkwrite(pte_t pte)   { pte_val(pte) |= _PAGE_WRITE; return pte; }
227 static inline pte_t pte_mkdirty(pte_t pte)   { pte_val(pte) |= _PAGE_DIRTY; return pte; }
228 static inline pte_t pte_mkyoung(pte_t pte)   { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
229 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
230 static inline pte_t pte_mkhuge(pte_t pte)    { return pte; }
231
232 /*
233  * Macro and implementation to make a page protection as uncacheable.
234  */
235 #define pgprot_writecombine(prot)                                       \
236         __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0))
237
238 #define pgprot_noncached(prot)                                          \
239         __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE)
240
241
242 /*
243  * Conversion functions: convert a page and protection to a page entry,
244  * and a page entry and page directory to the page they refer to.
245  */
246
247 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
248
249 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
250 {
251         pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
252         return pte;
253 }
254
255 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
256 {
257         unsigned long paddr = pmd_val(pmd) & PAGE_MASK;
258         if (!paddr)
259                 return 0;
260         return (unsigned long)__va(paddr);
261 }
262
263 #define pmd_page(pmd)           (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
264 #define pmd_page_shift(pmd)     (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \
265                                         >> _PAGE_SZ_SHIFT))
266 #define pmd_num_ptrs(pmd)       (PGDIR_SIZE >> pmd_page_shift(pmd))
267
268 /*
269  * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global
270  * space drop the top bit before indexing the pgd.
271  */
272 #if PAGE_OFFSET >= LINGLOBAL_BASE
273 #define pgd_index(address)      ((((address) & ~0x80000000) >> PGDIR_SHIFT) \
274                                                         & (PTRS_PER_PGD-1))
275 #else
276 #define pgd_index(address)      (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
277 #endif
278
279 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
280
281 #define pgd_offset_k(address)   pgd_offset(&init_mm, address)
282
283 #define pmd_index(address)      (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
284
285 /* Find an entry in the second-level page table.. */
286 #if !defined(CONFIG_HUGETLB_PAGE)
287   /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */
288 # define pte_index(pmd, address) \
289         (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
290 #else
291   /* some pages are huge, so read 1st level pt to find out */
292 # define pte_index(pmd, address) \
293         (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1))
294 #endif
295 #define pte_offset_kernel(dir, address) \
296         ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address))
297 #define pte_offset_map(dir, address)            pte_offset_kernel(dir, address)
298 #define pte_offset_map_nested(dir, address)     pte_offset_kernel(dir, address)
299
300 #define pte_unmap(pte)          do { } while (0)
301 #define pte_unmap_nested(pte)   do { } while (0)
302
303 #define pte_ERROR(e) \
304         pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
305 #define pgd_ERROR(e) \
306         pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
307
308 /*
309  * Meta doesn't have any external MMU info: the kernel page
310  * tables contain all the necessary information.
311  */
312 static inline void update_mmu_cache(struct vm_area_struct *vma,
313                                     unsigned long address, pte_t *pte)
314 {
315 }
316
317 /*
318  * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e))
319  * Since PAGE_PRESENT is bit 1, we can use the bits above that.
320  */
321 #define __swp_type(x)                   (((x).val >> 1) & 0xff)
322 #define __swp_offset(x)                 ((x).val >> 10)
323 #define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 1) | \
324                                          ((offset) << 10) })
325 #define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
326 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
327
328 #define kern_addr_valid(addr)   (1)
329
330 /*
331  * No page table caches to initialise
332  */
333 #define pgtable_cache_init()    do { } while (0)
334
335 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
336 void paging_init(unsigned long mem_end);
337
338 #ifdef CONFIG_METAG_META12
339 /* This is a workaround for an issue in Meta 1 cores. These cores cache
340  * invalid entries in the TLB so we always need to flush whenever we add
341  * a new pte. Unfortunately we can only flush the whole TLB not shoot down
342  * single entries so this is sub-optimal. This implementation ensures that
343  * we will get a flush at the second attempt, so we may still get repeated
344  * faults, we just don't overflow the kernel stack handling them.
345  */
346 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
347 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
348 ({                                                                        \
349         int __changed = !pte_same(*(__ptep), __entry);                    \
350         if (__changed) {                                                  \
351                 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
352         }                                                                 \
353         flush_tlb_page(__vma, __address);                                 \
354         __changed;                                                        \
355 })
356 #endif
357
358 #include <asm-generic/pgtable.h>
359
360 #endif /* __ASSEMBLY__ */
361 #endif /* _METAG_PGTABLE_H */