Merge git://git.infradead.org/battery-2.6
[pandora-kernel.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/paravirt.h>
55 #include <asm/paravirt_patch.h>
56 #include <asm/patch.h>
57 #include <asm/pgtable.h>
58 #include <asm/processor.h>
59 #include <asm/sal.h>
60 #include <asm/sections.h>
61 #include <asm/setup.h>
62 #include <asm/smp.h>
63 #include <asm/system.h>
64 #include <asm/tlbflush.h>
65 #include <asm/unistd.h>
66 #include <asm/hpsim.h>
67
68 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
69 # error "struct cpuinfo_ia64 too big!"
70 #endif
71
72 #ifdef CONFIG_SMP
73 unsigned long __per_cpu_offset[NR_CPUS];
74 EXPORT_SYMBOL(__per_cpu_offset);
75 #endif
76
77 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
78 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84
85 static struct resource data_resource = {
86         .name   = "Kernel data",
87         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
88 };
89
90 static struct resource code_resource = {
91         .name   = "Kernel code",
92         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
93 };
94
95 static struct resource bss_resource = {
96         .name   = "Kernel bss",
97         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
98 };
99
100 unsigned long ia64_max_cacheline_size;
101
102 int dma_get_cache_alignment(void)
103 {
104         return ia64_max_cacheline_size;
105 }
106 EXPORT_SYMBOL(dma_get_cache_alignment);
107
108 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
109 EXPORT_SYMBOL(ia64_iobase);
110 struct io_space io_space[MAX_IO_SPACES];
111 EXPORT_SYMBOL(io_space);
112 unsigned int num_io_spaces;
113
114 /*
115  * "flush_icache_range()" needs to know what processor dependent stride size to use
116  * when it makes i-cache(s) coherent with d-caches.
117  */
118 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
119 unsigned long ia64_i_cache_stride_shift = ~0;
120 /*
121  * "clflush_cache_range()" needs to know what processor dependent stride size to
122  * use when it flushes cache lines including both d-cache and i-cache.
123  */
124 /* Safest way to go: 32 bytes by 32 bytes */
125 #define CACHE_STRIDE_SHIFT      5
126 unsigned long ia64_cache_stride_shift = ~0;
127
128 /*
129  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
130  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
131  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
132  * address of the second buffer must be aligned to (merge_mask+1) in order to be
133  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
134  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
135  * page-size of 2^64.
136  */
137 unsigned long ia64_max_iommu_merge_mask = ~0UL;
138 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
139
140 /*
141  * We use a special marker for the end of memory and it uses the extra (+1) slot
142  */
143 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
144 int num_rsvd_regions __initdata;
145
146
147 /*
148  * Filter incoming memory segments based on the primitive map created from the boot
149  * parameters. Segments contained in the map are removed from the memory ranges. A
150  * caller-specified function is called with the memory ranges that remain after filtering.
151  * This routine does not assume the incoming segments are sorted.
152  */
153 int __init
154 filter_rsvd_memory (u64 start, u64 end, void *arg)
155 {
156         u64 range_start, range_end, prev_start;
157         void (*func)(unsigned long, unsigned long, int);
158         int i;
159
160 #if IGNORE_PFN0
161         if (start == PAGE_OFFSET) {
162                 printk(KERN_WARNING "warning: skipping physical page 0\n");
163                 start += PAGE_SIZE;
164                 if (start >= end) return 0;
165         }
166 #endif
167         /*
168          * lowest possible address(walker uses virtual)
169          */
170         prev_start = PAGE_OFFSET;
171         func = arg;
172
173         for (i = 0; i < num_rsvd_regions; ++i) {
174                 range_start = max(start, prev_start);
175                 range_end   = min(end, rsvd_region[i].start);
176
177                 if (range_start < range_end)
178                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
179
180                 /* nothing more available in this segment */
181                 if (range_end == end) return 0;
182
183                 prev_start = rsvd_region[i].end;
184         }
185         /* end of memory marker allows full processing inside loop body */
186         return 0;
187 }
188
189 /*
190  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
191  * are not filtered out.
192  */
193 int __init
194 filter_memory(u64 start, u64 end, void *arg)
195 {
196         void (*func)(unsigned long, unsigned long, int);
197
198 #if IGNORE_PFN0
199         if (start == PAGE_OFFSET) {
200                 printk(KERN_WARNING "warning: skipping physical page 0\n");
201                 start += PAGE_SIZE;
202                 if (start >= end)
203                         return 0;
204         }
205 #endif
206         func = arg;
207         if (start < end)
208                 call_pernode_memory(__pa(start), end - start, func);
209         return 0;
210 }
211
212 static void __init
213 sort_regions (struct rsvd_region *rsvd_region, int max)
214 {
215         int j;
216
217         /* simple bubble sorting */
218         while (max--) {
219                 for (j = 0; j < max; ++j) {
220                         if (rsvd_region[j].start > rsvd_region[j+1].start) {
221                                 struct rsvd_region tmp;
222                                 tmp = rsvd_region[j];
223                                 rsvd_region[j] = rsvd_region[j + 1];
224                                 rsvd_region[j + 1] = tmp;
225                         }
226                 }
227         }
228 }
229
230 /*
231  * Request address space for all standard resources
232  */
233 static int __init register_memory(void)
234 {
235         code_resource.start = ia64_tpa(_text);
236         code_resource.end   = ia64_tpa(_etext) - 1;
237         data_resource.start = ia64_tpa(_etext);
238         data_resource.end   = ia64_tpa(_edata) - 1;
239         bss_resource.start  = ia64_tpa(__bss_start);
240         bss_resource.end    = ia64_tpa(_end) - 1;
241         efi_initialize_iomem_resources(&code_resource, &data_resource,
242                         &bss_resource);
243
244         return 0;
245 }
246
247 __initcall(register_memory);
248
249
250 #ifdef CONFIG_KEXEC
251
252 /*
253  * This function checks if the reserved crashkernel is allowed on the specific
254  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
255  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
256  * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
257  * in kdump case. See the comment in sba_init() in sba_iommu.c.
258  *
259  * So, the only machvec that really supports loading the kdump kernel
260  * over 4 GB is "sn2".
261  */
262 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
263 {
264         if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
265                 return 1;
266         else
267                 return pbase < (1UL << 32);
268 }
269
270 static void __init setup_crashkernel(unsigned long total, int *n)
271 {
272         unsigned long long base = 0, size = 0;
273         int ret;
274
275         ret = parse_crashkernel(boot_command_line, total,
276                         &size, &base);
277         if (ret == 0 && size > 0) {
278                 if (!base) {
279                         sort_regions(rsvd_region, *n);
280                         base = kdump_find_rsvd_region(size,
281                                         rsvd_region, *n);
282                 }
283
284                 if (!check_crashkernel_memory(base, size)) {
285                         pr_warning("crashkernel: There would be kdump memory "
286                                 "at %ld GB but this is unusable because it "
287                                 "must\nbe below 4 GB. Change the memory "
288                                 "configuration of the machine.\n",
289                                 (unsigned long)(base >> 30));
290                         return;
291                 }
292
293                 if (base != ~0UL) {
294                         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
295                                         "for crashkernel (System RAM: %ldMB)\n",
296                                         (unsigned long)(size >> 20),
297                                         (unsigned long)(base >> 20),
298                                         (unsigned long)(total >> 20));
299                         rsvd_region[*n].start =
300                                 (unsigned long)__va(base);
301                         rsvd_region[*n].end =
302                                 (unsigned long)__va(base + size);
303                         (*n)++;
304                         crashk_res.start = base;
305                         crashk_res.end = base + size - 1;
306                 }
307         }
308         efi_memmap_res.start = ia64_boot_param->efi_memmap;
309         efi_memmap_res.end = efi_memmap_res.start +
310                 ia64_boot_param->efi_memmap_size;
311         boot_param_res.start = __pa(ia64_boot_param);
312         boot_param_res.end = boot_param_res.start +
313                 sizeof(*ia64_boot_param);
314 }
315 #else
316 static inline void __init setup_crashkernel(unsigned long total, int *n)
317 {}
318 #endif
319
320 /**
321  * reserve_memory - setup reserved memory areas
322  *
323  * Setup the reserved memory areas set aside for the boot parameters,
324  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
325  * see arch/ia64/include/asm/meminit.h if you need to define more.
326  */
327 void __init
328 reserve_memory (void)
329 {
330         int n = 0;
331         unsigned long total_memory;
332
333         /*
334          * none of the entries in this table overlap
335          */
336         rsvd_region[n].start = (unsigned long) ia64_boot_param;
337         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
338         n++;
339
340         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
341         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
342         n++;
343
344         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
345         rsvd_region[n].end   = (rsvd_region[n].start
346                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
347         n++;
348
349         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
350         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
351         n++;
352
353         n += paravirt_reserve_memory(&rsvd_region[n]);
354
355 #ifdef CONFIG_BLK_DEV_INITRD
356         if (ia64_boot_param->initrd_start) {
357                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
358                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
359                 n++;
360         }
361 #endif
362
363 #ifdef CONFIG_CRASH_DUMP
364         if (reserve_elfcorehdr(&rsvd_region[n].start,
365                                &rsvd_region[n].end) == 0)
366                 n++;
367 #endif
368
369         total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
370         n++;
371
372         setup_crashkernel(total_memory, &n);
373
374         /* end of memory marker */
375         rsvd_region[n].start = ~0UL;
376         rsvd_region[n].end   = ~0UL;
377         n++;
378
379         num_rsvd_regions = n;
380         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
381
382         sort_regions(rsvd_region, num_rsvd_regions);
383 }
384
385
386 /**
387  * find_initrd - get initrd parameters from the boot parameter structure
388  *
389  * Grab the initrd start and end from the boot parameter struct given us by
390  * the boot loader.
391  */
392 void __init
393 find_initrd (void)
394 {
395 #ifdef CONFIG_BLK_DEV_INITRD
396         if (ia64_boot_param->initrd_start) {
397                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
398                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
399
400                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
401                        initrd_start, ia64_boot_param->initrd_size);
402         }
403 #endif
404 }
405
406 static void __init
407 io_port_init (void)
408 {
409         unsigned long phys_iobase;
410
411         /*
412          * Set `iobase' based on the EFI memory map or, failing that, the
413          * value firmware left in ar.k0.
414          *
415          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
416          * the port's virtual address, so ia32_load_state() loads it with a
417          * user virtual address.  But in ia64 mode, glibc uses the
418          * *physical* address in ar.k0 to mmap the appropriate area from
419          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
420          * cases, user-mode can only use the legacy 0-64K I/O port space.
421          *
422          * ar.k0 is not involved in kernel I/O port accesses, which can use
423          * any of the I/O port spaces and are done via MMIO using the
424          * virtual mmio_base from the appropriate io_space[].
425          */
426         phys_iobase = efi_get_iobase();
427         if (!phys_iobase) {
428                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
429                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
430                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
431         }
432         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
433         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
434
435         /* setup legacy IO port space */
436         io_space[0].mmio_base = ia64_iobase;
437         io_space[0].sparse = 1;
438         num_io_spaces = 1;
439 }
440
441 /**
442  * early_console_setup - setup debugging console
443  *
444  * Consoles started here require little enough setup that we can start using
445  * them very early in the boot process, either right after the machine
446  * vector initialization, or even before if the drivers can detect their hw.
447  *
448  * Returns non-zero if a console couldn't be setup.
449  */
450 static inline int __init
451 early_console_setup (char *cmdline)
452 {
453         int earlycons = 0;
454
455 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
456         {
457                 extern int sn_serial_console_early_setup(void);
458                 if (!sn_serial_console_early_setup())
459                         earlycons++;
460         }
461 #endif
462 #ifdef CONFIG_EFI_PCDP
463         if (!efi_setup_pcdp_console(cmdline))
464                 earlycons++;
465 #endif
466         if (!simcons_register())
467                 earlycons++;
468
469         return (earlycons) ? 0 : -1;
470 }
471
472 static inline void
473 mark_bsp_online (void)
474 {
475 #ifdef CONFIG_SMP
476         /* If we register an early console, allow CPU 0 to printk */
477         cpu_set(smp_processor_id(), cpu_online_map);
478 #endif
479 }
480
481 static __initdata int nomca;
482 static __init int setup_nomca(char *s)
483 {
484         nomca = 1;
485         return 0;
486 }
487 early_param("nomca", setup_nomca);
488
489 /*
490  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
491  * is_kdump_kernel() to determine if we are booting after a panic. Hence
492  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
493  */
494 #ifdef CONFIG_CRASH_DUMP
495 /* elfcorehdr= specifies the location of elf core header
496  * stored by the crashed kernel.
497  */
498 static int __init parse_elfcorehdr(char *arg)
499 {
500         if (!arg)
501                 return -EINVAL;
502
503         elfcorehdr_addr = memparse(arg, &arg);
504         return 0;
505 }
506 early_param("elfcorehdr", parse_elfcorehdr);
507
508 int __init reserve_elfcorehdr(u64 *start, u64 *end)
509 {
510         u64 length;
511
512         /* We get the address using the kernel command line,
513          * but the size is extracted from the EFI tables.
514          * Both address and size are required for reservation
515          * to work properly.
516          */
517
518         if (!is_vmcore_usable())
519                 return -EINVAL;
520
521         if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
522                 vmcore_unusable();
523                 return -EINVAL;
524         }
525
526         *start = (unsigned long)__va(elfcorehdr_addr);
527         *end = *start + length;
528         return 0;
529 }
530
531 #endif /* CONFIG_PROC_VMCORE */
532
533 void __init
534 setup_arch (char **cmdline_p)
535 {
536         unw_init();
537
538         paravirt_arch_setup_early();
539
540         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
541         paravirt_patch_apply();
542
543         *cmdline_p = __va(ia64_boot_param->command_line);
544         strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
545
546         efi_init();
547         io_port_init();
548
549 #ifdef CONFIG_IA64_GENERIC
550         /* machvec needs to be parsed from the command line
551          * before parse_early_param() is called to ensure
552          * that ia64_mv is initialised before any command line
553          * settings may cause console setup to occur
554          */
555         machvec_init_from_cmdline(*cmdline_p);
556 #endif
557
558         parse_early_param();
559
560         if (early_console_setup(*cmdline_p) == 0)
561                 mark_bsp_online();
562
563 #ifdef CONFIG_ACPI
564         /* Initialize the ACPI boot-time table parser */
565         acpi_table_init();
566         early_acpi_boot_init();
567 # ifdef CONFIG_ACPI_NUMA
568         acpi_numa_init();
569 #ifdef CONFIG_ACPI_HOTPLUG_CPU
570         prefill_possible_map();
571 #endif
572         per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
573                 32 : cpus_weight(early_cpu_possible_map)),
574                 additional_cpus > 0 ? additional_cpus : 0);
575 # endif
576 #else
577 # ifdef CONFIG_SMP
578         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
579 # endif
580 #endif /* CONFIG_APCI_BOOT */
581
582         find_memory();
583
584         /* process SAL system table: */
585         ia64_sal_init(__va(efi.sal_systab));
586
587 #ifdef CONFIG_ITANIUM
588         ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
589 #else
590         {
591                 unsigned long num_phys_stacked;
592
593                 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
594                         ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
595         }
596 #endif
597
598 #ifdef CONFIG_SMP
599         cpu_physical_id(0) = hard_smp_processor_id();
600 #endif
601
602         cpu_init();     /* initialize the bootstrap CPU */
603         mmu_context_init();     /* initialize context_id bitmap */
604
605 #ifdef CONFIG_ACPI
606         acpi_boot_init();
607 #endif
608
609         paravirt_banner();
610         paravirt_arch_setup_console(cmdline_p);
611
612 #ifdef CONFIG_VT
613         if (!conswitchp) {
614 # if defined(CONFIG_DUMMY_CONSOLE)
615                 conswitchp = &dummy_con;
616 # endif
617 # if defined(CONFIG_VGA_CONSOLE)
618                 /*
619                  * Non-legacy systems may route legacy VGA MMIO range to system
620                  * memory.  vga_con probes the MMIO hole, so memory looks like
621                  * a VGA device to it.  The EFI memory map can tell us if it's
622                  * memory so we can avoid this problem.
623                  */
624                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
625                         conswitchp = &vga_con;
626 # endif
627         }
628 #endif
629
630         /* enable IA-64 Machine Check Abort Handling unless disabled */
631         if (paravirt_arch_setup_nomca())
632                 nomca = 1;
633         if (!nomca)
634                 ia64_mca_init();
635
636         platform_setup(cmdline_p);
637 #ifndef CONFIG_IA64_HP_SIM
638         check_sal_cache_flush();
639 #endif
640         paging_init();
641 }
642
643 /*
644  * Display cpu info for all CPUs.
645  */
646 static int
647 show_cpuinfo (struct seq_file *m, void *v)
648 {
649 #ifdef CONFIG_SMP
650 #       define lpj      c->loops_per_jiffy
651 #       define cpunum   c->cpu
652 #else
653 #       define lpj      loops_per_jiffy
654 #       define cpunum   0
655 #endif
656         static struct {
657                 unsigned long mask;
658                 const char *feature_name;
659         } feature_bits[] = {
660                 { 1UL << 0, "branchlong" },
661                 { 1UL << 1, "spontaneous deferral"},
662                 { 1UL << 2, "16-byte atomic ops" }
663         };
664         char features[128], *cp, *sep;
665         struct cpuinfo_ia64 *c = v;
666         unsigned long mask;
667         unsigned long proc_freq;
668         int i, size;
669
670         mask = c->features;
671
672         /* build the feature string: */
673         memcpy(features, "standard", 9);
674         cp = features;
675         size = sizeof(features);
676         sep = "";
677         for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
678                 if (mask & feature_bits[i].mask) {
679                         cp += snprintf(cp, size, "%s%s", sep,
680                                        feature_bits[i].feature_name),
681                         sep = ", ";
682                         mask &= ~feature_bits[i].mask;
683                         size = sizeof(features) - (cp - features);
684                 }
685         }
686         if (mask && size > 1) {
687                 /* print unknown features as a hex value */
688                 snprintf(cp, size, "%s0x%lx", sep, mask);
689         }
690
691         proc_freq = cpufreq_quick_get(cpunum);
692         if (!proc_freq)
693                 proc_freq = c->proc_freq / 1000;
694
695         seq_printf(m,
696                    "processor  : %d\n"
697                    "vendor     : %s\n"
698                    "arch       : IA-64\n"
699                    "family     : %u\n"
700                    "model      : %u\n"
701                    "model name : %s\n"
702                    "revision   : %u\n"
703                    "archrev    : %u\n"
704                    "features   : %s\n"
705                    "cpu number : %lu\n"
706                    "cpu regs   : %u\n"
707                    "cpu MHz    : %lu.%03lu\n"
708                    "itc MHz    : %lu.%06lu\n"
709                    "BogoMIPS   : %lu.%02lu\n",
710                    cpunum, c->vendor, c->family, c->model,
711                    c->model_name, c->revision, c->archrev,
712                    features, c->ppn, c->number,
713                    proc_freq / 1000, proc_freq % 1000,
714                    c->itc_freq / 1000000, c->itc_freq % 1000000,
715                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
716 #ifdef CONFIG_SMP
717         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
718         if (c->socket_id != -1)
719                 seq_printf(m, "physical id: %u\n", c->socket_id);
720         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
721                 seq_printf(m,
722                            "core id    : %u\n"
723                            "thread id  : %u\n",
724                            c->core_id, c->thread_id);
725 #endif
726         seq_printf(m,"\n");
727
728         return 0;
729 }
730
731 static void *
732 c_start (struct seq_file *m, loff_t *pos)
733 {
734 #ifdef CONFIG_SMP
735         while (*pos < nr_cpu_ids && !cpu_online(*pos))
736                 ++*pos;
737 #endif
738         return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
739 }
740
741 static void *
742 c_next (struct seq_file *m, void *v, loff_t *pos)
743 {
744         ++*pos;
745         return c_start(m, pos);
746 }
747
748 static void
749 c_stop (struct seq_file *m, void *v)
750 {
751 }
752
753 const struct seq_operations cpuinfo_op = {
754         .start =        c_start,
755         .next =         c_next,
756         .stop =         c_stop,
757         .show =         show_cpuinfo
758 };
759
760 #define MAX_BRANDS      8
761 static char brandname[MAX_BRANDS][128];
762
763 static char * __cpuinit
764 get_model_name(__u8 family, __u8 model)
765 {
766         static int overflow;
767         char brand[128];
768         int i;
769
770         memcpy(brand, "Unknown", 8);
771         if (ia64_pal_get_brand_info(brand)) {
772                 if (family == 0x7)
773                         memcpy(brand, "Merced", 7);
774                 else if (family == 0x1f) switch (model) {
775                         case 0: memcpy(brand, "McKinley", 9); break;
776                         case 1: memcpy(brand, "Madison", 8); break;
777                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
778                 }
779         }
780         for (i = 0; i < MAX_BRANDS; i++)
781                 if (strcmp(brandname[i], brand) == 0)
782                         return brandname[i];
783         for (i = 0; i < MAX_BRANDS; i++)
784                 if (brandname[i][0] == '\0')
785                         return strcpy(brandname[i], brand);
786         if (overflow++ == 0)
787                 printk(KERN_ERR
788                        "%s: Table overflow. Some processor model information will be missing\n",
789                        __func__);
790         return "Unknown";
791 }
792
793 static void __cpuinit
794 identify_cpu (struct cpuinfo_ia64 *c)
795 {
796         union {
797                 unsigned long bits[5];
798                 struct {
799                         /* id 0 & 1: */
800                         char vendor[16];
801
802                         /* id 2 */
803                         u64 ppn;                /* processor serial number */
804
805                         /* id 3: */
806                         unsigned number         :  8;
807                         unsigned revision       :  8;
808                         unsigned model          :  8;
809                         unsigned family         :  8;
810                         unsigned archrev        :  8;
811                         unsigned reserved       : 24;
812
813                         /* id 4: */
814                         u64 features;
815                 } field;
816         } cpuid;
817         pal_vm_info_1_u_t vm1;
818         pal_vm_info_2_u_t vm2;
819         pal_status_t status;
820         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
821         int i;
822         for (i = 0; i < 5; ++i)
823                 cpuid.bits[i] = ia64_get_cpuid(i);
824
825         memcpy(c->vendor, cpuid.field.vendor, 16);
826 #ifdef CONFIG_SMP
827         c->cpu = smp_processor_id();
828
829         /* below default values will be overwritten  by identify_siblings() 
830          * for Multi-Threading/Multi-Core capable CPUs
831          */
832         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
833         c->socket_id = -1;
834
835         identify_siblings(c);
836
837         if (c->threads_per_core > smp_num_siblings)
838                 smp_num_siblings = c->threads_per_core;
839 #endif
840         c->ppn = cpuid.field.ppn;
841         c->number = cpuid.field.number;
842         c->revision = cpuid.field.revision;
843         c->model = cpuid.field.model;
844         c->family = cpuid.field.family;
845         c->archrev = cpuid.field.archrev;
846         c->features = cpuid.field.features;
847         c->model_name = get_model_name(c->family, c->model);
848
849         status = ia64_pal_vm_summary(&vm1, &vm2);
850         if (status == PAL_STATUS_SUCCESS) {
851                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
852                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
853         }
854         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
855         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
856 }
857
858 void __init
859 setup_per_cpu_areas (void)
860 {
861         /* start_kernel() requires this... */
862 }
863
864 /*
865  * Do the following calculations:
866  *
867  * 1. the max. cache line size.
868  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
869  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
870  */
871 static void __cpuinit
872 get_cache_info(void)
873 {
874         unsigned long line_size, max = 1;
875         unsigned long l, levels, unique_caches;
876         pal_cache_config_info_t cci;
877         long status;
878
879         status = ia64_pal_cache_summary(&levels, &unique_caches);
880         if (status != 0) {
881                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
882                        __func__, status);
883                 max = SMP_CACHE_BYTES;
884                 /* Safest setup for "flush_icache_range()" */
885                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
886                 /* Safest setup for "clflush_cache_range()" */
887                 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
888                 goto out;
889         }
890
891         for (l = 0; l < levels; ++l) {
892                 /* cache_type (data_or_unified)=2 */
893                 status = ia64_pal_cache_config_info(l, 2, &cci);
894                 if (status != 0) {
895                         printk(KERN_ERR "%s: ia64_pal_cache_config_info"
896                                 "(l=%lu, 2) failed (status=%ld)\n",
897                                 __func__, l, status);
898                         max = SMP_CACHE_BYTES;
899                         /* The safest setup for "flush_icache_range()" */
900                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
901                         /* The safest setup for "clflush_cache_range()" */
902                         ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
903                         cci.pcci_unified = 1;
904                 } else {
905                         if (cci.pcci_stride < ia64_cache_stride_shift)
906                                 ia64_cache_stride_shift = cci.pcci_stride;
907
908                         line_size = 1 << cci.pcci_line_size;
909                         if (line_size > max)
910                                 max = line_size;
911                 }
912
913                 if (!cci.pcci_unified) {
914                         /* cache_type (instruction)=1*/
915                         status = ia64_pal_cache_config_info(l, 1, &cci);
916                         if (status != 0) {
917                                 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
918                                         "(l=%lu, 1) failed (status=%ld)\n",
919                                         __func__, l, status);
920                                 /* The safest setup for flush_icache_range() */
921                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
922                         }
923                 }
924                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
925                         ia64_i_cache_stride_shift = cci.pcci_stride;
926         }
927   out:
928         if (max > ia64_max_cacheline_size)
929                 ia64_max_cacheline_size = max;
930 }
931
932 /*
933  * cpu_init() initializes state that is per-CPU.  This function acts
934  * as a 'CPU state barrier', nothing should get across.
935  */
936 void __cpuinit
937 cpu_init (void)
938 {
939         extern void __cpuinit ia64_mmu_init (void *);
940         static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
941         unsigned long num_phys_stacked;
942         pal_vm_info_2_u_t vmi;
943         unsigned int max_ctx;
944         struct cpuinfo_ia64 *cpu_info;
945         void *cpu_data;
946
947         cpu_data = per_cpu_init();
948 #ifdef CONFIG_SMP
949         /*
950          * insert boot cpu into sibling and core mapes
951          * (must be done after per_cpu area is setup)
952          */
953         if (smp_processor_id() == 0) {
954                 cpu_set(0, per_cpu(cpu_sibling_map, 0));
955                 cpu_set(0, cpu_core_map[0]);
956         } else {
957                 /*
958                  * Set ar.k3 so that assembly code in MCA handler can compute
959                  * physical addresses of per cpu variables with a simple:
960                  *   phys = ar.k3 + &per_cpu_var
961                  * and the alt-dtlb-miss handler can set per-cpu mapping into
962                  * the TLB when needed. head.S already did this for cpu0.
963                  */
964                 ia64_set_kr(IA64_KR_PER_CPU_DATA,
965                             ia64_tpa(cpu_data) - (long) __per_cpu_start);
966         }
967 #endif
968
969         get_cache_info();
970
971         /*
972          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
973          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
974          * depends on the data returned by identify_cpu().  We break the dependency by
975          * accessing cpu_data() through the canonical per-CPU address.
976          */
977         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
978         identify_cpu(cpu_info);
979
980 #ifdef CONFIG_MCKINLEY
981         {
982 #               define FEATURE_SET 16
983                 struct ia64_pal_retval iprv;
984
985                 if (cpu_info->family == 0x1f) {
986                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
987                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
988                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
989                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
990                 }
991         }
992 #endif
993
994         /* Clear the stack memory reserved for pt_regs: */
995         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
996
997         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
998
999         /*
1000          * Initialize the page-table base register to a global
1001          * directory with all zeroes.  This ensure that we can handle
1002          * TLB-misses to user address-space even before we created the
1003          * first user address-space.  This may happen, e.g., due to
1004          * aggressive use of lfetch.fault.
1005          */
1006         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1007
1008         /*
1009          * Initialize default control register to defer speculative faults except
1010          * for those arising from TLB misses, which are not deferred.  The
1011          * kernel MUST NOT depend on a particular setting of these bits (in other words,
1012          * the kernel must have recovery code for all speculative accesses).  Turn on
1013          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1014          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1015          * be fine).
1016          */
1017         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1018                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1019         atomic_inc(&init_mm.mm_count);
1020         current->active_mm = &init_mm;
1021         BUG_ON(current->mm);
1022
1023         ia64_mmu_init(ia64_imva(cpu_data));
1024         ia64_mca_cpu_init(ia64_imva(cpu_data));
1025
1026 #ifdef CONFIG_IA32_SUPPORT
1027         ia32_cpu_init();
1028 #endif
1029
1030         /* Clear ITC to eliminate sched_clock() overflows in human time.  */
1031         ia64_set_itc(0);
1032
1033         /* disable all local interrupt sources: */
1034         ia64_set_itv(1 << 16);
1035         ia64_set_lrr0(1 << 16);
1036         ia64_set_lrr1(1 << 16);
1037         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1038         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1039
1040         /* clear TPR & XTP to enable all interrupt classes: */
1041         ia64_setreg(_IA64_REG_CR_TPR, 0);
1042
1043         /* Clear any pending interrupts left by SAL/EFI */
1044         while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1045                 ia64_eoi();
1046
1047 #ifdef CONFIG_SMP
1048         normal_xtp();
1049 #endif
1050
1051         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1052         if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1053                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1054                 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1055         } else {
1056                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1057                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
1058         }
1059         while (max_ctx < ia64_ctx.max_ctx) {
1060                 unsigned int old = ia64_ctx.max_ctx;
1061                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1062                         break;
1063         }
1064
1065         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1066                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1067                        "stacked regs\n");
1068                 num_phys_stacked = 96;
1069         }
1070         /* size of physical stacked register partition plus 8 bytes: */
1071         if (num_phys_stacked > max_num_phys_stacked) {
1072                 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1073                 max_num_phys_stacked = num_phys_stacked;
1074         }
1075         platform_cpu_init();
1076         pm_idle = default_idle;
1077 }
1078
1079 void __init
1080 check_bugs (void)
1081 {
1082         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1083                                (unsigned long) __end___mckinley_e9_bundles);
1084 }
1085
1086 static int __init run_dmi_scan(void)
1087 {
1088         dmi_scan_machine();
1089         return 0;
1090 }
1091 core_initcall(run_dmi_scan);