Merge branch 'davinci-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / ia64 / kernel / smpboot.c
1 /*
2  * SMP boot-related support
3  *
4  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2001, 2004-2005 Intel Corp
7  *      Rohit Seth <rohit.seth@intel.com>
8  *      Suresh Siddha <suresh.b.siddha@intel.com>
9  *      Gordon Jin <gordon.jin@intel.com>
10  *      Ashok Raj  <ashok.raj@intel.com>
11  *
12  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
13  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15  *                                              smp_boot_cpus()/smp_commence() is replaced by
16  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17  * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
18  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20  *                                              Add multi-threading and multi-core detection
21  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22  *                                              Setup cpu_sibling_map and cpu_core_map
23  */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/paravirt.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
57 #include <asm/sal.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
61 #include <asm/sn/arch.h>
62
63 #define SMP_DEBUG 0
64
65 #if SMP_DEBUG
66 #define Dprintk(x...)  printk(x)
67 #else
68 #define Dprintk(x...)
69 #endif
70
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok   1
74 #else
75 #define bsp_remove_ok   0
76 #endif
77
78 /*
79  * Store all idle threads, this can be reused instead of creating
80  * a new thread. Also avoids complicated thread destroy functionality
81  * for idle threads.
82  */
83 struct task_struct *idle_thread_array[NR_CPUS];
84
85 /*
86  * Global array allocated for NR_CPUS at boot time
87  */
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89
90 /*
91  * start_ap in head.S uses this to store current booting cpu
92  * info.
93  */
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97
98 #define get_idle_for_cpu(x)             (idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))
100
101 #else
102
103 #define get_idle_for_cpu(x)             (NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
106 #endif
107
108
109 /*
110  * ITC synchronization related stuff:
111  */
112 #define MASTER  (0)
113 #define SLAVE   (SMP_CACHE_BYTES/8)
114
115 #define NUM_ROUNDS      64      /* magic value */
116 #define NUM_ITERS       5       /* likewise */
117
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
120
121 #define DEBUG_ITC_SYNC  0
122
123 extern void start_ap (void);
124 extern unsigned long ia64_iobase;
125
126 struct task_struct *task_for_booting_cpu;
127
128 /*
129  * State for each CPU
130  */
131 DEFINE_PER_CPU(int, cpu_state);
132
133 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
134 EXPORT_SYMBOL(cpu_core_map);
135 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
136 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
137
138 int smp_num_siblings = 1;
139
140 /* which logical CPU number maps to which CPU (physical APIC ID) */
141 volatile int ia64_cpu_to_sapicid[NR_CPUS];
142 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144 static volatile cpumask_t cpu_callin_map;
145
146 struct smp_boot_data smp_boot_data __initdata;
147
148 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150 char __initdata no_int_routing;
151
152 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154 #ifdef CONFIG_FORCE_CPEI_RETARGET
155 #define CPEI_OVERRIDE_DEFAULT   (1)
156 #else
157 #define CPEI_OVERRIDE_DEFAULT   (0)
158 #endif
159
160 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
161
162 static int __init
163 cmdl_force_cpei(char *str)
164 {
165         int value=0;
166
167         get_option (&str, &value);
168         force_cpei_retarget = value;
169
170         return 1;
171 }
172
173 __setup("force_cpei=", cmdl_force_cpei);
174
175 static int __init
176 nointroute (char *str)
177 {
178         no_int_routing = 1;
179         printk ("no_int_routing on\n");
180         return 1;
181 }
182
183 __setup("nointroute", nointroute);
184
185 static void fix_b0_for_bsp(void)
186 {
187 #ifdef CONFIG_HOTPLUG_CPU
188         int cpuid;
189         static int fix_bsp_b0 = 1;
190
191         cpuid = smp_processor_id();
192
193         /*
194          * Cache the b0 value on the first AP that comes up
195          */
196         if (!(fix_bsp_b0 && cpuid))
197                 return;
198
199         sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
200         printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
201
202         fix_bsp_b0 = 0;
203 #endif
204 }
205
206 void
207 sync_master (void *arg)
208 {
209         unsigned long flags, i;
210
211         go[MASTER] = 0;
212
213         local_irq_save(flags);
214         {
215                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
216                         while (!go[MASTER])
217                                 cpu_relax();
218                         go[MASTER] = 0;
219                         go[SLAVE] = ia64_get_itc();
220                 }
221         }
222         local_irq_restore(flags);
223 }
224
225 /*
226  * Return the number of cycles by which our itc differs from the itc on the master
227  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
228  * negative that it is behind.
229  */
230 static inline long
231 get_delta (long *rt, long *master)
232 {
233         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
234         unsigned long tcenter, t0, t1, tm;
235         long i;
236
237         for (i = 0; i < NUM_ITERS; ++i) {
238                 t0 = ia64_get_itc();
239                 go[MASTER] = 1;
240                 while (!(tm = go[SLAVE]))
241                         cpu_relax();
242                 go[SLAVE] = 0;
243                 t1 = ia64_get_itc();
244
245                 if (t1 - t0 < best_t1 - best_t0)
246                         best_t0 = t0, best_t1 = t1, best_tm = tm;
247         }
248
249         *rt = best_t1 - best_t0;
250         *master = best_tm - best_t0;
251
252         /* average best_t0 and best_t1 without overflow: */
253         tcenter = (best_t0/2 + best_t1/2);
254         if (best_t0 % 2 + best_t1 % 2 == 2)
255                 ++tcenter;
256         return tcenter - best_tm;
257 }
258
259 /*
260  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
261  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
262  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
263  * step).  The basic idea is for the slave to ask the master what itc value it has and to
264  * read its own itc before and after the master responds.  Each iteration gives us three
265  * timestamps:
266  *
267  *      slave           master
268  *
269  *      t0 ---\
270  *             ---\
271  *                 --->
272  *                      tm
273  *                 /---
274  *             /---
275  *      t1 <---
276  *
277  *
278  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
279  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
280  * between the slave and the master is symmetric.  Even if the interconnect were
281  * asymmetric, we would still know that the synchronization error is smaller than the
282  * roundtrip latency (t0 - t1).
283  *
284  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
285  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
286  * accurate to within a round-trip time, which is typically in the range of several
287  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
288  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
289  * than half a micro second or so.
290  */
291 void
292 ia64_sync_itc (unsigned int master)
293 {
294         long i, delta, adj, adjust_latency = 0, done = 0;
295         unsigned long flags, rt, master_time_stamp, bound;
296 #if DEBUG_ITC_SYNC
297         struct {
298                 long rt;        /* roundtrip time */
299                 long master;    /* master's timestamp */
300                 long diff;      /* difference between midpoint and master's timestamp */
301                 long lat;       /* estimate of itc adjustment latency */
302         } t[NUM_ROUNDS];
303 #endif
304
305         /*
306          * Make sure local timer ticks are disabled while we sync.  If
307          * they were enabled, we'd have to worry about nasty issues
308          * like setting the ITC ahead of (or a long time before) the
309          * next scheduled tick.
310          */
311         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
312
313         go[MASTER] = 1;
314
315         if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
316                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
317                 return;
318         }
319
320         while (go[MASTER])
321                 cpu_relax();    /* wait for master to be ready */
322
323         spin_lock_irqsave(&itc_sync_lock, flags);
324         {
325                 for (i = 0; i < NUM_ROUNDS; ++i) {
326                         delta = get_delta(&rt, &master_time_stamp);
327                         if (delta == 0) {
328                                 done = 1;       /* let's lock on to this... */
329                                 bound = rt;
330                         }
331
332                         if (!done) {
333                                 if (i > 0) {
334                                         adjust_latency += -delta;
335                                         adj = -delta + adjust_latency/4;
336                                 } else
337                                         adj = -delta;
338
339                                 ia64_set_itc(ia64_get_itc() + adj);
340                         }
341 #if DEBUG_ITC_SYNC
342                         t[i].rt = rt;
343                         t[i].master = master_time_stamp;
344                         t[i].diff = delta;
345                         t[i].lat = adjust_latency/4;
346 #endif
347                 }
348         }
349         spin_unlock_irqrestore(&itc_sync_lock, flags);
350
351 #if DEBUG_ITC_SYNC
352         for (i = 0; i < NUM_ROUNDS; ++i)
353                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
354                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
355 #endif
356
357         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
358                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
359 }
360
361 /*
362  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
363  */
364 static inline void __devinit
365 smp_setup_percpu_timer (void)
366 {
367 }
368
369 static void __cpuinit
370 smp_callin (void)
371 {
372         int cpuid, phys_id, itc_master;
373         struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
374         extern void ia64_init_itm(void);
375         extern volatile int time_keeper_id;
376
377 #ifdef CONFIG_PERFMON
378         extern void pfm_init_percpu(void);
379 #endif
380
381         cpuid = smp_processor_id();
382         phys_id = hard_smp_processor_id();
383         itc_master = time_keeper_id;
384
385         if (cpu_online(cpuid)) {
386                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
387                        phys_id, cpuid);
388                 BUG();
389         }
390
391         fix_b0_for_bsp();
392
393         ipi_call_lock_irq();
394         spin_lock(&vector_lock);
395         /* Setup the per cpu irq handling data structures */
396         __setup_vector_irq(cpuid);
397         notify_cpu_starting(cpuid);
398         cpu_set(cpuid, cpu_online_map);
399         per_cpu(cpu_state, cpuid) = CPU_ONLINE;
400         spin_unlock(&vector_lock);
401         ipi_call_unlock_irq();
402
403         smp_setup_percpu_timer();
404
405         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
406
407 #ifdef CONFIG_PERFMON
408         pfm_init_percpu();
409 #endif
410
411         local_irq_enable();
412
413         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
414                 /*
415                  * Synchronize the ITC with the BP.  Need to do this after irqs are
416                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
417                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
418                  * local_bh_enable(), which bugs out if irqs are not enabled...
419                  */
420                 Dprintk("Going to syncup ITC with ITC Master.\n");
421                 ia64_sync_itc(itc_master);
422         }
423
424         /*
425          * Get our bogomips.
426          */
427         ia64_init_itm();
428
429         /*
430          * Delay calibration can be skipped if new processor is identical to the
431          * previous processor.
432          */
433         last_cpuinfo = cpu_data(cpuid - 1);
434         this_cpuinfo = local_cpu_data;
435         if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
436             last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
437             last_cpuinfo->features != this_cpuinfo->features ||
438             last_cpuinfo->revision != this_cpuinfo->revision ||
439             last_cpuinfo->family != this_cpuinfo->family ||
440             last_cpuinfo->archrev != this_cpuinfo->archrev ||
441             last_cpuinfo->model != this_cpuinfo->model)
442                 calibrate_delay();
443         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
444
445         /*
446          * Allow the master to continue.
447          */
448         cpu_set(cpuid, cpu_callin_map);
449         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
450 }
451
452
453 /*
454  * Activate a secondary processor.  head.S calls this.
455  */
456 int __cpuinit
457 start_secondary (void *unused)
458 {
459         /* Early console may use I/O ports */
460         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
461 #ifndef CONFIG_PRINTK_TIME
462         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
463 #endif
464         efi_map_pal_code();
465         cpu_init();
466         preempt_disable();
467         smp_callin();
468
469         cpu_idle();
470         return 0;
471 }
472
473 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
474 {
475         return NULL;
476 }
477
478 struct create_idle {
479         struct work_struct work;
480         struct task_struct *idle;
481         struct completion done;
482         int cpu;
483 };
484
485 void __cpuinit
486 do_fork_idle(struct work_struct *work)
487 {
488         struct create_idle *c_idle =
489                 container_of(work, struct create_idle, work);
490
491         c_idle->idle = fork_idle(c_idle->cpu);
492         complete(&c_idle->done);
493 }
494
495 static int __cpuinit
496 do_boot_cpu (int sapicid, int cpu)
497 {
498         int timeout;
499         struct create_idle c_idle = {
500                 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
501                 .cpu    = cpu,
502                 .done   = COMPLETION_INITIALIZER(c_idle.done),
503         };
504
505         c_idle.idle = get_idle_for_cpu(cpu);
506         if (c_idle.idle) {
507                 init_idle(c_idle.idle, cpu);
508                 goto do_rest;
509         }
510
511         /*
512          * We can't use kernel_thread since we must avoid to reschedule the child.
513          */
514         if (!keventd_up() || current_is_keventd())
515                 c_idle.work.func(&c_idle.work);
516         else {
517                 schedule_work(&c_idle.work);
518                 wait_for_completion(&c_idle.done);
519         }
520
521         if (IS_ERR(c_idle.idle))
522                 panic("failed fork for CPU %d", cpu);
523
524         set_idle_for_cpu(cpu, c_idle.idle);
525
526 do_rest:
527         task_for_booting_cpu = c_idle.idle;
528
529         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
530
531         set_brendez_area(cpu);
532         platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
533
534         /*
535          * Wait 10s total for the AP to start
536          */
537         Dprintk("Waiting on callin_map ...");
538         for (timeout = 0; timeout < 100000; timeout++) {
539                 if (cpu_isset(cpu, cpu_callin_map))
540                         break;  /* It has booted */
541                 udelay(100);
542         }
543         Dprintk("\n");
544
545         if (!cpu_isset(cpu, cpu_callin_map)) {
546                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
547                 ia64_cpu_to_sapicid[cpu] = -1;
548                 cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
549                 return -EINVAL;
550         }
551         return 0;
552 }
553
554 static int __init
555 decay (char *str)
556 {
557         int ticks;
558         get_option (&str, &ticks);
559         return 1;
560 }
561
562 __setup("decay=", decay);
563
564 /*
565  * Initialize the logical CPU number to SAPICID mapping
566  */
567 void __init
568 smp_build_cpu_map (void)
569 {
570         int sapicid, cpu, i;
571         int boot_cpu_id = hard_smp_processor_id();
572
573         for (cpu = 0; cpu < NR_CPUS; cpu++) {
574                 ia64_cpu_to_sapicid[cpu] = -1;
575         }
576
577         ia64_cpu_to_sapicid[0] = boot_cpu_id;
578         cpus_clear(cpu_present_map);
579         set_cpu_present(0, true);
580         set_cpu_possible(0, true);
581         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
582                 sapicid = smp_boot_data.cpu_phys_id[i];
583                 if (sapicid == boot_cpu_id)
584                         continue;
585                 set_cpu_present(cpu, true);
586                 set_cpu_possible(cpu, true);
587                 ia64_cpu_to_sapicid[cpu] = sapicid;
588                 cpu++;
589         }
590 }
591
592 /*
593  * Cycle through the APs sending Wakeup IPIs to boot each.
594  */
595 void __init
596 smp_prepare_cpus (unsigned int max_cpus)
597 {
598         int boot_cpu_id = hard_smp_processor_id();
599
600         /*
601          * Initialize the per-CPU profiling counter/multiplier
602          */
603
604         smp_setup_percpu_timer();
605
606         /*
607          * We have the boot CPU online for sure.
608          */
609         cpu_set(0, cpu_online_map);
610         cpu_set(0, cpu_callin_map);
611
612         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
613         ia64_cpu_to_sapicid[0] = boot_cpu_id;
614
615         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
616
617         current_thread_info()->cpu = 0;
618
619         /*
620          * If SMP should be disabled, then really disable it!
621          */
622         if (!max_cpus) {
623                 printk(KERN_INFO "SMP mode deactivated.\n");
624                 init_cpu_online(cpumask_of(0));
625                 init_cpu_present(cpumask_of(0));
626                 init_cpu_possible(cpumask_of(0));
627                 return;
628         }
629 }
630
631 void __devinit smp_prepare_boot_cpu(void)
632 {
633         cpu_set(smp_processor_id(), cpu_online_map);
634         cpu_set(smp_processor_id(), cpu_callin_map);
635         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
636         paravirt_post_smp_prepare_boot_cpu();
637 }
638
639 #ifdef CONFIG_HOTPLUG_CPU
640 static inline void
641 clear_cpu_sibling_map(int cpu)
642 {
643         int i;
644
645         for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
646                 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
647         for_each_cpu_mask(i, cpu_core_map[cpu])
648                 cpu_clear(cpu, cpu_core_map[i]);
649
650         per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
651 }
652
653 static void
654 remove_siblinginfo(int cpu)
655 {
656         int last = 0;
657
658         if (cpu_data(cpu)->threads_per_core == 1 &&
659             cpu_data(cpu)->cores_per_socket == 1) {
660                 cpu_clear(cpu, cpu_core_map[cpu]);
661                 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
662                 return;
663         }
664
665         last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
666
667         /* remove it from all sibling map's */
668         clear_cpu_sibling_map(cpu);
669 }
670
671 extern void fixup_irqs(void);
672
673 int migrate_platform_irqs(unsigned int cpu)
674 {
675         int new_cpei_cpu;
676         struct irq_desc *desc = NULL;
677         const struct cpumask *mask;
678         int             retval = 0;
679
680         /*
681          * dont permit CPEI target to removed.
682          */
683         if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
684                 printk ("CPU (%d) is CPEI Target\n", cpu);
685                 if (can_cpei_retarget()) {
686                         /*
687                          * Now re-target the CPEI to a different processor
688                          */
689                         new_cpei_cpu = any_online_cpu(cpu_online_map);
690                         mask = cpumask_of(new_cpei_cpu);
691                         set_cpei_target_cpu(new_cpei_cpu);
692                         desc = irq_desc + ia64_cpe_irq;
693                         /*
694                          * Switch for now, immediately, we need to do fake intr
695                          * as other interrupts, but need to study CPEI behaviour with
696                          * polling before making changes.
697                          */
698                         if (desc) {
699                                 desc->chip->disable(ia64_cpe_irq);
700                                 desc->chip->set_affinity(ia64_cpe_irq, mask);
701                                 desc->chip->enable(ia64_cpe_irq);
702                                 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
703                         }
704                 }
705                 if (!desc) {
706                         printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
707                         retval = -EBUSY;
708                 }
709         }
710         return retval;
711 }
712
713 /* must be called with cpucontrol mutex held */
714 int __cpu_disable(void)
715 {
716         int cpu = smp_processor_id();
717
718         /*
719          * dont permit boot processor for now
720          */
721         if (cpu == 0 && !bsp_remove_ok) {
722                 printk ("Your platform does not support removal of BSP\n");
723                 return (-EBUSY);
724         }
725
726         if (ia64_platform_is("sn2")) {
727                 if (!sn_cpu_disable_allowed(cpu))
728                         return -EBUSY;
729         }
730
731         cpu_clear(cpu, cpu_online_map);
732
733         if (migrate_platform_irqs(cpu)) {
734                 cpu_set(cpu, cpu_online_map);
735                 return -EBUSY;
736         }
737
738         remove_siblinginfo(cpu);
739         fixup_irqs();
740         local_flush_tlb_all();
741         cpu_clear(cpu, cpu_callin_map);
742         return 0;
743 }
744
745 void __cpu_die(unsigned int cpu)
746 {
747         unsigned int i;
748
749         for (i = 0; i < 100; i++) {
750                 /* They ack this in play_dead by setting CPU_DEAD */
751                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
752                 {
753                         printk ("CPU %d is now offline\n", cpu);
754                         return;
755                 }
756                 msleep(100);
757         }
758         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
759 }
760 #endif /* CONFIG_HOTPLUG_CPU */
761
762 void
763 smp_cpus_done (unsigned int dummy)
764 {
765         int cpu;
766         unsigned long bogosum = 0;
767
768         /*
769          * Allow the user to impress friends.
770          */
771
772         for_each_online_cpu(cpu) {
773                 bogosum += cpu_data(cpu)->loops_per_jiffy;
774         }
775
776         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
777                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
778 }
779
780 static inline void __devinit
781 set_cpu_sibling_map(int cpu)
782 {
783         int i;
784
785         for_each_online_cpu(i) {
786                 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
787                         cpu_set(i, cpu_core_map[cpu]);
788                         cpu_set(cpu, cpu_core_map[i]);
789                         if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
790                                 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
791                                 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
792                         }
793                 }
794         }
795 }
796
797 int __cpuinit
798 __cpu_up (unsigned int cpu)
799 {
800         int ret;
801         int sapicid;
802
803         sapicid = ia64_cpu_to_sapicid[cpu];
804         if (sapicid == -1)
805                 return -EINVAL;
806
807         /*
808          * Already booted cpu? not valid anymore since we dont
809          * do idle loop tightspin anymore.
810          */
811         if (cpu_isset(cpu, cpu_callin_map))
812                 return -EINVAL;
813
814         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
815         /* Processor goes to start_secondary(), sets online flag */
816         ret = do_boot_cpu(sapicid, cpu);
817         if (ret < 0)
818                 return ret;
819
820         if (cpu_data(cpu)->threads_per_core == 1 &&
821             cpu_data(cpu)->cores_per_socket == 1) {
822                 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
823                 cpu_set(cpu, cpu_core_map[cpu]);
824                 return 0;
825         }
826
827         set_cpu_sibling_map(cpu);
828
829         return 0;
830 }
831
832 /*
833  * Assume that CPUs have been discovered by some platform-dependent interface.  For
834  * SoftSDV/Lion, that would be ACPI.
835  *
836  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
837  */
838 void __init
839 init_smp_config(void)
840 {
841         struct fptr {
842                 unsigned long fp;
843                 unsigned long gp;
844         } *ap_startup;
845         long sal_ret;
846
847         /* Tell SAL where to drop the APs.  */
848         ap_startup = (struct fptr *) start_ap;
849         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
850                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
851         if (sal_ret < 0)
852                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
853                        ia64_sal_strerror(sal_ret));
854 }
855
856 /*
857  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
858  * information related to logical execution units in per_cpu_data structure.
859  */
860 void __devinit
861 identify_siblings(struct cpuinfo_ia64 *c)
862 {
863         long status;
864         u16 pltid;
865         pal_logical_to_physical_t info;
866
867         status = ia64_pal_logical_to_phys(-1, &info);
868         if (status != PAL_STATUS_SUCCESS) {
869                 if (status != PAL_STATUS_UNIMPLEMENTED) {
870                         printk(KERN_ERR
871                                 "ia64_pal_logical_to_phys failed with %ld\n",
872                                 status);
873                         return;
874                 }
875
876                 info.overview_ppid = 0;
877                 info.overview_cpp  = 1;
878                 info.overview_tpc  = 1;
879         }
880
881         status = ia64_sal_physical_id_info(&pltid);
882         if (status != PAL_STATUS_SUCCESS) {
883                 if (status != PAL_STATUS_UNIMPLEMENTED)
884                         printk(KERN_ERR
885                                 "ia64_sal_pltid failed with %ld\n",
886                                 status);
887                 return;
888         }
889
890         c->socket_id =  (pltid << 8) | info.overview_ppid;
891
892         if (info.overview_cpp == 1 && info.overview_tpc == 1)
893                 return;
894
895         c->cores_per_socket = info.overview_cpp;
896         c->threads_per_core = info.overview_tpc;
897         c->num_log = info.overview_num_log;
898
899         c->core_id = info.log1_cid;
900         c->thread_id = info.log1_tid;
901 }
902
903 /*
904  * returns non zero, if multi-threading is enabled
905  * on at least one physical package. Due to hotplug cpu
906  * and (maxcpus=), all threads may not necessarily be enabled
907  * even though the processor supports multi-threading.
908  */
909 int is_multithreading_enabled(void)
910 {
911         int i, j;
912
913         for_each_present_cpu(i) {
914                 for_each_present_cpu(j) {
915                         if (j == i)
916                                 continue;
917                         if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
918                                 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
919                                         return 1;
920                         }
921                 }
922         }
923         return 0;
924 }
925 EXPORT_SYMBOL_GPL(is_multithreading_enabled);