KVM: use smp_send_reschedule in kvm_vcpu_kick
[pandora-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148                 return ;
149         }
150
151         if (!kvm_vsa_base) {
152                 kvm_vsa_base = tmp_base;
153                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154         }
155         spin_unlock(&vp_lock);
156         ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162         long status;
163         int slot;
164         unsigned long pte;
165         unsigned long saved_psr;
166         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169                                 PAGE_KERNEL));
170
171         local_irq_save(saved_psr);
172         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173         local_irq_restore(saved_psr);
174         if (slot < 0)
175                 return;
176
177         status = ia64_pal_vp_exit_env(host_iva);
178         if (status)
179                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180                                 status);
181         ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186         *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192         int r;
193
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IRQ_INJECT_STATUS:
198                 r = 1;
199                 break;
200         case KVM_CAP_COALESCED_MMIO:
201                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202                 break;
203         case KVM_CAP_IOMMU:
204                 r = iommu_found();
205                 break;
206         default:
207                 r = 0;
208         }
209         return r;
210
211 }
212
213 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
214                                         gpa_t addr, int len, int is_write)
215 {
216         struct kvm_io_device *dev;
217
218         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
219
220         return dev;
221 }
222
223 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
226         kvm_run->hw.hardware_exit_reason = 1;
227         return 0;
228 }
229
230 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
231 {
232         struct kvm_mmio_req *p;
233         struct kvm_io_device *mmio_dev;
234
235         p = kvm_get_vcpu_ioreq(vcpu);
236
237         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
238                 goto mmio;
239         vcpu->mmio_needed = 1;
240         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
241         vcpu->mmio_size = kvm_run->mmio.len = p->size;
242         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
243
244         if (vcpu->mmio_is_write)
245                 memcpy(vcpu->mmio_data, &p->data, p->size);
246         memcpy(kvm_run->mmio.data, &p->data, p->size);
247         kvm_run->exit_reason = KVM_EXIT_MMIO;
248         return 0;
249 mmio:
250         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
251         if (mmio_dev) {
252                 if (!p->dir)
253                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
254                                                 &p->data);
255                 else
256                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
257                                                 &p->data);
258
259         } else
260                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
261         p->state = STATE_IORESP_READY;
262
263         return 1;
264 }
265
266 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
267 {
268         struct exit_ctl_data *p;
269
270         p = kvm_get_exit_data(vcpu);
271
272         if (p->exit_reason == EXIT_REASON_PAL_CALL)
273                 return kvm_pal_emul(vcpu, kvm_run);
274         else {
275                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276                 kvm_run->hw.hardware_exit_reason = 2;
277                 return 0;
278         }
279 }
280
281 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
282 {
283         struct exit_ctl_data *p;
284
285         p = kvm_get_exit_data(vcpu);
286
287         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
288                 kvm_sal_emul(vcpu);
289                 return 1;
290         } else {
291                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
292                 kvm_run->hw.hardware_exit_reason = 3;
293                 return 0;
294         }
295
296 }
297
298 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
299 {
300         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
301
302         if (!test_and_set_bit(vector, &vpd->irr[0])) {
303                 vcpu->arch.irq_new_pending = 1;
304                 kvm_vcpu_kick(vcpu);
305                 return 1;
306         }
307         return 0;
308 }
309
310 /*
311  *  offset: address offset to IPI space.
312  *  value:  deliver value.
313  */
314 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
315                                 uint64_t vector)
316 {
317         switch (dm) {
318         case SAPIC_FIXED:
319                 break;
320         case SAPIC_NMI:
321                 vector = 2;
322                 break;
323         case SAPIC_EXTINT:
324                 vector = 0;
325                 break;
326         case SAPIC_INIT:
327         case SAPIC_PMI:
328         default:
329                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
330                 return;
331         }
332         __apic_accept_irq(vcpu, vector);
333 }
334
335 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
336                         unsigned long eid)
337 {
338         union ia64_lid lid;
339         int i;
340
341         for (i = 0; i < kvm->arch.online_vcpus; i++) {
342                 if (kvm->vcpus[i]) {
343                         lid.val = VCPU_LID(kvm->vcpus[i]);
344                         if (lid.id == id && lid.eid == eid)
345                                 return kvm->vcpus[i];
346                 }
347         }
348
349         return NULL;
350 }
351
352 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
353 {
354         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
355         struct kvm_vcpu *target_vcpu;
356         struct kvm_pt_regs *regs;
357         union ia64_ipi_a addr = p->u.ipi_data.addr;
358         union ia64_ipi_d data = p->u.ipi_data.data;
359
360         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
361         if (!target_vcpu)
362                 return handle_vm_error(vcpu, kvm_run);
363
364         if (!target_vcpu->arch.launched) {
365                 regs = vcpu_regs(target_vcpu);
366
367                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
368                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
369
370                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
371                 if (waitqueue_active(&target_vcpu->wq))
372                         wake_up_interruptible(&target_vcpu->wq);
373         } else {
374                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
375                 if (target_vcpu != vcpu)
376                         kvm_vcpu_kick(target_vcpu);
377         }
378
379         return 1;
380 }
381
382 struct call_data {
383         struct kvm_ptc_g ptc_g_data;
384         struct kvm_vcpu *vcpu;
385 };
386
387 static void vcpu_global_purge(void *info)
388 {
389         struct call_data *p = (struct call_data *)info;
390         struct kvm_vcpu *vcpu = p->vcpu;
391
392         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393                 return;
394
395         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
396         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
397                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
398                                                         p->ptc_g_data;
399         } else {
400                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
401                 vcpu->arch.ptc_g_count = 0;
402                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
403         }
404 }
405
406 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
407 {
408         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
409         struct kvm *kvm = vcpu->kvm;
410         struct call_data call_data;
411         int i;
412
413         call_data.ptc_g_data = p->u.ptc_g_data;
414
415         for (i = 0; i < kvm->arch.online_vcpus; i++) {
416                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
417                                                 KVM_MP_STATE_UNINITIALIZED ||
418                                         vcpu == kvm->vcpus[i])
419                         continue;
420
421                 if (waitqueue_active(&kvm->vcpus[i]->wq))
422                         wake_up_interruptible(&kvm->vcpus[i]->wq);
423
424                 if (kvm->vcpus[i]->cpu != -1) {
425                         call_data.vcpu = kvm->vcpus[i];
426                         smp_call_function_single(kvm->vcpus[i]->cpu,
427                                         vcpu_global_purge, &call_data, 1);
428                 } else
429                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
430
431         }
432         return 1;
433 }
434
435 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
436 {
437         return 1;
438 }
439
440 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
441 {
442         unsigned long pte, rtc_phys_addr, map_addr;
443         int slot;
444
445         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
446         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
447         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
448         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
449         vcpu->arch.sn_rtc_tr_slot = slot;
450         if (slot < 0) {
451                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
452                 slot = 0;
453         }
454         return slot;
455 }
456
457 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
458 {
459
460         ktime_t kt;
461         long itc_diff;
462         unsigned long vcpu_now_itc;
463         unsigned long expires;
464         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
465         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
466         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
467
468         if (irqchip_in_kernel(vcpu->kvm)) {
469
470                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
471
472                 if (time_after(vcpu_now_itc, vpd->itm)) {
473                         vcpu->arch.timer_check = 1;
474                         return 1;
475                 }
476                 itc_diff = vpd->itm - vcpu_now_itc;
477                 if (itc_diff < 0)
478                         itc_diff = -itc_diff;
479
480                 expires = div64_u64(itc_diff, cyc_per_usec);
481                 kt = ktime_set(0, 1000 * expires);
482
483                 vcpu->arch.ht_active = 1;
484                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
485
486                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
487                 kvm_vcpu_block(vcpu);
488                 hrtimer_cancel(p_ht);
489                 vcpu->arch.ht_active = 0;
490
491                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
492                                 kvm_cpu_has_pending_timer(vcpu))
493                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
494                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
495
496                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
497                         return -EINTR;
498                 return 1;
499         } else {
500                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
501                 return 0;
502         }
503 }
504
505 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
506                 struct kvm_run *kvm_run)
507 {
508         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
509         return 0;
510 }
511
512 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
513                 struct kvm_run *kvm_run)
514 {
515         return 1;
516 }
517
518 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
519                                 struct kvm_run *kvm_run)
520 {
521         printk("VMM: %s", vcpu->arch.log_buf);
522         return 1;
523 }
524
525 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
526                 struct kvm_run *kvm_run) = {
527         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
528         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
529         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
530         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
531         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
532         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
533         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
534         [EXIT_REASON_IPI]                   = handle_ipi,
535         [EXIT_REASON_PTC_G]                 = handle_global_purge,
536         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
537
538 };
539
540 static const int kvm_vti_max_exit_handlers =
541                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
542
543 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
544 {
545         struct exit_ctl_data *p_exit_data;
546
547         p_exit_data = kvm_get_exit_data(vcpu);
548         return p_exit_data->exit_reason;
549 }
550
551 /*
552  * The guest has exited.  See if we can fix it or if we need userspace
553  * assistance.
554  */
555 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
556 {
557         u32 exit_reason = kvm_get_exit_reason(vcpu);
558         vcpu->arch.last_exit = exit_reason;
559
560         if (exit_reason < kvm_vti_max_exit_handlers
561                         && kvm_vti_exit_handlers[exit_reason])
562                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
563         else {
564                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
565                 kvm_run->hw.hardware_exit_reason = exit_reason;
566         }
567         return 0;
568 }
569
570 static inline void vti_set_rr6(unsigned long rr6)
571 {
572         ia64_set_rr(RR6, rr6);
573         ia64_srlz_i();
574 }
575
576 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
577 {
578         unsigned long pte;
579         struct kvm *kvm = vcpu->kvm;
580         int r;
581
582         /*Insert a pair of tr to map vmm*/
583         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
584         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
585         if (r < 0)
586                 goto out;
587         vcpu->arch.vmm_tr_slot = r;
588         /*Insert a pairt of tr to map data of vm*/
589         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
590         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
591                                         pte, KVM_VM_DATA_SHIFT);
592         if (r < 0)
593                 goto out;
594         vcpu->arch.vm_tr_slot = r;
595
596 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
597         if (kvm->arch.is_sn2) {
598                 r = kvm_sn2_setup_mappings(vcpu);
599                 if (r < 0)
600                         goto out;
601         }
602 #endif
603
604         r = 0;
605 out:
606         return r;
607 }
608
609 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
610 {
611         struct kvm *kvm = vcpu->kvm;
612         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
613         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
614 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
615         if (kvm->arch.is_sn2)
616                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
617 #endif
618 }
619
620 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
621 {
622         unsigned long psr;
623         int r;
624         int cpu = smp_processor_id();
625
626         if (vcpu->arch.last_run_cpu != cpu ||
627                         per_cpu(last_vcpu, cpu) != vcpu) {
628                 per_cpu(last_vcpu, cpu) = vcpu;
629                 vcpu->arch.last_run_cpu = cpu;
630                 kvm_flush_tlb_all();
631         }
632
633         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
634         vti_set_rr6(vcpu->arch.vmm_rr);
635         local_irq_save(psr);
636         r = kvm_insert_vmm_mapping(vcpu);
637         local_irq_restore(psr);
638         return r;
639 }
640
641 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
642 {
643         kvm_purge_vmm_mapping(vcpu);
644         vti_set_rr6(vcpu->arch.host_rr6);
645 }
646
647 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
648 {
649         union context *host_ctx, *guest_ctx;
650         int r;
651
652         /*
653          * down_read() may sleep and return with interrupts enabled
654          */
655         down_read(&vcpu->kvm->slots_lock);
656
657 again:
658         if (signal_pending(current)) {
659                 r = -EINTR;
660                 kvm_run->exit_reason = KVM_EXIT_INTR;
661                 goto out;
662         }
663
664         preempt_disable();
665         local_irq_disable();
666
667         /*Get host and guest context with guest address space.*/
668         host_ctx = kvm_get_host_context(vcpu);
669         guest_ctx = kvm_get_guest_context(vcpu);
670
671         clear_bit(KVM_REQ_KICK, &vcpu->requests);
672
673         r = kvm_vcpu_pre_transition(vcpu);
674         if (r < 0)
675                 goto vcpu_run_fail;
676
677         up_read(&vcpu->kvm->slots_lock);
678         kvm_guest_enter();
679
680         /*
681          * Transition to the guest
682          */
683         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
684
685         kvm_vcpu_post_transition(vcpu);
686
687         vcpu->arch.launched = 1;
688         set_bit(KVM_REQ_KICK, &vcpu->requests);
689         local_irq_enable();
690
691         /*
692          * We must have an instruction between local_irq_enable() and
693          * kvm_guest_exit(), so the timer interrupt isn't delayed by
694          * the interrupt shadow.  The stat.exits increment will do nicely.
695          * But we need to prevent reordering, hence this barrier():
696          */
697         barrier();
698         kvm_guest_exit();
699         preempt_enable();
700
701         down_read(&vcpu->kvm->slots_lock);
702
703         r = kvm_handle_exit(kvm_run, vcpu);
704
705         if (r > 0) {
706                 if (!need_resched())
707                         goto again;
708         }
709
710 out:
711         up_read(&vcpu->kvm->slots_lock);
712         if (r > 0) {
713                 kvm_resched(vcpu);
714                 down_read(&vcpu->kvm->slots_lock);
715                 goto again;
716         }
717
718         return r;
719
720 vcpu_run_fail:
721         local_irq_enable();
722         preempt_enable();
723         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
724         goto out;
725 }
726
727 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
728 {
729         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
730
731         if (!vcpu->mmio_is_write)
732                 memcpy(&p->data, vcpu->mmio_data, 8);
733         p->state = STATE_IORESP_READY;
734 }
735
736 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
737 {
738         int r;
739         sigset_t sigsaved;
740
741         vcpu_load(vcpu);
742
743         if (vcpu->sigset_active)
744                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
745
746         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
747                 kvm_vcpu_block(vcpu);
748                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
749                 r = -EAGAIN;
750                 goto out;
751         }
752
753         if (vcpu->mmio_needed) {
754                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
755                 kvm_set_mmio_data(vcpu);
756                 vcpu->mmio_read_completed = 1;
757                 vcpu->mmio_needed = 0;
758         }
759         r = __vcpu_run(vcpu, kvm_run);
760 out:
761         if (vcpu->sigset_active)
762                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
763
764         vcpu_put(vcpu);
765         return r;
766 }
767
768 static struct kvm *kvm_alloc_kvm(void)
769 {
770
771         struct kvm *kvm;
772         uint64_t  vm_base;
773
774         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
775
776         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
777
778         if (!vm_base)
779                 return ERR_PTR(-ENOMEM);
780
781         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
782         kvm = (struct kvm *)(vm_base +
783                         offsetof(struct kvm_vm_data, kvm_vm_struct));
784         kvm->arch.vm_base = vm_base;
785         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
786
787         return kvm;
788 }
789
790 struct kvm_io_range {
791         unsigned long start;
792         unsigned long size;
793         unsigned long type;
794 };
795
796 static const struct kvm_io_range io_ranges[] = {
797         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
798         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
799         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
800         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
801         {PIB_START, PIB_SIZE, GPFN_PIB},
802 };
803
804 static void kvm_build_io_pmt(struct kvm *kvm)
805 {
806         unsigned long i, j;
807
808         /* Mark I/O ranges */
809         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
810                                                         i++) {
811                 for (j = io_ranges[i].start;
812                                 j < io_ranges[i].start + io_ranges[i].size;
813                                 j += PAGE_SIZE)
814                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
815                                         io_ranges[i].type, 0);
816         }
817
818 }
819
820 /*Use unused rids to virtualize guest rid.*/
821 #define GUEST_PHYSICAL_RR0      0x1739
822 #define GUEST_PHYSICAL_RR4      0x2739
823 #define VMM_INIT_RR             0x1660
824
825 static void kvm_init_vm(struct kvm *kvm)
826 {
827         BUG_ON(!kvm);
828
829         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
830         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
831         kvm->arch.vmm_init_rr = VMM_INIT_RR;
832
833         /*
834          *Fill P2M entries for MMIO/IO ranges
835          */
836         kvm_build_io_pmt(kvm);
837
838         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
839
840         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
841         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
842 }
843
844 struct  kvm *kvm_arch_create_vm(void)
845 {
846         struct kvm *kvm = kvm_alloc_kvm();
847
848         if (IS_ERR(kvm))
849                 return ERR_PTR(-ENOMEM);
850
851         kvm->arch.is_sn2 = ia64_platform_is("sn2");
852
853         kvm_init_vm(kvm);
854
855         kvm->arch.online_vcpus = 0;
856
857         return kvm;
858
859 }
860
861 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
862                                         struct kvm_irqchip *chip)
863 {
864         int r;
865
866         r = 0;
867         switch (chip->chip_id) {
868         case KVM_IRQCHIP_IOAPIC:
869                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
870                                 sizeof(struct kvm_ioapic_state));
871                 break;
872         default:
873                 r = -EINVAL;
874                 break;
875         }
876         return r;
877 }
878
879 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
880 {
881         int r;
882
883         r = 0;
884         switch (chip->chip_id) {
885         case KVM_IRQCHIP_IOAPIC:
886                 memcpy(ioapic_irqchip(kvm),
887                                 &chip->chip.ioapic,
888                                 sizeof(struct kvm_ioapic_state));
889                 break;
890         default:
891                 r = -EINVAL;
892                 break;
893         }
894         return r;
895 }
896
897 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
898
899 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
900 {
901         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
902         int i;
903
904         vcpu_load(vcpu);
905
906         for (i = 0; i < 16; i++) {
907                 vpd->vgr[i] = regs->vpd.vgr[i];
908                 vpd->vbgr[i] = regs->vpd.vbgr[i];
909         }
910         for (i = 0; i < 128; i++)
911                 vpd->vcr[i] = regs->vpd.vcr[i];
912         vpd->vhpi = regs->vpd.vhpi;
913         vpd->vnat = regs->vpd.vnat;
914         vpd->vbnat = regs->vpd.vbnat;
915         vpd->vpsr = regs->vpd.vpsr;
916
917         vpd->vpr = regs->vpd.vpr;
918
919         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
920
921         RESTORE_REGS(mp_state);
922         RESTORE_REGS(vmm_rr);
923         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
924         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
925         RESTORE_REGS(itr_regions);
926         RESTORE_REGS(dtr_regions);
927         RESTORE_REGS(tc_regions);
928         RESTORE_REGS(irq_check);
929         RESTORE_REGS(itc_check);
930         RESTORE_REGS(timer_check);
931         RESTORE_REGS(timer_pending);
932         RESTORE_REGS(last_itc);
933         for (i = 0; i < 8; i++) {
934                 vcpu->arch.vrr[i] = regs->vrr[i];
935                 vcpu->arch.ibr[i] = regs->ibr[i];
936                 vcpu->arch.dbr[i] = regs->dbr[i];
937         }
938         for (i = 0; i < 4; i++)
939                 vcpu->arch.insvc[i] = regs->insvc[i];
940         RESTORE_REGS(xtp);
941         RESTORE_REGS(metaphysical_rr0);
942         RESTORE_REGS(metaphysical_rr4);
943         RESTORE_REGS(metaphysical_saved_rr0);
944         RESTORE_REGS(metaphysical_saved_rr4);
945         RESTORE_REGS(fp_psr);
946         RESTORE_REGS(saved_gp);
947
948         vcpu->arch.irq_new_pending = 1;
949         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
950         set_bit(KVM_REQ_RESUME, &vcpu->requests);
951
952         vcpu_put(vcpu);
953
954         return 0;
955 }
956
957 long kvm_arch_vm_ioctl(struct file *filp,
958                 unsigned int ioctl, unsigned long arg)
959 {
960         struct kvm *kvm = filp->private_data;
961         void __user *argp = (void __user *)arg;
962         int r = -EINVAL;
963
964         switch (ioctl) {
965         case KVM_SET_MEMORY_REGION: {
966                 struct kvm_memory_region kvm_mem;
967                 struct kvm_userspace_memory_region kvm_userspace_mem;
968
969                 r = -EFAULT;
970                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
971                         goto out;
972                 kvm_userspace_mem.slot = kvm_mem.slot;
973                 kvm_userspace_mem.flags = kvm_mem.flags;
974                 kvm_userspace_mem.guest_phys_addr =
975                                         kvm_mem.guest_phys_addr;
976                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
977                 r = kvm_vm_ioctl_set_memory_region(kvm,
978                                         &kvm_userspace_mem, 0);
979                 if (r)
980                         goto out;
981                 break;
982                 }
983         case KVM_CREATE_IRQCHIP:
984                 r = -EFAULT;
985                 r = kvm_ioapic_init(kvm);
986                 if (r)
987                         goto out;
988                 r = kvm_setup_default_irq_routing(kvm);
989                 if (r) {
990                         kfree(kvm->arch.vioapic);
991                         goto out;
992                 }
993                 break;
994         case KVM_IRQ_LINE_STATUS:
995         case KVM_IRQ_LINE: {
996                 struct kvm_irq_level irq_event;
997
998                 r = -EFAULT;
999                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1000                         goto out;
1001                 if (irqchip_in_kernel(kvm)) {
1002                         __s32 status;
1003                         mutex_lock(&kvm->lock);
1004                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1005                                     irq_event.irq, irq_event.level);
1006                         mutex_unlock(&kvm->lock);
1007                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1008                                 irq_event.status = status;
1009                                 if (copy_to_user(argp, &irq_event,
1010                                                         sizeof irq_event))
1011                                         goto out;
1012                         }
1013                         r = 0;
1014                 }
1015                 break;
1016                 }
1017         case KVM_GET_IRQCHIP: {
1018                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1019                 struct kvm_irqchip chip;
1020
1021                 r = -EFAULT;
1022                 if (copy_from_user(&chip, argp, sizeof chip))
1023                                 goto out;
1024                 r = -ENXIO;
1025                 if (!irqchip_in_kernel(kvm))
1026                         goto out;
1027                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1028                 if (r)
1029                         goto out;
1030                 r = -EFAULT;
1031                 if (copy_to_user(argp, &chip, sizeof chip))
1032                                 goto out;
1033                 r = 0;
1034                 break;
1035                 }
1036         case KVM_SET_IRQCHIP: {
1037                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1038                 struct kvm_irqchip chip;
1039
1040                 r = -EFAULT;
1041                 if (copy_from_user(&chip, argp, sizeof chip))
1042                                 goto out;
1043                 r = -ENXIO;
1044                 if (!irqchip_in_kernel(kvm))
1045                         goto out;
1046                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1047                 if (r)
1048                         goto out;
1049                 r = 0;
1050                 break;
1051                 }
1052         default:
1053                 ;
1054         }
1055 out:
1056         return r;
1057 }
1058
1059 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1060                 struct kvm_sregs *sregs)
1061 {
1062         return -EINVAL;
1063 }
1064
1065 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1066                 struct kvm_sregs *sregs)
1067 {
1068         return -EINVAL;
1069
1070 }
1071 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1072                 struct kvm_translation *tr)
1073 {
1074
1075         return -EINVAL;
1076 }
1077
1078 static int kvm_alloc_vmm_area(void)
1079 {
1080         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1081                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1082                                 get_order(KVM_VMM_SIZE));
1083                 if (!kvm_vmm_base)
1084                         return -ENOMEM;
1085
1086                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1087                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1088
1089                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1090                                 kvm_vmm_base, kvm_vm_buffer);
1091         }
1092
1093         return 0;
1094 }
1095
1096 static void kvm_free_vmm_area(void)
1097 {
1098         if (kvm_vmm_base) {
1099                 /*Zero this area before free to avoid bits leak!!*/
1100                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1101                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1102                 kvm_vmm_base  = 0;
1103                 kvm_vm_buffer = 0;
1104                 kvm_vsa_base = 0;
1105         }
1106 }
1107
1108 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1109 {
1110         int i;
1111         union cpuid3_t cpuid3;
1112         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1113
1114         if (IS_ERR(vpd))
1115                 return PTR_ERR(vpd);
1116
1117         /* CPUID init */
1118         for (i = 0; i < 5; i++)
1119                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1120
1121         /* Limit the CPUID number to 5 */
1122         cpuid3.value = vpd->vcpuid[3];
1123         cpuid3.number = 4;      /* 5 - 1 */
1124         vpd->vcpuid[3] = cpuid3.value;
1125
1126         /*Set vac and vdc fields*/
1127         vpd->vac.a_from_int_cr = 1;
1128         vpd->vac.a_to_int_cr = 1;
1129         vpd->vac.a_from_psr = 1;
1130         vpd->vac.a_from_cpuid = 1;
1131         vpd->vac.a_cover = 1;
1132         vpd->vac.a_bsw = 1;
1133         vpd->vac.a_int = 1;
1134         vpd->vdc.d_vmsw = 1;
1135
1136         /*Set virtual buffer*/
1137         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1138
1139         return 0;
1140 }
1141
1142 static int vti_create_vp(struct kvm_vcpu *vcpu)
1143 {
1144         long ret;
1145         struct vpd *vpd = vcpu->arch.vpd;
1146         unsigned long  vmm_ivt;
1147
1148         vmm_ivt = kvm_vmm_info->vmm_ivt;
1149
1150         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1151
1152         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1153
1154         if (ret) {
1155                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1156                 return -EINVAL;
1157         }
1158         return 0;
1159 }
1160
1161 static void init_ptce_info(struct kvm_vcpu *vcpu)
1162 {
1163         ia64_ptce_info_t ptce = {0};
1164
1165         ia64_get_ptce(&ptce);
1166         vcpu->arch.ptce_base = ptce.base;
1167         vcpu->arch.ptce_count[0] = ptce.count[0];
1168         vcpu->arch.ptce_count[1] = ptce.count[1];
1169         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1170         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1171 }
1172
1173 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1174 {
1175         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1176
1177         if (hrtimer_cancel(p_ht))
1178                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1179 }
1180
1181 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1182 {
1183         struct kvm_vcpu *vcpu;
1184         wait_queue_head_t *q;
1185
1186         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1187         q = &vcpu->wq;
1188
1189         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1190                 goto out;
1191
1192         if (waitqueue_active(q))
1193                 wake_up_interruptible(q);
1194
1195 out:
1196         vcpu->arch.timer_fired = 1;
1197         vcpu->arch.timer_check = 1;
1198         return HRTIMER_NORESTART;
1199 }
1200
1201 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1202
1203 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1204 {
1205         struct kvm_vcpu *v;
1206         int r;
1207         int i;
1208         long itc_offset;
1209         struct kvm *kvm = vcpu->kvm;
1210         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1211
1212         union context *p_ctx = &vcpu->arch.guest;
1213         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1214
1215         /*Init vcpu context for first run.*/
1216         if (IS_ERR(vmm_vcpu))
1217                 return PTR_ERR(vmm_vcpu);
1218
1219         if (vcpu->vcpu_id == 0) {
1220                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1221
1222                 /*Set entry address for first run.*/
1223                 regs->cr_iip = PALE_RESET_ENTRY;
1224
1225                 /*Initialize itc offset for vcpus*/
1226                 itc_offset = 0UL - kvm_get_itc(vcpu);
1227                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1228                         v = (struct kvm_vcpu *)((char *)vcpu +
1229                                         sizeof(struct kvm_vcpu_data) * i);
1230                         v->arch.itc_offset = itc_offset;
1231                         v->arch.last_itc = 0;
1232                 }
1233         } else
1234                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1235
1236         r = -ENOMEM;
1237         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1238         if (!vcpu->arch.apic)
1239                 goto out;
1240         vcpu->arch.apic->vcpu = vcpu;
1241
1242         p_ctx->gr[1] = 0;
1243         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1244         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1245         p_ctx->psr = 0x1008522000UL;
1246         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1247         p_ctx->caller_unat = 0;
1248         p_ctx->pr = 0x0;
1249         p_ctx->ar[36] = 0x0; /*unat*/
1250         p_ctx->ar[19] = 0x0; /*rnat*/
1251         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1252                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1253         p_ctx->ar[64] = 0x0; /*pfs*/
1254         p_ctx->cr[0] = 0x7e04UL;
1255         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1256         p_ctx->cr[8] = 0x3c;
1257
1258         /*Initilize region register*/
1259         p_ctx->rr[0] = 0x30;
1260         p_ctx->rr[1] = 0x30;
1261         p_ctx->rr[2] = 0x30;
1262         p_ctx->rr[3] = 0x30;
1263         p_ctx->rr[4] = 0x30;
1264         p_ctx->rr[5] = 0x30;
1265         p_ctx->rr[7] = 0x30;
1266
1267         /*Initilize branch register 0*/
1268         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1269
1270         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1271         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1272         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1273
1274         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1275         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1276
1277         vcpu->arch.last_run_cpu = -1;
1278         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1279         vcpu->arch.vsa_base = kvm_vsa_base;
1280         vcpu->arch.__gp = kvm_vmm_gp;
1281         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1282         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1283         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1284         init_ptce_info(vcpu);
1285
1286         r = 0;
1287 out:
1288         return r;
1289 }
1290
1291 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1292 {
1293         unsigned long psr;
1294         int r;
1295
1296         local_irq_save(psr);
1297         r = kvm_insert_vmm_mapping(vcpu);
1298         local_irq_restore(psr);
1299         if (r)
1300                 goto fail;
1301         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1302         if (r)
1303                 goto fail;
1304
1305         r = vti_init_vpd(vcpu);
1306         if (r) {
1307                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1308                 goto uninit;
1309         }
1310
1311         r = vti_create_vp(vcpu);
1312         if (r)
1313                 goto uninit;
1314
1315         kvm_purge_vmm_mapping(vcpu);
1316
1317         return 0;
1318 uninit:
1319         kvm_vcpu_uninit(vcpu);
1320 fail:
1321         return r;
1322 }
1323
1324 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1325                 unsigned int id)
1326 {
1327         struct kvm_vcpu *vcpu;
1328         unsigned long vm_base = kvm->arch.vm_base;
1329         int r;
1330         int cpu;
1331
1332         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1333
1334         r = -EINVAL;
1335         if (id >= KVM_MAX_VCPUS) {
1336                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1337                                 KVM_MAX_VCPUS);
1338                 goto fail;
1339         }
1340
1341         r = -ENOMEM;
1342         if (!vm_base) {
1343                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1344                 goto fail;
1345         }
1346         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1347                                         vcpu_data[id].vcpu_struct));
1348         vcpu->kvm = kvm;
1349
1350         cpu = get_cpu();
1351         r = vti_vcpu_setup(vcpu, id);
1352         put_cpu();
1353
1354         if (r) {
1355                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1356                 goto fail;
1357         }
1358
1359         kvm->arch.online_vcpus++;
1360
1361         return vcpu;
1362 fail:
1363         return ERR_PTR(r);
1364 }
1365
1366 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1367 {
1368         return 0;
1369 }
1370
1371 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1372 {
1373         return -EINVAL;
1374 }
1375
1376 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1377 {
1378         return -EINVAL;
1379 }
1380
1381 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1382                                         struct kvm_guest_debug *dbg)
1383 {
1384         return -EINVAL;
1385 }
1386
1387 static void free_kvm(struct kvm *kvm)
1388 {
1389         unsigned long vm_base = kvm->arch.vm_base;
1390
1391         if (vm_base) {
1392                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1393                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1394         }
1395
1396 }
1397
1398 static void kvm_release_vm_pages(struct kvm *kvm)
1399 {
1400         struct kvm_memory_slot *memslot;
1401         int i, j;
1402         unsigned long base_gfn;
1403
1404         for (i = 0; i < kvm->nmemslots; i++) {
1405                 memslot = &kvm->memslots[i];
1406                 base_gfn = memslot->base_gfn;
1407
1408                 for (j = 0; j < memslot->npages; j++) {
1409                         if (memslot->rmap[j])
1410                                 put_page((struct page *)memslot->rmap[j]);
1411                 }
1412         }
1413 }
1414
1415 void kvm_arch_sync_events(struct kvm *kvm)
1416 {
1417 }
1418
1419 void kvm_arch_destroy_vm(struct kvm *kvm)
1420 {
1421         kvm_iommu_unmap_guest(kvm);
1422 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1423         kvm_free_all_assigned_devices(kvm);
1424 #endif
1425         kfree(kvm->arch.vioapic);
1426         kvm_release_vm_pages(kvm);
1427         kvm_free_physmem(kvm);
1428         free_kvm(kvm);
1429 }
1430
1431 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1432 {
1433 }
1434
1435 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1436 {
1437         if (cpu != vcpu->cpu) {
1438                 vcpu->cpu = cpu;
1439                 if (vcpu->arch.ht_active)
1440                         kvm_migrate_hlt_timer(vcpu);
1441         }
1442 }
1443
1444 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1445
1446 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1447 {
1448         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1449         int i;
1450
1451         vcpu_load(vcpu);
1452
1453         for (i = 0; i < 16; i++) {
1454                 regs->vpd.vgr[i] = vpd->vgr[i];
1455                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1456         }
1457         for (i = 0; i < 128; i++)
1458                 regs->vpd.vcr[i] = vpd->vcr[i];
1459         regs->vpd.vhpi = vpd->vhpi;
1460         regs->vpd.vnat = vpd->vnat;
1461         regs->vpd.vbnat = vpd->vbnat;
1462         regs->vpd.vpsr = vpd->vpsr;
1463         regs->vpd.vpr = vpd->vpr;
1464
1465         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1466
1467         SAVE_REGS(mp_state);
1468         SAVE_REGS(vmm_rr);
1469         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1470         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1471         SAVE_REGS(itr_regions);
1472         SAVE_REGS(dtr_regions);
1473         SAVE_REGS(tc_regions);
1474         SAVE_REGS(irq_check);
1475         SAVE_REGS(itc_check);
1476         SAVE_REGS(timer_check);
1477         SAVE_REGS(timer_pending);
1478         SAVE_REGS(last_itc);
1479         for (i = 0; i < 8; i++) {
1480                 regs->vrr[i] = vcpu->arch.vrr[i];
1481                 regs->ibr[i] = vcpu->arch.ibr[i];
1482                 regs->dbr[i] = vcpu->arch.dbr[i];
1483         }
1484         for (i = 0; i < 4; i++)
1485                 regs->insvc[i] = vcpu->arch.insvc[i];
1486         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1487         SAVE_REGS(xtp);
1488         SAVE_REGS(metaphysical_rr0);
1489         SAVE_REGS(metaphysical_rr4);
1490         SAVE_REGS(metaphysical_saved_rr0);
1491         SAVE_REGS(metaphysical_saved_rr4);
1492         SAVE_REGS(fp_psr);
1493         SAVE_REGS(saved_gp);
1494
1495         vcpu_put(vcpu);
1496         return 0;
1497 }
1498
1499 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1500                                   struct kvm_ia64_vcpu_stack *stack)
1501 {
1502         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1503         return 0;
1504 }
1505
1506 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1507                                   struct kvm_ia64_vcpu_stack *stack)
1508 {
1509         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1510                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1511
1512         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1513         return 0;
1514 }
1515
1516 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1517 {
1518
1519         hrtimer_cancel(&vcpu->arch.hlt_timer);
1520         kfree(vcpu->arch.apic);
1521 }
1522
1523
1524 long kvm_arch_vcpu_ioctl(struct file *filp,
1525                          unsigned int ioctl, unsigned long arg)
1526 {
1527         struct kvm_vcpu *vcpu = filp->private_data;
1528         void __user *argp = (void __user *)arg;
1529         struct kvm_ia64_vcpu_stack *stack = NULL;
1530         long r;
1531
1532         switch (ioctl) {
1533         case KVM_IA64_VCPU_GET_STACK: {
1534                 struct kvm_ia64_vcpu_stack __user *user_stack;
1535                 void __user *first_p = argp;
1536
1537                 r = -EFAULT;
1538                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1539                         goto out;
1540
1541                 if (!access_ok(VERIFY_WRITE, user_stack,
1542                                sizeof(struct kvm_ia64_vcpu_stack))) {
1543                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1544                                "Illegal user destination address for stack\n");
1545                         goto out;
1546                 }
1547                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1548                 if (!stack) {
1549                         r = -ENOMEM;
1550                         goto out;
1551                 }
1552
1553                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1554                 if (r)
1555                         goto out;
1556
1557                 if (copy_to_user(user_stack, stack,
1558                                  sizeof(struct kvm_ia64_vcpu_stack)))
1559                         goto out;
1560
1561                 break;
1562         }
1563         case KVM_IA64_VCPU_SET_STACK: {
1564                 struct kvm_ia64_vcpu_stack __user *user_stack;
1565                 void __user *first_p = argp;
1566
1567                 r = -EFAULT;
1568                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1569                         goto out;
1570
1571                 if (!access_ok(VERIFY_READ, user_stack,
1572                             sizeof(struct kvm_ia64_vcpu_stack))) {
1573                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1574                                "Illegal user address for stack\n");
1575                         goto out;
1576                 }
1577                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1578                 if (!stack) {
1579                         r = -ENOMEM;
1580                         goto out;
1581                 }
1582                 if (copy_from_user(stack, user_stack,
1583                                    sizeof(struct kvm_ia64_vcpu_stack)))
1584                         goto out;
1585
1586                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1587                 break;
1588         }
1589
1590         default:
1591                 r = -EINVAL;
1592         }
1593
1594 out:
1595         kfree(stack);
1596         return r;
1597 }
1598
1599 int kvm_arch_set_memory_region(struct kvm *kvm,
1600                 struct kvm_userspace_memory_region *mem,
1601                 struct kvm_memory_slot old,
1602                 int user_alloc)
1603 {
1604         unsigned long i;
1605         unsigned long pfn;
1606         int npages = mem->memory_size >> PAGE_SHIFT;
1607         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1608         unsigned long base_gfn = memslot->base_gfn;
1609
1610         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1611                 return -ENOMEM;
1612
1613         for (i = 0; i < npages; i++) {
1614                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1615                 if (!kvm_is_mmio_pfn(pfn)) {
1616                         kvm_set_pmt_entry(kvm, base_gfn + i,
1617                                         pfn << PAGE_SHIFT,
1618                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1619                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1620                 } else {
1621                         kvm_set_pmt_entry(kvm, base_gfn + i,
1622                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1623                                         _PAGE_MA_UC);
1624                         memslot->rmap[i] = 0;
1625                         }
1626         }
1627
1628         return 0;
1629 }
1630
1631 void kvm_arch_flush_shadow(struct kvm *kvm)
1632 {
1633         kvm_flush_remote_tlbs(kvm);
1634 }
1635
1636 long kvm_arch_dev_ioctl(struct file *filp,
1637                         unsigned int ioctl, unsigned long arg)
1638 {
1639         return -EINVAL;
1640 }
1641
1642 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1643 {
1644         kvm_vcpu_uninit(vcpu);
1645 }
1646
1647 static int vti_cpu_has_kvm_support(void)
1648 {
1649         long  avail = 1, status = 1, control = 1;
1650         long ret;
1651
1652         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1653         if (ret)
1654                 goto out;
1655
1656         if (!(avail & PAL_PROC_VM_BIT))
1657                 goto out;
1658
1659         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1660
1661         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1662         if (ret)
1663                 goto out;
1664         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1665
1666         if (!(vp_env_info & VP_OPCODE)) {
1667                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1668                                 "vm_env_info:0x%lx\n", vp_env_info);
1669         }
1670
1671         return 1;
1672 out:
1673         return 0;
1674 }
1675
1676
1677 /*
1678  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1679  * SN2 RTC, replacing the ITC based default verion.
1680  */
1681 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1682                           struct module *module)
1683 {
1684         unsigned long new_ar, new_ar_sn2;
1685         unsigned long module_base;
1686
1687         if (!ia64_platform_is("sn2"))
1688                 return;
1689
1690         module_base = (unsigned long)module->module_core;
1691
1692         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1693         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1694
1695         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1696                "as source\n");
1697
1698         /*
1699          * Copy the SN2 version of mov_ar into place. They are both
1700          * the same size, so 6 bundles is sufficient (6 * 0x10).
1701          */
1702         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1703 }
1704
1705 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1706                             struct module *module)
1707 {
1708         unsigned long module_base;
1709         unsigned long vmm_size;
1710
1711         unsigned long vmm_offset, func_offset, fdesc_offset;
1712         struct fdesc *p_fdesc;
1713
1714         BUG_ON(!module);
1715
1716         if (!kvm_vmm_base) {
1717                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1718                 return -EFAULT;
1719         }
1720
1721         /*Calculate new position of relocated vmm module.*/
1722         module_base = (unsigned long)module->module_core;
1723         vmm_size = module->core_size;
1724         if (unlikely(vmm_size > KVM_VMM_SIZE))
1725                 return -EFAULT;
1726
1727         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1728         kvm_patch_vmm(vmm_info, module);
1729         kvm_flush_icache(kvm_vmm_base, vmm_size);
1730
1731         /*Recalculate kvm_vmm_info based on new VMM*/
1732         vmm_offset = vmm_info->vmm_ivt - module_base;
1733         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1734         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1735                         kvm_vmm_info->vmm_ivt);
1736
1737         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1738         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1739                                                         fdesc_offset);
1740         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1741         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1742         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1743         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1744
1745         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1746                         KVM_VMM_BASE+func_offset);
1747
1748         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1749         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1750                         fdesc_offset);
1751         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1752         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1753         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1754         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1755
1756         kvm_vmm_gp = p_fdesc->gp;
1757
1758         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1759                                                 kvm_vmm_info->vmm_entry);
1760         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1761                                                 KVM_VMM_BASE + func_offset);
1762
1763         return 0;
1764 }
1765
1766 int kvm_arch_init(void *opaque)
1767 {
1768         int r;
1769         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1770
1771         if (!vti_cpu_has_kvm_support()) {
1772                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1773                 r = -EOPNOTSUPP;
1774                 goto out;
1775         }
1776
1777         if (kvm_vmm_info) {
1778                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1779                 r = -EEXIST;
1780                 goto out;
1781         }
1782
1783         r = -ENOMEM;
1784         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1785         if (!kvm_vmm_info)
1786                 goto out;
1787
1788         if (kvm_alloc_vmm_area())
1789                 goto out_free0;
1790
1791         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1792         if (r)
1793                 goto out_free1;
1794
1795         return 0;
1796
1797 out_free1:
1798         kvm_free_vmm_area();
1799 out_free0:
1800         kfree(kvm_vmm_info);
1801 out:
1802         return r;
1803 }
1804
1805 void kvm_arch_exit(void)
1806 {
1807         kvm_free_vmm_area();
1808         kfree(kvm_vmm_info);
1809         kvm_vmm_info = NULL;
1810 }
1811
1812 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1813                 struct kvm_dirty_log *log)
1814 {
1815         struct kvm_memory_slot *memslot;
1816         int r, i;
1817         long n, base;
1818         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1819                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1820
1821         r = -EINVAL;
1822         if (log->slot >= KVM_MEMORY_SLOTS)
1823                 goto out;
1824
1825         memslot = &kvm->memslots[log->slot];
1826         r = -ENOENT;
1827         if (!memslot->dirty_bitmap)
1828                 goto out;
1829
1830         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1831         base = memslot->base_gfn / BITS_PER_LONG;
1832
1833         for (i = 0; i < n/sizeof(long); ++i) {
1834                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1835                 dirty_bitmap[base + i] = 0;
1836         }
1837         r = 0;
1838 out:
1839         return r;
1840 }
1841
1842 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1843                 struct kvm_dirty_log *log)
1844 {
1845         int r;
1846         int n;
1847         struct kvm_memory_slot *memslot;
1848         int is_dirty = 0;
1849
1850         spin_lock(&kvm->arch.dirty_log_lock);
1851
1852         r = kvm_ia64_sync_dirty_log(kvm, log);
1853         if (r)
1854                 goto out;
1855
1856         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1857         if (r)
1858                 goto out;
1859
1860         /* If nothing is dirty, don't bother messing with page tables. */
1861         if (is_dirty) {
1862                 kvm_flush_remote_tlbs(kvm);
1863                 memslot = &kvm->memslots[log->slot];
1864                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1865                 memset(memslot->dirty_bitmap, 0, n);
1866         }
1867         r = 0;
1868 out:
1869         spin_unlock(&kvm->arch.dirty_log_lock);
1870         return r;
1871 }
1872
1873 int kvm_arch_hardware_setup(void)
1874 {
1875         return 0;
1876 }
1877
1878 void kvm_arch_hardware_unsetup(void)
1879 {
1880 }
1881
1882 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1883 {
1884         int me;
1885         int cpu = vcpu->cpu;
1886
1887         if (waitqueue_active(&vcpu->wq))
1888                 wake_up_interruptible(&vcpu->wq);
1889
1890         me = get_cpu();
1891         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1892                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1893                         smp_send_reschedule(cpu);
1894         put_cpu();
1895 }
1896
1897 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1898 {
1899         return __apic_accept_irq(vcpu, irq->vector);
1900 }
1901
1902 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1903 {
1904         return apic->vcpu->vcpu_id == dest;
1905 }
1906
1907 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1908 {
1909         return 0;
1910 }
1911
1912 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1913 {
1914         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1915 }
1916
1917 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1918                 int short_hand, int dest, int dest_mode)
1919 {
1920         struct kvm_lapic *target = vcpu->arch.apic;
1921         return (dest_mode == 0) ?
1922                 kvm_apic_match_physical_addr(target, dest) :
1923                 kvm_apic_match_logical_addr(target, dest);
1924 }
1925
1926 static int find_highest_bits(int *dat)
1927 {
1928         u32  bits, bitnum;
1929         int i;
1930
1931         /* loop for all 256 bits */
1932         for (i = 7; i >= 0 ; i--) {
1933                 bits = dat[i];
1934                 if (bits) {
1935                         bitnum = fls(bits);
1936                         return i * 32 + bitnum - 1;
1937                 }
1938         }
1939
1940         return -1;
1941 }
1942
1943 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1944 {
1945     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1946
1947     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1948                 return NMI_VECTOR;
1949     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1950                 return ExtINT_VECTOR;
1951
1952     return find_highest_bits((int *)&vpd->irr[0]);
1953 }
1954
1955 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1956 {
1957         if (kvm_highest_pending_irq(vcpu) != -1)
1958                 return 1;
1959         return 0;
1960 }
1961
1962 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
1963 {
1964         /* do real check here */
1965         return 1;
1966 }
1967
1968 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1969 {
1970         return vcpu->arch.timer_fired;
1971 }
1972
1973 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1974 {
1975         return gfn;
1976 }
1977
1978 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1979 {
1980         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1981 }
1982
1983 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1984                                     struct kvm_mp_state *mp_state)
1985 {
1986         vcpu_load(vcpu);
1987         mp_state->mp_state = vcpu->arch.mp_state;
1988         vcpu_put(vcpu);
1989         return 0;
1990 }
1991
1992 static int vcpu_reset(struct kvm_vcpu *vcpu)
1993 {
1994         int r;
1995         long psr;
1996         local_irq_save(psr);
1997         r = kvm_insert_vmm_mapping(vcpu);
1998         local_irq_restore(psr);
1999         if (r)
2000                 goto fail;
2001
2002         vcpu->arch.launched = 0;
2003         kvm_arch_vcpu_uninit(vcpu);
2004         r = kvm_arch_vcpu_init(vcpu);
2005         if (r)
2006                 goto fail;
2007
2008         kvm_purge_vmm_mapping(vcpu);
2009         r = 0;
2010 fail:
2011         return r;
2012 }
2013
2014 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2015                                     struct kvm_mp_state *mp_state)
2016 {
2017         int r = 0;
2018
2019         vcpu_load(vcpu);
2020         vcpu->arch.mp_state = mp_state->mp_state;
2021         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2022                 r = vcpu_reset(vcpu);
2023         vcpu_put(vcpu);
2024         return r;
2025 }