Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/profile.h>
22 #include <linux/timex.h>
23
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
28 #include <asm/sal.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
31
32 extern unsigned long wall_jiffies;
33
34 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
35
36 #ifdef CONFIG_IA64_DEBUG_IRQ
37
38 unsigned long last_cli_ip;
39 EXPORT_SYMBOL(last_cli_ip);
40
41 #endif
42
43 static struct time_interpolator itc_interpolator = {
44         .shift = 16,
45         .mask = 0xffffffffffffffffLL,
46         .source = TIME_SOURCE_CPU
47 };
48
49 static irqreturn_t
50 timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
51 {
52         unsigned long new_itm;
53
54         if (unlikely(cpu_is_offline(smp_processor_id()))) {
55                 return IRQ_HANDLED;
56         }
57
58         platform_timer_interrupt(irq, dev_id, regs);
59
60         new_itm = local_cpu_data->itm_next;
61
62         if (!time_after(ia64_get_itc(), new_itm))
63                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
64                        ia64_get_itc(), new_itm);
65
66         profile_tick(CPU_PROFILING, regs);
67
68         while (1) {
69                 update_process_times(user_mode(regs));
70
71                 new_itm += local_cpu_data->itm_delta;
72
73                 if (smp_processor_id() == time_keeper_id) {
74                         /*
75                          * Here we are in the timer irq handler. We have irqs locally
76                          * disabled, but we don't know if the timer_bh is running on
77                          * another CPU. We need to avoid to SMP race by acquiring the
78                          * xtime_lock.
79                          */
80                         write_seqlock(&xtime_lock);
81                         do_timer(regs);
82                         local_cpu_data->itm_next = new_itm;
83                         write_sequnlock(&xtime_lock);
84                 } else
85                         local_cpu_data->itm_next = new_itm;
86
87                 if (time_after(new_itm, ia64_get_itc()))
88                         break;
89         }
90
91         do {
92                 /*
93                  * If we're too close to the next clock tick for
94                  * comfort, we increase the safety margin by
95                  * intentionally dropping the next tick(s).  We do NOT
96                  * update itm.next because that would force us to call
97                  * do_timer() which in turn would let our clock run
98                  * too fast (with the potentially devastating effect
99                  * of losing monotony of time).
100                  */
101                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
102                         new_itm += local_cpu_data->itm_delta;
103                 ia64_set_itm(new_itm);
104                 /* double check, in case we got hit by a (slow) PMI: */
105         } while (time_after_eq(ia64_get_itc(), new_itm));
106         return IRQ_HANDLED;
107 }
108
109 /*
110  * Encapsulate access to the itm structure for SMP.
111  */
112 void
113 ia64_cpu_local_tick (void)
114 {
115         int cpu = smp_processor_id();
116         unsigned long shift = 0, delta;
117
118         /* arrange for the cycle counter to generate a timer interrupt: */
119         ia64_set_itv(IA64_TIMER_VECTOR);
120
121         delta = local_cpu_data->itm_delta;
122         /*
123          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
124          * same time:
125          */
126         if (cpu) {
127                 unsigned long hi = 1UL << ia64_fls(cpu);
128                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
129         }
130         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
131         ia64_set_itm(local_cpu_data->itm_next);
132 }
133
134 static int nojitter;
135
136 static int __init nojitter_setup(char *str)
137 {
138         nojitter = 1;
139         printk("Jitter checking for ITC timers disabled\n");
140         return 1;
141 }
142
143 __setup("nojitter", nojitter_setup);
144
145
146 void __devinit
147 ia64_init_itm (void)
148 {
149         unsigned long platform_base_freq, itc_freq;
150         struct pal_freq_ratio itc_ratio, proc_ratio;
151         long status, platform_base_drift, itc_drift;
152
153         /*
154          * According to SAL v2.6, we need to use a SAL call to determine the platform base
155          * frequency and then a PAL call to determine the frequency ratio between the ITC
156          * and the base frequency.
157          */
158         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
159                                     &platform_base_freq, &platform_base_drift);
160         if (status != 0) {
161                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
162         } else {
163                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
164                 if (status != 0)
165                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
166         }
167         if (status != 0) {
168                 /* invent "random" values */
169                 printk(KERN_ERR
170                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
171                 platform_base_freq = 100000000;
172                 platform_base_drift = -1;       /* no drift info */
173                 itc_ratio.num = 3;
174                 itc_ratio.den = 1;
175         }
176         if (platform_base_freq < 40000000) {
177                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
178                        platform_base_freq);
179                 platform_base_freq = 75000000;
180                 platform_base_drift = -1;
181         }
182         if (!proc_ratio.den)
183                 proc_ratio.den = 1;     /* avoid division by zero */
184         if (!itc_ratio.den)
185                 itc_ratio.den = 1;      /* avoid division by zero */
186
187         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
188
189         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
190         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
191                "ITC freq=%lu.%03luMHz", smp_processor_id(),
192                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
193                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
194
195         if (platform_base_drift != -1) {
196                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
197                 printk("+/-%ldppm\n", itc_drift);
198         } else {
199                 itc_drift = -1;
200                 printk("\n");
201         }
202
203         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
204         local_cpu_data->itc_freq = itc_freq;
205         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
206         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
207                                         + itc_freq/2)/itc_freq;
208
209         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
210                 itc_interpolator.frequency = local_cpu_data->itc_freq;
211                 itc_interpolator.drift = itc_drift;
212 #ifdef CONFIG_SMP
213                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
214                  * Jitter compensation requires a cmpxchg which may limit
215                  * the scalability of the syscalls for retrieving time.
216                  * The ITC synchronization is usually successful to within a few
217                  * ITC ticks but this is not a sure thing. If you need to improve
218                  * timer performance in SMP situations then boot the kernel with the
219                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
220                  * even going backward) if the ITC offsets between the individual CPUs
221                  * are too large.
222                  */
223                 if (!nojitter) itc_interpolator.jitter = 1;
224 #endif
225                 register_time_interpolator(&itc_interpolator);
226         }
227
228         /* Setup the CPU local timer tick */
229         ia64_cpu_local_tick();
230 }
231
232 static struct irqaction timer_irqaction = {
233         .handler =      timer_interrupt,
234         .flags =        IRQF_DISABLED,
235         .name =         "timer"
236 };
237
238 void __devinit ia64_disable_timer(void)
239 {
240         ia64_set_itv(1 << 16);
241 }
242
243 void __init
244 time_init (void)
245 {
246         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
247         efi_gettimeofday(&xtime);
248         ia64_init_itm();
249
250         /*
251          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
252          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
253          */
254         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
255 }
256
257 /*
258  * Generic udelay assumes that if preemption is allowed and the thread
259  * migrates to another CPU, that the ITC values are synchronized across
260  * all CPUs.
261  */
262 static void
263 ia64_itc_udelay (unsigned long usecs)
264 {
265         unsigned long start = ia64_get_itc();
266         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
267
268         while (time_before(ia64_get_itc(), end))
269                 cpu_relax();
270 }
271
272 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
273
274 void
275 udelay (unsigned long usecs)
276 {
277         (*ia64_udelay)(usecs);
278 }
279 EXPORT_SYMBOL(udelay);
280
281 static unsigned long long ia64_itc_printk_clock(void)
282 {
283         if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
284                 return sched_clock();
285         return 0;
286 }
287
288 static unsigned long long ia64_default_printk_clock(void)
289 {
290         return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
291                 (1000000000/HZ);
292 }
293
294 unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
295
296 unsigned long long printk_clock(void)
297 {
298         return ia64_printk_clock();
299 }
300
301 void __init
302 ia64_setup_printk_clock(void)
303 {
304         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
305                 ia64_printk_clock = ia64_itc_printk_clock;
306 }