Auto-update from upstream
[pandora-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  */
55 #include <linux/config.h>
56 #include <linux/types.h>
57 #include <linux/init.h>
58 #include <linux/sched.h>
59 #include <linux/interrupt.h>
60 #include <linux/irq.h>
61 #include <linux/kallsyms.h>
62 #include <linux/smp_lock.h>
63 #include <linux/bootmem.h>
64 #include <linux/acpi.h>
65 #include <linux/timer.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/smp.h>
69 #include <linux/workqueue.h>
70
71 #include <asm/delay.h>
72 #include <asm/machvec.h>
73 #include <asm/meminit.h>
74 #include <asm/page.h>
75 #include <asm/ptrace.h>
76 #include <asm/system.h>
77 #include <asm/sal.h>
78 #include <asm/mca.h>
79
80 #include <asm/irq.h>
81 #include <asm/hw_irq.h>
82
83 #include "entry.h"
84
85 #if defined(IA64_MCA_DEBUG_INFO)
86 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
87 #else
88 # define IA64_MCA_DEBUG(fmt...)
89 #endif
90
91 /* Used by mca_asm.S */
92 u32                             ia64_mca_serialize;
93 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
94 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
95 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
96 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
97
98 unsigned long __per_cpu_mca[NR_CPUS];
99
100 /* In mca_asm.S */
101 extern void                     ia64_os_init_dispatch_monarch (void);
102 extern void                     ia64_os_init_dispatch_slave (void);
103
104 static int monarch_cpu = -1;
105
106 static ia64_mc_info_t           ia64_mc_info;
107
108 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
109 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
110 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
111 #define CPE_HISTORY_LENGTH    5
112 #define CMC_HISTORY_LENGTH    5
113
114 static struct timer_list cpe_poll_timer;
115 static struct timer_list cmc_poll_timer;
116 /*
117  * This variable tells whether we are currently in polling mode.
118  * Start with this in the wrong state so we won't play w/ timers
119  * before the system is ready.
120  */
121 static int cmc_polling_enabled = 1;
122
123 /*
124  * Clearing this variable prevents CPE polling from getting activated
125  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
126  * but encounters problems retrieving CPE logs.  This should only be
127  * necessary for debugging.
128  */
129 static int cpe_poll_enabled = 1;
130
131 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
132
133 static int mca_init;
134
135 /*
136  * IA64_MCA log support
137  */
138 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
139 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
140
141 typedef struct ia64_state_log_s
142 {
143         spinlock_t      isl_lock;
144         int             isl_index;
145         unsigned long   isl_count;
146         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
147 } ia64_state_log_t;
148
149 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
150
151 #define IA64_LOG_ALLOCATE(it, size) \
152         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
153                 (ia64_err_rec_t *)alloc_bootmem(size); \
154         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
155                 (ia64_err_rec_t *)alloc_bootmem(size);}
156 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
157 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
158 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
159 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
160 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_INDEX_INC(it) \
162     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
163     ia64_state_log[it].isl_count++;}
164 #define IA64_LOG_INDEX_DEC(it) \
165     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
166 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
167 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
168 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
169
170 /*
171  * ia64_log_init
172  *      Reset the OS ia64 log buffer
173  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
174  * Outputs      :       None
175  */
176 static void
177 ia64_log_init(int sal_info_type)
178 {
179         u64     max_size = 0;
180
181         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
182         IA64_LOG_LOCK_INIT(sal_info_type);
183
184         // SAL will tell us the maximum size of any error record of this type
185         max_size = ia64_sal_get_state_info_size(sal_info_type);
186         if (!max_size)
187                 /* alloc_bootmem() doesn't like zero-sized allocations! */
188                 return;
189
190         // set up OS data structures to hold error info
191         IA64_LOG_ALLOCATE(sal_info_type, max_size);
192         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
193         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
194 }
195
196 /*
197  * ia64_log_get
198  *
199  *      Get the current MCA log from SAL and copy it into the OS log buffer.
200  *
201  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
202  *              irq_safe    whether you can use printk at this point
203  *  Outputs :   size        (total record length)
204  *              *buffer     (ptr to error record)
205  *
206  */
207 static u64
208 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
209 {
210         sal_log_record_header_t     *log_buffer;
211         u64                         total_len = 0;
212         int                         s;
213
214         IA64_LOG_LOCK(sal_info_type);
215
216         /* Get the process state information */
217         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
218
219         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
220
221         if (total_len) {
222                 IA64_LOG_INDEX_INC(sal_info_type);
223                 IA64_LOG_UNLOCK(sal_info_type);
224                 if (irq_safe) {
225                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
226                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
227                 }
228                 *buffer = (u8 *) log_buffer;
229                 return total_len;
230         } else {
231                 IA64_LOG_UNLOCK(sal_info_type);
232                 return 0;
233         }
234 }
235
236 /*
237  *  ia64_mca_log_sal_error_record
238  *
239  *  This function retrieves a specified error record type from SAL
240  *  and wakes up any processes waiting for error records.
241  *
242  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
243  *              FIXME: remove MCA and irq_safe.
244  */
245 static void
246 ia64_mca_log_sal_error_record(int sal_info_type)
247 {
248         u8 *buffer;
249         sal_log_record_header_t *rh;
250         u64 size;
251         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
252 #ifdef IA64_MCA_DEBUG_INFO
253         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
254 #endif
255
256         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
257         if (!size)
258                 return;
259
260         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
261
262         if (irq_safe)
263                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
264                         smp_processor_id(),
265                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
266
267         /* Clear logs from corrected errors in case there's no user-level logger */
268         rh = (sal_log_record_header_t *)buffer;
269         if (rh->severity == sal_log_severity_corrected)
270                 ia64_sal_clear_state_info(sal_info_type);
271 }
272
273 /*
274  * platform dependent error handling
275  */
276 #ifndef PLATFORM_MCA_HANDLERS
277
278 #ifdef CONFIG_ACPI
279
280 int cpe_vector = -1;
281
282 static irqreturn_t
283 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
284 {
285         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
286         static int              index;
287         static DEFINE_SPINLOCK(cpe_history_lock);
288
289         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
290                        __FUNCTION__, cpe_irq, smp_processor_id());
291
292         /* SAL spec states this should run w/ interrupts enabled */
293         local_irq_enable();
294
295         /* Get the CPE error record and log it */
296         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
297
298         spin_lock(&cpe_history_lock);
299         if (!cpe_poll_enabled && cpe_vector >= 0) {
300
301                 int i, count = 1; /* we know 1 happened now */
302                 unsigned long now = jiffies;
303
304                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
305                         if (now - cpe_history[i] <= HZ)
306                                 count++;
307                 }
308
309                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
310                 if (count >= CPE_HISTORY_LENGTH) {
311
312                         cpe_poll_enabled = 1;
313                         spin_unlock(&cpe_history_lock);
314                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
315
316                         /*
317                          * Corrected errors will still be corrected, but
318                          * make sure there's a log somewhere that indicates
319                          * something is generating more than we can handle.
320                          */
321                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
322
323                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
324
325                         /* lock already released, get out now */
326                         return IRQ_HANDLED;
327                 } else {
328                         cpe_history[index++] = now;
329                         if (index == CPE_HISTORY_LENGTH)
330                                 index = 0;
331                 }
332         }
333         spin_unlock(&cpe_history_lock);
334         return IRQ_HANDLED;
335 }
336
337 #endif /* CONFIG_ACPI */
338
339 #ifdef CONFIG_ACPI
340 /*
341  * ia64_mca_register_cpev
342  *
343  *  Register the corrected platform error vector with SAL.
344  *
345  *  Inputs
346  *      cpev        Corrected Platform Error Vector number
347  *
348  *  Outputs
349  *      None
350  */
351 static void
352 ia64_mca_register_cpev (int cpev)
353 {
354         /* Register the CPE interrupt vector with SAL */
355         struct ia64_sal_retval isrv;
356
357         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
358         if (isrv.status) {
359                 printk(KERN_ERR "Failed to register Corrected Platform "
360                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
361                 return;
362         }
363
364         IA64_MCA_DEBUG("%s: corrected platform error "
365                        "vector %#x registered\n", __FUNCTION__, cpev);
366 }
367 #endif /* CONFIG_ACPI */
368
369 #endif /* PLATFORM_MCA_HANDLERS */
370
371 /*
372  * ia64_mca_cmc_vector_setup
373  *
374  *  Setup the corrected machine check vector register in the processor.
375  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
376  *  This function is invoked on a per-processor basis.
377  *
378  * Inputs
379  *      None
380  *
381  * Outputs
382  *      None
383  */
384 void
385 ia64_mca_cmc_vector_setup (void)
386 {
387         cmcv_reg_t      cmcv;
388
389         cmcv.cmcv_regval        = 0;
390         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
391         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
392         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
393
394         IA64_MCA_DEBUG("%s: CPU %d corrected "
395                        "machine check vector %#x registered.\n",
396                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
397
398         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
399                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
400 }
401
402 /*
403  * ia64_mca_cmc_vector_disable
404  *
405  *  Mask the corrected machine check vector register in the processor.
406  *  This function is invoked on a per-processor basis.
407  *
408  * Inputs
409  *      dummy(unused)
410  *
411  * Outputs
412  *      None
413  */
414 static void
415 ia64_mca_cmc_vector_disable (void *dummy)
416 {
417         cmcv_reg_t      cmcv;
418
419         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
420
421         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
422         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
423
424         IA64_MCA_DEBUG("%s: CPU %d corrected "
425                        "machine check vector %#x disabled.\n",
426                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
427 }
428
429 /*
430  * ia64_mca_cmc_vector_enable
431  *
432  *  Unmask the corrected machine check vector register in the processor.
433  *  This function is invoked on a per-processor basis.
434  *
435  * Inputs
436  *      dummy(unused)
437  *
438  * Outputs
439  *      None
440  */
441 static void
442 ia64_mca_cmc_vector_enable (void *dummy)
443 {
444         cmcv_reg_t      cmcv;
445
446         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
447
448         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
449         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
450
451         IA64_MCA_DEBUG("%s: CPU %d corrected "
452                        "machine check vector %#x enabled.\n",
453                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
454 }
455
456 /*
457  * ia64_mca_cmc_vector_disable_keventd
458  *
459  * Called via keventd (smp_call_function() is not safe in interrupt context) to
460  * disable the cmc interrupt vector.
461  */
462 static void
463 ia64_mca_cmc_vector_disable_keventd(void *unused)
464 {
465         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
466 }
467
468 /*
469  * ia64_mca_cmc_vector_enable_keventd
470  *
471  * Called via keventd (smp_call_function() is not safe in interrupt context) to
472  * enable the cmc interrupt vector.
473  */
474 static void
475 ia64_mca_cmc_vector_enable_keventd(void *unused)
476 {
477         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
478 }
479
480 /*
481  * ia64_mca_wakeup
482  *
483  *      Send an inter-cpu interrupt to wake-up a particular cpu
484  *      and mark that cpu to be out of rendez.
485  *
486  *  Inputs  :   cpuid
487  *  Outputs :   None
488  */
489 static void
490 ia64_mca_wakeup(int cpu)
491 {
492         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
493         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
494
495 }
496
497 /*
498  * ia64_mca_wakeup_all
499  *
500  *      Wakeup all the cpus which have rendez'ed previously.
501  *
502  *  Inputs  :   None
503  *  Outputs :   None
504  */
505 static void
506 ia64_mca_wakeup_all(void)
507 {
508         int cpu;
509
510         /* Clear the Rendez checkin flag for all cpus */
511         for_each_online_cpu(cpu) {
512                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
513                         ia64_mca_wakeup(cpu);
514         }
515
516 }
517
518 /*
519  * ia64_mca_rendez_interrupt_handler
520  *
521  *      This is handler used to put slave processors into spinloop
522  *      while the monarch processor does the mca handling and later
523  *      wake each slave up once the monarch is done.
524  *
525  *  Inputs  :   None
526  *  Outputs :   None
527  */
528 static irqreturn_t
529 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
530 {
531         unsigned long flags;
532         int cpu = smp_processor_id();
533
534         /* Mask all interrupts */
535         local_irq_save(flags);
536
537         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
538         /* Register with the SAL monarch that the slave has
539          * reached SAL
540          */
541         ia64_sal_mc_rendez();
542
543         /* Wait for the monarch cpu to exit. */
544         while (monarch_cpu != -1)
545                cpu_relax();     /* spin until monarch leaves */
546
547         /* Enable all interrupts */
548         local_irq_restore(flags);
549         return IRQ_HANDLED;
550 }
551
552 /*
553  * ia64_mca_wakeup_int_handler
554  *
555  *      The interrupt handler for processing the inter-cpu interrupt to the
556  *      slave cpu which was spinning in the rendez loop.
557  *      Since this spinning is done by turning off the interrupts and
558  *      polling on the wakeup-interrupt bit in the IRR, there is
559  *      nothing useful to be done in the handler.
560  *
561  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
562  *      arg             (Interrupt handler specific argument)
563  *      ptregs          (Exception frame at the time of the interrupt)
564  *  Outputs :   None
565  *
566  */
567 static irqreturn_t
568 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
569 {
570         return IRQ_HANDLED;
571 }
572
573 /* Function pointer for extra MCA recovery */
574 int (*ia64_mca_ucmc_extension)
575         (void*,struct ia64_sal_os_state*)
576         = NULL;
577
578 int
579 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
580 {
581         if (ia64_mca_ucmc_extension)
582                 return 1;
583
584         ia64_mca_ucmc_extension = fn;
585         return 0;
586 }
587
588 void
589 ia64_unreg_MCA_extension(void)
590 {
591         if (ia64_mca_ucmc_extension)
592                 ia64_mca_ucmc_extension = NULL;
593 }
594
595 EXPORT_SYMBOL(ia64_reg_MCA_extension);
596 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
597
598
599 static inline void
600 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
601 {
602         u64 fslot, tslot, nat;
603         *tr = *fr;
604         fslot = ((unsigned long)fr >> 3) & 63;
605         tslot = ((unsigned long)tr >> 3) & 63;
606         *tnat &= ~(1UL << tslot);
607         nat = (fnat >> fslot) & 1;
608         *tnat |= (nat << tslot);
609 }
610
611 /* On entry to this routine, we are running on the per cpu stack, see
612  * mca_asm.h.  The original stack has not been touched by this event.  Some of
613  * the original stack's registers will be in the RBS on this stack.  This stack
614  * also contains a partial pt_regs and switch_stack, the rest of the data is in
615  * PAL minstate.
616  *
617  * The first thing to do is modify the original stack to look like a blocked
618  * task so we can run backtrace on the original task.  Also mark the per cpu
619  * stack as current to ensure that we use the correct task state, it also means
620  * that we can do backtrace on the MCA/INIT handler code itself.
621  */
622
623 static task_t *
624 ia64_mca_modify_original_stack(struct pt_regs *regs,
625                 const struct switch_stack *sw,
626                 struct ia64_sal_os_state *sos,
627                 const char *type)
628 {
629         char *p, comm[sizeof(current->comm)];
630         ia64_va va;
631         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
632         const pal_min_state_area_t *ms = sos->pal_min_state;
633         task_t *previous_current;
634         struct pt_regs *old_regs;
635         struct switch_stack *old_sw;
636         unsigned size = sizeof(struct pt_regs) +
637                         sizeof(struct switch_stack) + 16;
638         u64 *old_bspstore, *old_bsp;
639         u64 *new_bspstore, *new_bsp;
640         u64 old_unat, old_rnat, new_rnat, nat;
641         u64 slots, loadrs = regs->loadrs;
642         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
643         u64 ar_bspstore = regs->ar_bspstore;
644         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
645         const u64 *bank;
646         const char *msg;
647         int cpu = smp_processor_id();
648
649         previous_current = curr_task(cpu);
650         set_curr_task(cpu, current);
651         if ((p = strchr(current->comm, ' ')))
652                 *p = '\0';
653
654         /* Best effort attempt to cope with MCA/INIT delivered while in
655          * physical mode.
656          */
657         regs->cr_ipsr = ms->pmsa_ipsr;
658         if (ia64_psr(regs)->dt == 0) {
659                 va.l = r12;
660                 if (va.f.reg == 0) {
661                         va.f.reg = 7;
662                         r12 = va.l;
663                 }
664                 va.l = r13;
665                 if (va.f.reg == 0) {
666                         va.f.reg = 7;
667                         r13 = va.l;
668                 }
669         }
670         if (ia64_psr(regs)->rt == 0) {
671                 va.l = ar_bspstore;
672                 if (va.f.reg == 0) {
673                         va.f.reg = 7;
674                         ar_bspstore = va.l;
675                 }
676                 va.l = ar_bsp;
677                 if (va.f.reg == 0) {
678                         va.f.reg = 7;
679                         ar_bsp = va.l;
680                 }
681         }
682
683         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
684          * have been copied to the old stack, the old stack may fail the
685          * validation tests below.  So ia64_old_stack() must restore the dirty
686          * registers from the new stack.  The old and new bspstore probably
687          * have different alignments, so loadrs calculated on the old bsp
688          * cannot be used to restore from the new bsp.  Calculate a suitable
689          * loadrs for the new stack and save it in the new pt_regs, where
690          * ia64_old_stack() can get it.
691          */
692         old_bspstore = (u64 *)ar_bspstore;
693         old_bsp = (u64 *)ar_bsp;
694         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
695         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
696         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
697         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
698
699         /* Verify the previous stack state before we change it */
700         if (user_mode(regs)) {
701                 msg = "occurred in user space";
702                 goto no_mod;
703         }
704         if (r13 != sos->prev_IA64_KR_CURRENT) {
705                 msg = "inconsistent previous current and r13";
706                 goto no_mod;
707         }
708         if ((r12 - r13) >= KERNEL_STACK_SIZE) {
709                 msg = "inconsistent r12 and r13";
710                 goto no_mod;
711         }
712         if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
713                 msg = "inconsistent ar.bspstore and r13";
714                 goto no_mod;
715         }
716         va.p = old_bspstore;
717         if (va.f.reg < 5) {
718                 msg = "old_bspstore is in the wrong region";
719                 goto no_mod;
720         }
721         if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
722                 msg = "inconsistent ar.bsp and r13";
723                 goto no_mod;
724         }
725         size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
726         if (ar_bspstore + size > r12) {
727                 msg = "no room for blocked state";
728                 goto no_mod;
729         }
730
731         /* Change the comm field on the MCA/INT task to include the pid that
732          * was interrupted, it makes for easier debugging.  If that pid was 0
733          * (swapper or nested MCA/INIT) then use the start of the previous comm
734          * field suffixed with its cpu.
735          */
736         if (previous_current->pid)
737                 snprintf(comm, sizeof(comm), "%s %d",
738                         current->comm, previous_current->pid);
739         else {
740                 int l;
741                 if ((p = strchr(previous_current->comm, ' ')))
742                         l = p - previous_current->comm;
743                 else
744                         l = strlen(previous_current->comm);
745                 snprintf(comm, sizeof(comm), "%s %*s %d",
746                         current->comm, l, previous_current->comm,
747                         previous_current->thread_info->cpu);
748         }
749         memcpy(current->comm, comm, sizeof(current->comm));
750
751         /* Make the original task look blocked.  First stack a struct pt_regs,
752          * describing the state at the time of interrupt.  mca_asm.S built a
753          * partial pt_regs, copy it and fill in the blanks using minstate.
754          */
755         p = (char *)r12 - sizeof(*regs);
756         old_regs = (struct pt_regs *)p;
757         memcpy(old_regs, regs, sizeof(*regs));
758         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
759          * pmsa_{xip,xpsr,xfs}
760          */
761         if (ia64_psr(regs)->ic) {
762                 old_regs->cr_iip = ms->pmsa_iip;
763                 old_regs->cr_ipsr = ms->pmsa_ipsr;
764                 old_regs->cr_ifs = ms->pmsa_ifs;
765         } else {
766                 old_regs->cr_iip = ms->pmsa_xip;
767                 old_regs->cr_ipsr = ms->pmsa_xpsr;
768                 old_regs->cr_ifs = ms->pmsa_xfs;
769         }
770         old_regs->pr = ms->pmsa_pr;
771         old_regs->b0 = ms->pmsa_br0;
772         old_regs->loadrs = loadrs;
773         old_regs->ar_rsc = ms->pmsa_rsc;
774         old_unat = old_regs->ar_unat;
775         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
776         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
777         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
778         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
779         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
780         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
781         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
782         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
783         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
784         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
785         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
786         if (ia64_psr(old_regs)->bn)
787                 bank = ms->pmsa_bank1_gr;
788         else
789                 bank = ms->pmsa_bank0_gr;
790         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
791         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
792         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
793         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
794         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
795         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
796         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
797         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
798         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
799         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
800         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
801         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
802         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
803         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
804         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
805         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
806
807         /* Next stack a struct switch_stack.  mca_asm.S built a partial
808          * switch_stack, copy it and fill in the blanks using pt_regs and
809          * minstate.
810          *
811          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
812          * ar.pfs is set to 0.
813          *
814          * unwind.c::unw_unwind() does special processing for interrupt frames.
815          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
816          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
817          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
818          * switch_stack on the original stack so it will unwind correctly when
819          * unwind.c reads pt_regs.
820          *
821          * thread.ksp is updated to point to the synthesized switch_stack.
822          */
823         p -= sizeof(struct switch_stack);
824         old_sw = (struct switch_stack *)p;
825         memcpy(old_sw, sw, sizeof(*sw));
826         old_sw->caller_unat = old_unat;
827         old_sw->ar_fpsr = old_regs->ar_fpsr;
828         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
829         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
830         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
831         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
832         old_sw->b0 = (u64)ia64_leave_kernel;
833         old_sw->b1 = ms->pmsa_br1;
834         old_sw->ar_pfs = 0;
835         old_sw->ar_unat = old_unat;
836         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
837         previous_current->thread.ksp = (u64)p - 16;
838
839         /* Finally copy the original stack's registers back to its RBS.
840          * Registers from ar.bspstore through ar.bsp at the time of the event
841          * are in the current RBS, copy them back to the original stack.  The
842          * copy must be done register by register because the original bspstore
843          * and the current one have different alignments, so the saved RNAT
844          * data occurs at different places.
845          *
846          * mca_asm does cover, so the old_bsp already includes all registers at
847          * the time of MCA/INIT.  It also does flushrs, so all registers before
848          * this function have been written to backing store on the MCA/INIT
849          * stack.
850          */
851         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
852         old_rnat = regs->ar_rnat;
853         while (slots--) {
854                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
855                         new_rnat = ia64_get_rnat(new_bspstore++);
856                 }
857                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
858                         *old_bspstore++ = old_rnat;
859                         old_rnat = 0;
860                 }
861                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
862                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
863                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
864                 *old_bspstore++ = *new_bspstore++;
865         }
866         old_sw->ar_bspstore = (unsigned long)old_bspstore;
867         old_sw->ar_rnat = old_rnat;
868
869         sos->prev_task = previous_current;
870         return previous_current;
871
872 no_mod:
873         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
874                         smp_processor_id(), type, msg);
875         return previous_current;
876 }
877
878 /* The monarch/slave interaction is based on monarch_cpu and requires that all
879  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
880  * not entered rendezvous yet then wait a bit.  The assumption is that any
881  * slave that has not rendezvoused after a reasonable time is never going to do
882  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
883  * interrupt, as well as cpus that receive the INIT slave event.
884  */
885
886 static void
887 ia64_wait_for_slaves(int monarch)
888 {
889         int c, wait = 0;
890         for_each_online_cpu(c) {
891                 if (c == monarch)
892                         continue;
893                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
894                         udelay(1000);           /* short wait first */
895                         wait = 1;
896                         break;
897                 }
898         }
899         if (!wait)
900                 return;
901         for_each_online_cpu(c) {
902                 if (c == monarch)
903                         continue;
904                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
905                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
906                         break;
907                 }
908         }
909 }
910
911 /*
912  * ia64_mca_handler
913  *
914  *      This is uncorrectable machine check handler called from OS_MCA
915  *      dispatch code which is in turn called from SAL_CHECK().
916  *      This is the place where the core of OS MCA handling is done.
917  *      Right now the logs are extracted and displayed in a well-defined
918  *      format. This handler code is supposed to be run only on the
919  *      monarch processor. Once the monarch is done with MCA handling
920  *      further MCA logging is enabled by clearing logs.
921  *      Monarch also has the duty of sending wakeup-IPIs to pull the
922  *      slave processors out of rendezvous spinloop.
923  */
924 void
925 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
926                  struct ia64_sal_os_state *sos)
927 {
928         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
929                 &sos->proc_state_param;
930         int recover, cpu = smp_processor_id();
931         task_t *previous_current;
932
933         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
934         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
935         monarch_cpu = cpu;
936         ia64_wait_for_slaves(cpu);
937
938         /* Wakeup all the processors which are spinning in the rendezvous loop.
939          * They will leave SAL, then spin in the OS with interrupts disabled
940          * until this monarch cpu leaves the MCA handler.  That gets control
941          * back to the OS so we can backtrace the other cpus, backtrace when
942          * spinning in SAL does not work.
943          */
944         ia64_mca_wakeup_all();
945
946         /* Get the MCA error record and log it */
947         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
948
949         /* TLB error is only exist in this SAL error record */
950         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
951         /* other error recovery */
952            || (ia64_mca_ucmc_extension
953                 && ia64_mca_ucmc_extension(
954                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
955                         sos));
956
957         if (recover) {
958                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
959                 rh->severity = sal_log_severity_corrected;
960                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
961                 sos->os_status = IA64_MCA_CORRECTED;
962         }
963
964         set_curr_task(cpu, previous_current);
965         monarch_cpu = -1;
966 }
967
968 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
969 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
970
971 /*
972  * ia64_mca_cmc_int_handler
973  *
974  *  This is corrected machine check interrupt handler.
975  *      Right now the logs are extracted and displayed in a well-defined
976  *      format.
977  *
978  * Inputs
979  *      interrupt number
980  *      client data arg ptr
981  *      saved registers ptr
982  *
983  * Outputs
984  *      None
985  */
986 static irqreturn_t
987 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
988 {
989         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
990         static int              index;
991         static DEFINE_SPINLOCK(cmc_history_lock);
992
993         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
994                        __FUNCTION__, cmc_irq, smp_processor_id());
995
996         /* SAL spec states this should run w/ interrupts enabled */
997         local_irq_enable();
998
999         /* Get the CMC error record and log it */
1000         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1001
1002         spin_lock(&cmc_history_lock);
1003         if (!cmc_polling_enabled) {
1004                 int i, count = 1; /* we know 1 happened now */
1005                 unsigned long now = jiffies;
1006
1007                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1008                         if (now - cmc_history[i] <= HZ)
1009                                 count++;
1010                 }
1011
1012                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1013                 if (count >= CMC_HISTORY_LENGTH) {
1014
1015                         cmc_polling_enabled = 1;
1016                         spin_unlock(&cmc_history_lock);
1017                         /* If we're being hit with CMC interrupts, we won't
1018                          * ever execute the schedule_work() below.  Need to
1019                          * disable CMC interrupts on this processor now.
1020                          */
1021                         ia64_mca_cmc_vector_disable(NULL);
1022                         schedule_work(&cmc_disable_work);
1023
1024                         /*
1025                          * Corrected errors will still be corrected, but
1026                          * make sure there's a log somewhere that indicates
1027                          * something is generating more than we can handle.
1028                          */
1029                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1030
1031                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1032
1033                         /* lock already released, get out now */
1034                         return IRQ_HANDLED;
1035                 } else {
1036                         cmc_history[index++] = now;
1037                         if (index == CMC_HISTORY_LENGTH)
1038                                 index = 0;
1039                 }
1040         }
1041         spin_unlock(&cmc_history_lock);
1042         return IRQ_HANDLED;
1043 }
1044
1045 /*
1046  *  ia64_mca_cmc_int_caller
1047  *
1048  *      Triggered by sw interrupt from CMC polling routine.  Calls
1049  *      real interrupt handler and either triggers a sw interrupt
1050  *      on the next cpu or does cleanup at the end.
1051  *
1052  * Inputs
1053  *      interrupt number
1054  *      client data arg ptr
1055  *      saved registers ptr
1056  * Outputs
1057  *      handled
1058  */
1059 static irqreturn_t
1060 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1061 {
1062         static int start_count = -1;
1063         unsigned int cpuid;
1064
1065         cpuid = smp_processor_id();
1066
1067         /* If first cpu, update count */
1068         if (start_count == -1)
1069                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1070
1071         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1072
1073         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1074
1075         if (cpuid < NR_CPUS) {
1076                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1077         } else {
1078                 /* If no log record, switch out of polling mode */
1079                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1080
1081                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1082                         schedule_work(&cmc_enable_work);
1083                         cmc_polling_enabled = 0;
1084
1085                 } else {
1086
1087                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1088                 }
1089
1090                 start_count = -1;
1091         }
1092
1093         return IRQ_HANDLED;
1094 }
1095
1096 /*
1097  *  ia64_mca_cmc_poll
1098  *
1099  *      Poll for Corrected Machine Checks (CMCs)
1100  *
1101  * Inputs   :   dummy(unused)
1102  * Outputs  :   None
1103  *
1104  */
1105 static void
1106 ia64_mca_cmc_poll (unsigned long dummy)
1107 {
1108         /* Trigger a CMC interrupt cascade  */
1109         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1110 }
1111
1112 /*
1113  *  ia64_mca_cpe_int_caller
1114  *
1115  *      Triggered by sw interrupt from CPE polling routine.  Calls
1116  *      real interrupt handler and either triggers a sw interrupt
1117  *      on the next cpu or does cleanup at the end.
1118  *
1119  * Inputs
1120  *      interrupt number
1121  *      client data arg ptr
1122  *      saved registers ptr
1123  * Outputs
1124  *      handled
1125  */
1126 #ifdef CONFIG_ACPI
1127
1128 static irqreturn_t
1129 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1130 {
1131         static int start_count = -1;
1132         static int poll_time = MIN_CPE_POLL_INTERVAL;
1133         unsigned int cpuid;
1134
1135         cpuid = smp_processor_id();
1136
1137         /* If first cpu, update count */
1138         if (start_count == -1)
1139                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1140
1141         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1142
1143         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1144
1145         if (cpuid < NR_CPUS) {
1146                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1147         } else {
1148                 /*
1149                  * If a log was recorded, increase our polling frequency,
1150                  * otherwise, backoff or return to interrupt mode.
1151                  */
1152                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1153                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1154                 } else if (cpe_vector < 0) {
1155                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1156                 } else {
1157                         poll_time = MIN_CPE_POLL_INTERVAL;
1158
1159                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1160                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1161                         cpe_poll_enabled = 0;
1162                 }
1163
1164                 if (cpe_poll_enabled)
1165                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1166                 start_count = -1;
1167         }
1168
1169         return IRQ_HANDLED;
1170 }
1171
1172 /*
1173  *  ia64_mca_cpe_poll
1174  *
1175  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1176  *      on first cpu, from there it will trickle through all the cpus.
1177  *
1178  * Inputs   :   dummy(unused)
1179  * Outputs  :   None
1180  *
1181  */
1182 static void
1183 ia64_mca_cpe_poll (unsigned long dummy)
1184 {
1185         /* Trigger a CPE interrupt cascade  */
1186         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1187 }
1188
1189 #endif /* CONFIG_ACPI */
1190
1191 /*
1192  * C portion of the OS INIT handler
1193  *
1194  * Called from ia64_os_init_dispatch
1195  *
1196  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1197  * this event.  This code is used for both monarch and slave INIT events, see
1198  * sos->monarch.
1199  *
1200  * All INIT events switch to the INIT stack and change the previous process to
1201  * blocked status.  If one of the INIT events is the monarch then we are
1202  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1203  * the processes.  The slave INIT events all spin until the monarch cpu
1204  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1205  * process is the monarch.
1206  */
1207
1208 void
1209 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1210                   struct ia64_sal_os_state *sos)
1211 {
1212         static atomic_t slaves;
1213         static atomic_t monarchs;
1214         task_t *previous_current;
1215         int cpu = smp_processor_id(), c;
1216         struct task_struct *g, *t;
1217
1218         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1219         console_loglevel = 15;  /* make sure printks make it to console */
1220
1221         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1222                 sos->proc_state_param, cpu, sos->monarch);
1223         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1224
1225         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1226         sos->os_status = IA64_INIT_RESUME;
1227
1228         /* FIXME: Workaround for broken proms that drive all INIT events as
1229          * slaves.  The last slave that enters is promoted to be a monarch.
1230          * Remove this code in September 2006, that gives platforms a year to
1231          * fix their proms and get their customers updated.
1232          */
1233         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1234                 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1235                        __FUNCTION__, cpu);
1236                 atomic_dec(&slaves);
1237                 sos->monarch = 1;
1238         }
1239
1240         /* FIXME: Workaround for broken proms that drive all INIT events as
1241          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1242          * Remove this code in September 2006, that gives platforms a year to
1243          * fix their proms and get their customers updated.
1244          */
1245         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1246                 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1247                                __FUNCTION__, cpu);
1248                 atomic_dec(&monarchs);
1249                 sos->monarch = 0;
1250         }
1251
1252         if (!sos->monarch) {
1253                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1254                 while (monarch_cpu == -1)
1255                        cpu_relax();     /* spin until monarch enters */
1256                 while (monarch_cpu != -1)
1257                        cpu_relax();     /* spin until monarch leaves */
1258                 printk("Slave on cpu %d returning to normal service.\n", cpu);
1259                 set_curr_task(cpu, previous_current);
1260                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1261                 atomic_dec(&slaves);
1262                 return;
1263         }
1264
1265         monarch_cpu = cpu;
1266
1267         /*
1268          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1269          * generated via the BMC's command-line interface, but since the console is on the
1270          * same serial line, the user will need some time to switch out of the BMC before
1271          * the dump begins.
1272          */
1273         printk("Delaying for 5 seconds...\n");
1274         udelay(5*1000000);
1275         ia64_wait_for_slaves(cpu);
1276         printk(KERN_ERR "Processes interrupted by INIT -");
1277         for_each_online_cpu(c) {
1278                 struct ia64_sal_os_state *s;
1279                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1280                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1281                 g = s->prev_task;
1282                 if (g) {
1283                         if (g->pid)
1284                                 printk(" %d", g->pid);
1285                         else
1286                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1287                 }
1288         }
1289         printk("\n\n");
1290         if (read_trylock(&tasklist_lock)) {
1291                 do_each_thread (g, t) {
1292                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1293                         show_stack(t, NULL);
1294                 } while_each_thread (g, t);
1295                 read_unlock(&tasklist_lock);
1296         }
1297         printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1298         atomic_dec(&monarchs);
1299         set_curr_task(cpu, previous_current);
1300         monarch_cpu = -1;
1301         return;
1302 }
1303
1304 static int __init
1305 ia64_mca_disable_cpe_polling(char *str)
1306 {
1307         cpe_poll_enabled = 0;
1308         return 1;
1309 }
1310
1311 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1312
1313 static struct irqaction cmci_irqaction = {
1314         .handler =      ia64_mca_cmc_int_handler,
1315         .flags =        SA_INTERRUPT,
1316         .name =         "cmc_hndlr"
1317 };
1318
1319 static struct irqaction cmcp_irqaction = {
1320         .handler =      ia64_mca_cmc_int_caller,
1321         .flags =        SA_INTERRUPT,
1322         .name =         "cmc_poll"
1323 };
1324
1325 static struct irqaction mca_rdzv_irqaction = {
1326         .handler =      ia64_mca_rendez_int_handler,
1327         .flags =        SA_INTERRUPT,
1328         .name =         "mca_rdzv"
1329 };
1330
1331 static struct irqaction mca_wkup_irqaction = {
1332         .handler =      ia64_mca_wakeup_int_handler,
1333         .flags =        SA_INTERRUPT,
1334         .name =         "mca_wkup"
1335 };
1336
1337 #ifdef CONFIG_ACPI
1338 static struct irqaction mca_cpe_irqaction = {
1339         .handler =      ia64_mca_cpe_int_handler,
1340         .flags =        SA_INTERRUPT,
1341         .name =         "cpe_hndlr"
1342 };
1343
1344 static struct irqaction mca_cpep_irqaction = {
1345         .handler =      ia64_mca_cpe_int_caller,
1346         .flags =        SA_INTERRUPT,
1347         .name =         "cpe_poll"
1348 };
1349 #endif /* CONFIG_ACPI */
1350
1351 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1352  * these stacks can never sleep, they cannot return from the kernel to user
1353  * space, they do not appear in a normal ps listing.  So there is no need to
1354  * format most of the fields.
1355  */
1356
1357 static void
1358 format_mca_init_stack(void *mca_data, unsigned long offset,
1359                 const char *type, int cpu)
1360 {
1361         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1362         struct thread_info *ti;
1363         memset(p, 0, KERNEL_STACK_SIZE);
1364         ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
1365         ti->flags = _TIF_MCA_INIT;
1366         ti->preempt_count = 1;
1367         ti->task = p;
1368         ti->cpu = cpu;
1369         p->thread_info = ti;
1370         p->state = TASK_UNINTERRUPTIBLE;
1371         __set_bit(cpu, &p->cpus_allowed);
1372         INIT_LIST_HEAD(&p->tasks);
1373         p->parent = p->real_parent = p->group_leader = p;
1374         INIT_LIST_HEAD(&p->children);
1375         INIT_LIST_HEAD(&p->sibling);
1376         strncpy(p->comm, type, sizeof(p->comm)-1);
1377 }
1378
1379 /* Do per-CPU MCA-related initialization.  */
1380
1381 void __devinit
1382 ia64_mca_cpu_init(void *cpu_data)
1383 {
1384         void *pal_vaddr;
1385
1386         if (smp_processor_id() == 0) {
1387                 void *mca_data;
1388                 int cpu;
1389
1390                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1391                                          * NR_CPUS + KERNEL_STACK_SIZE);
1392                 mca_data = (void *)(((unsigned long)mca_data +
1393                                         KERNEL_STACK_SIZE - 1) &
1394                                 (-KERNEL_STACK_SIZE));
1395                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1396                         format_mca_init_stack(mca_data,
1397                                         offsetof(struct ia64_mca_cpu, mca_stack),
1398                                         "MCA", cpu);
1399                         format_mca_init_stack(mca_data,
1400                                         offsetof(struct ia64_mca_cpu, init_stack),
1401                                         "INIT", cpu);
1402                         __per_cpu_mca[cpu] = __pa(mca_data);
1403                         mca_data += sizeof(struct ia64_mca_cpu);
1404                 }
1405         }
1406
1407         /*
1408          * The MCA info structure was allocated earlier and its
1409          * physical address saved in __per_cpu_mca[cpu].  Copy that
1410          * address * to ia64_mca_data so we can access it as a per-CPU
1411          * variable.
1412          */
1413         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1414
1415         /*
1416          * Stash away a copy of the PTE needed to map the per-CPU page.
1417          * We may need it during MCA recovery.
1418          */
1419         __get_cpu_var(ia64_mca_per_cpu_pte) =
1420                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1421
1422         /*
1423          * Also, stash away a copy of the PAL address and the PTE
1424          * needed to map it.
1425          */
1426         pal_vaddr = efi_get_pal_addr();
1427         if (!pal_vaddr)
1428                 return;
1429         __get_cpu_var(ia64_mca_pal_base) =
1430                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1431         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1432                                                               PAGE_KERNEL));
1433 }
1434
1435 /*
1436  * ia64_mca_init
1437  *
1438  *  Do all the system level mca specific initialization.
1439  *
1440  *      1. Register spinloop and wakeup request interrupt vectors
1441  *
1442  *      2. Register OS_MCA handler entry point
1443  *
1444  *      3. Register OS_INIT handler entry point
1445  *
1446  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1447  *
1448  *  Note that this initialization is done very early before some kernel
1449  *  services are available.
1450  *
1451  *  Inputs  :   None
1452  *
1453  *  Outputs :   None
1454  */
1455 void __init
1456 ia64_mca_init(void)
1457 {
1458         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1459         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1460         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1461         int i;
1462         s64 rc;
1463         struct ia64_sal_retval isrv;
1464         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1465
1466         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1467
1468         /* Clear the Rendez checkin flag for all cpus */
1469         for(i = 0 ; i < NR_CPUS; i++)
1470                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1471
1472         /*
1473          * Register the rendezvous spinloop and wakeup mechanism with SAL
1474          */
1475
1476         /* Register the rendezvous interrupt vector with SAL */
1477         while (1) {
1478                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1479                                               SAL_MC_PARAM_MECHANISM_INT,
1480                                               IA64_MCA_RENDEZ_VECTOR,
1481                                               timeout,
1482                                               SAL_MC_PARAM_RZ_ALWAYS);
1483                 rc = isrv.status;
1484                 if (rc == 0)
1485                         break;
1486                 if (rc == -2) {
1487                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1488                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1489                         timeout = isrv.v0;
1490                         continue;
1491                 }
1492                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1493                        "with SAL (status %ld)\n", rc);
1494                 return;
1495         }
1496
1497         /* Register the wakeup interrupt vector with SAL */
1498         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1499                                       SAL_MC_PARAM_MECHANISM_INT,
1500                                       IA64_MCA_WAKEUP_VECTOR,
1501                                       0, 0);
1502         rc = isrv.status;
1503         if (rc) {
1504                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1505                        "(status %ld)\n", rc);
1506                 return;
1507         }
1508
1509         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1510
1511         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1512         /*
1513          * XXX - disable SAL checksum by setting size to 0; should be
1514          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1515          */
1516         ia64_mc_info.imi_mca_handler_size       = 0;
1517
1518         /* Register the os mca handler with SAL */
1519         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1520                                        ia64_mc_info.imi_mca_handler,
1521                                        ia64_tpa(mca_hldlr_ptr->gp),
1522                                        ia64_mc_info.imi_mca_handler_size,
1523                                        0, 0, 0)))
1524         {
1525                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1526                        "(status %ld)\n", rc);
1527                 return;
1528         }
1529
1530         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1531                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1532
1533         /*
1534          * XXX - disable SAL checksum by setting size to 0, should be
1535          * size of the actual init handler in mca_asm.S.
1536          */
1537         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1538         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1539         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1540         ia64_mc_info.imi_slave_init_handler_size        = 0;
1541
1542         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1543                        ia64_mc_info.imi_monarch_init_handler);
1544
1545         /* Register the os init handler with SAL */
1546         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1547                                        ia64_mc_info.imi_monarch_init_handler,
1548                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1549                                        ia64_mc_info.imi_monarch_init_handler_size,
1550                                        ia64_mc_info.imi_slave_init_handler,
1551                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1552                                        ia64_mc_info.imi_slave_init_handler_size)))
1553         {
1554                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1555                        "(status %ld)\n", rc);
1556                 return;
1557         }
1558
1559         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1560
1561         /*
1562          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1563          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1564          */
1565         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1566         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1567         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1568
1569         /* Setup the MCA rendezvous interrupt vector */
1570         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1571
1572         /* Setup the MCA wakeup interrupt vector */
1573         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1574
1575 #ifdef CONFIG_ACPI
1576         /* Setup the CPEI/P handler */
1577         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1578 #endif
1579
1580         /* Initialize the areas set aside by the OS to buffer the
1581          * platform/processor error states for MCA/INIT/CMC
1582          * handling.
1583          */
1584         ia64_log_init(SAL_INFO_TYPE_MCA);
1585         ia64_log_init(SAL_INFO_TYPE_INIT);
1586         ia64_log_init(SAL_INFO_TYPE_CMC);
1587         ia64_log_init(SAL_INFO_TYPE_CPE);
1588
1589         mca_init = 1;
1590         printk(KERN_INFO "MCA related initialization done\n");
1591 }
1592
1593 /*
1594  * ia64_mca_late_init
1595  *
1596  *      Opportunity to setup things that require initialization later
1597  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1598  *      platform doesn't support an interrupt driven mechanism.
1599  *
1600  *  Inputs  :   None
1601  *  Outputs :   Status
1602  */
1603 static int __init
1604 ia64_mca_late_init(void)
1605 {
1606         if (!mca_init)
1607                 return 0;
1608
1609         /* Setup the CMCI/P vector and handler */
1610         init_timer(&cmc_poll_timer);
1611         cmc_poll_timer.function = ia64_mca_cmc_poll;
1612
1613         /* Unmask/enable the vector */
1614         cmc_polling_enabled = 0;
1615         schedule_work(&cmc_enable_work);
1616
1617         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1618
1619 #ifdef CONFIG_ACPI
1620         /* Setup the CPEI/P vector and handler */
1621         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1622         init_timer(&cpe_poll_timer);
1623         cpe_poll_timer.function = ia64_mca_cpe_poll;
1624
1625         {
1626                 irq_desc_t *desc;
1627                 unsigned int irq;
1628
1629                 if (cpe_vector >= 0) {
1630                         /* If platform supports CPEI, enable the irq. */
1631                         cpe_poll_enabled = 0;
1632                         for (irq = 0; irq < NR_IRQS; ++irq)
1633                                 if (irq_to_vector(irq) == cpe_vector) {
1634                                         desc = irq_descp(irq);
1635                                         desc->status |= IRQ_PER_CPU;
1636                                         setup_irq(irq, &mca_cpe_irqaction);
1637                                 }
1638                         ia64_mca_register_cpev(cpe_vector);
1639                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1640                 } else {
1641                         /* If platform doesn't support CPEI, get the timer going. */
1642                         if (cpe_poll_enabled) {
1643                                 ia64_mca_cpe_poll(0UL);
1644                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1645                         }
1646                 }
1647         }
1648 #endif
1649
1650         return 0;
1651 }
1652
1653 device_initcall(ia64_mca_late_init);