Merge master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72 #include <linux/cpumask.h>
73
74 #include <asm/delay.h>
75 #include <asm/kdebug.h>
76 #include <asm/machvec.h>
77 #include <asm/meminit.h>
78 #include <asm/page.h>
79 #include <asm/ptrace.h>
80 #include <asm/system.h>
81 #include <asm/sal.h>
82 #include <asm/mca.h>
83
84 #include <asm/irq.h>
85 #include <asm/hw_irq.h>
86
87 #include "mca_drv.h"
88 #include "entry.h"
89
90 #if defined(IA64_MCA_DEBUG_INFO)
91 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
92 #else
93 # define IA64_MCA_DEBUG(fmt...)
94 #endif
95
96 /* Used by mca_asm.S */
97 u32                             ia64_mca_serialize;
98 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
99 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
101 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
102
103 unsigned long __per_cpu_mca[NR_CPUS];
104
105 /* In mca_asm.S */
106 extern void                     ia64_os_init_dispatch_monarch (void);
107 extern void                     ia64_os_init_dispatch_slave (void);
108
109 static int monarch_cpu = -1;
110
111 static ia64_mc_info_t           ia64_mc_info;
112
113 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
114 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
115 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
116 #define CPE_HISTORY_LENGTH    5
117 #define CMC_HISTORY_LENGTH    5
118
119 static struct timer_list cpe_poll_timer;
120 static struct timer_list cmc_poll_timer;
121 /*
122  * This variable tells whether we are currently in polling mode.
123  * Start with this in the wrong state so we won't play w/ timers
124  * before the system is ready.
125  */
126 static int cmc_polling_enabled = 1;
127
128 /*
129  * Clearing this variable prevents CPE polling from getting activated
130  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
131  * but encounters problems retrieving CPE logs.  This should only be
132  * necessary for debugging.
133  */
134 static int cpe_poll_enabled = 1;
135
136 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
137
138 static int mca_init __initdata;
139
140
141 static void inline
142 ia64_mca_spin(const char *func)
143 {
144         printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
145         while (1)
146                 cpu_relax();
147 }
148 /*
149  * IA64_MCA log support
150  */
151 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
152 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
153
154 typedef struct ia64_state_log_s
155 {
156         spinlock_t      isl_lock;
157         int             isl_index;
158         unsigned long   isl_count;
159         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
160 } ia64_state_log_t;
161
162 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
163
164 #define IA64_LOG_ALLOCATE(it, size) \
165         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
166                 (ia64_err_rec_t *)alloc_bootmem(size); \
167         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
168                 (ia64_err_rec_t *)alloc_bootmem(size);}
169 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
170 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
171 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
172 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
173 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
174 #define IA64_LOG_INDEX_INC(it) \
175     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
176     ia64_state_log[it].isl_count++;}
177 #define IA64_LOG_INDEX_DEC(it) \
178     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
179 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
180 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
181 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
182
183 /*
184  * ia64_log_init
185  *      Reset the OS ia64 log buffer
186  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
187  * Outputs      :       None
188  */
189 static void __init
190 ia64_log_init(int sal_info_type)
191 {
192         u64     max_size = 0;
193
194         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
195         IA64_LOG_LOCK_INIT(sal_info_type);
196
197         // SAL will tell us the maximum size of any error record of this type
198         max_size = ia64_sal_get_state_info_size(sal_info_type);
199         if (!max_size)
200                 /* alloc_bootmem() doesn't like zero-sized allocations! */
201                 return;
202
203         // set up OS data structures to hold error info
204         IA64_LOG_ALLOCATE(sal_info_type, max_size);
205         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
206         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
207 }
208
209 /*
210  * ia64_log_get
211  *
212  *      Get the current MCA log from SAL and copy it into the OS log buffer.
213  *
214  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
215  *              irq_safe    whether you can use printk at this point
216  *  Outputs :   size        (total record length)
217  *              *buffer     (ptr to error record)
218  *
219  */
220 static u64
221 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
222 {
223         sal_log_record_header_t     *log_buffer;
224         u64                         total_len = 0;
225         int                         s;
226
227         IA64_LOG_LOCK(sal_info_type);
228
229         /* Get the process state information */
230         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
231
232         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
233
234         if (total_len) {
235                 IA64_LOG_INDEX_INC(sal_info_type);
236                 IA64_LOG_UNLOCK(sal_info_type);
237                 if (irq_safe) {
238                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
239                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
240                 }
241                 *buffer = (u8 *) log_buffer;
242                 return total_len;
243         } else {
244                 IA64_LOG_UNLOCK(sal_info_type);
245                 return 0;
246         }
247 }
248
249 /*
250  *  ia64_mca_log_sal_error_record
251  *
252  *  This function retrieves a specified error record type from SAL
253  *  and wakes up any processes waiting for error records.
254  *
255  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
256  *              FIXME: remove MCA and irq_safe.
257  */
258 static void
259 ia64_mca_log_sal_error_record(int sal_info_type)
260 {
261         u8 *buffer;
262         sal_log_record_header_t *rh;
263         u64 size;
264         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
265 #ifdef IA64_MCA_DEBUG_INFO
266         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
267 #endif
268
269         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
270         if (!size)
271                 return;
272
273         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
274
275         if (irq_safe)
276                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
277                         smp_processor_id(),
278                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
279
280         /* Clear logs from corrected errors in case there's no user-level logger */
281         rh = (sal_log_record_header_t *)buffer;
282         if (rh->severity == sal_log_severity_corrected)
283                 ia64_sal_clear_state_info(sal_info_type);
284 }
285
286 /*
287  * search_mca_table
288  *  See if the MCA surfaced in an instruction range
289  *  that has been tagged as recoverable.
290  *
291  *  Inputs
292  *      first   First address range to check
293  *      last    Last address range to check
294  *      ip      Instruction pointer, address we are looking for
295  *
296  * Return value:
297  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
298  */
299 int
300 search_mca_table (const struct mca_table_entry *first,
301                 const struct mca_table_entry *last,
302                 unsigned long ip)
303 {
304         const struct mca_table_entry *curr;
305         u64 curr_start, curr_end;
306
307         curr = first;
308         while (curr <= last) {
309                 curr_start = (u64) &curr->start_addr + curr->start_addr;
310                 curr_end = (u64) &curr->end_addr + curr->end_addr;
311
312                 if ((ip >= curr_start) && (ip <= curr_end)) {
313                         return 1;
314                 }
315                 curr++;
316         }
317         return 0;
318 }
319
320 /* Given an address, look for it in the mca tables. */
321 int mca_recover_range(unsigned long addr)
322 {
323         extern struct mca_table_entry __start___mca_table[];
324         extern struct mca_table_entry __stop___mca_table[];
325
326         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
327 }
328 EXPORT_SYMBOL_GPL(mca_recover_range);
329
330 #ifdef CONFIG_ACPI
331
332 int cpe_vector = -1;
333 int ia64_cpe_irq = -1;
334
335 static irqreturn_t
336 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
337 {
338         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
339         static int              index;
340         static DEFINE_SPINLOCK(cpe_history_lock);
341
342         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
343                        __FUNCTION__, cpe_irq, smp_processor_id());
344
345         /* SAL spec states this should run w/ interrupts enabled */
346         local_irq_enable();
347
348         /* Get the CPE error record and log it */
349         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
350
351         spin_lock(&cpe_history_lock);
352         if (!cpe_poll_enabled && cpe_vector >= 0) {
353
354                 int i, count = 1; /* we know 1 happened now */
355                 unsigned long now = jiffies;
356
357                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
358                         if (now - cpe_history[i] <= HZ)
359                                 count++;
360                 }
361
362                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
363                 if (count >= CPE_HISTORY_LENGTH) {
364
365                         cpe_poll_enabled = 1;
366                         spin_unlock(&cpe_history_lock);
367                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
368
369                         /*
370                          * Corrected errors will still be corrected, but
371                          * make sure there's a log somewhere that indicates
372                          * something is generating more than we can handle.
373                          */
374                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
375
376                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
377
378                         /* lock already released, get out now */
379                         return IRQ_HANDLED;
380                 } else {
381                         cpe_history[index++] = now;
382                         if (index == CPE_HISTORY_LENGTH)
383                                 index = 0;
384                 }
385         }
386         spin_unlock(&cpe_history_lock);
387         return IRQ_HANDLED;
388 }
389
390 #endif /* CONFIG_ACPI */
391
392 #ifdef CONFIG_ACPI
393 /*
394  * ia64_mca_register_cpev
395  *
396  *  Register the corrected platform error vector with SAL.
397  *
398  *  Inputs
399  *      cpev        Corrected Platform Error Vector number
400  *
401  *  Outputs
402  *      None
403  */
404 static void __init
405 ia64_mca_register_cpev (int cpev)
406 {
407         /* Register the CPE interrupt vector with SAL */
408         struct ia64_sal_retval isrv;
409
410         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
411         if (isrv.status) {
412                 printk(KERN_ERR "Failed to register Corrected Platform "
413                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
414                 return;
415         }
416
417         IA64_MCA_DEBUG("%s: corrected platform error "
418                        "vector %#x registered\n", __FUNCTION__, cpev);
419 }
420 #endif /* CONFIG_ACPI */
421
422 /*
423  * ia64_mca_cmc_vector_setup
424  *
425  *  Setup the corrected machine check vector register in the processor.
426  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
427  *  This function is invoked on a per-processor basis.
428  *
429  * Inputs
430  *      None
431  *
432  * Outputs
433  *      None
434  */
435 void __cpuinit
436 ia64_mca_cmc_vector_setup (void)
437 {
438         cmcv_reg_t      cmcv;
439
440         cmcv.cmcv_regval        = 0;
441         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
442         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
443         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
444
445         IA64_MCA_DEBUG("%s: CPU %d corrected "
446                        "machine check vector %#x registered.\n",
447                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
448
449         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
450                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
451 }
452
453 /*
454  * ia64_mca_cmc_vector_disable
455  *
456  *  Mask the corrected machine check vector register in the processor.
457  *  This function is invoked on a per-processor basis.
458  *
459  * Inputs
460  *      dummy(unused)
461  *
462  * Outputs
463  *      None
464  */
465 static void
466 ia64_mca_cmc_vector_disable (void *dummy)
467 {
468         cmcv_reg_t      cmcv;
469
470         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
471
472         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
473         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
474
475         IA64_MCA_DEBUG("%s: CPU %d corrected "
476                        "machine check vector %#x disabled.\n",
477                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
478 }
479
480 /*
481  * ia64_mca_cmc_vector_enable
482  *
483  *  Unmask the corrected machine check vector register in the processor.
484  *  This function is invoked on a per-processor basis.
485  *
486  * Inputs
487  *      dummy(unused)
488  *
489  * Outputs
490  *      None
491  */
492 static void
493 ia64_mca_cmc_vector_enable (void *dummy)
494 {
495         cmcv_reg_t      cmcv;
496
497         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
498
499         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
500         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
501
502         IA64_MCA_DEBUG("%s: CPU %d corrected "
503                        "machine check vector %#x enabled.\n",
504                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
505 }
506
507 /*
508  * ia64_mca_cmc_vector_disable_keventd
509  *
510  * Called via keventd (smp_call_function() is not safe in interrupt context) to
511  * disable the cmc interrupt vector.
512  */
513 static void
514 ia64_mca_cmc_vector_disable_keventd(void *unused)
515 {
516         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
517 }
518
519 /*
520  * ia64_mca_cmc_vector_enable_keventd
521  *
522  * Called via keventd (smp_call_function() is not safe in interrupt context) to
523  * enable the cmc interrupt vector.
524  */
525 static void
526 ia64_mca_cmc_vector_enable_keventd(void *unused)
527 {
528         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
529 }
530
531 /*
532  * ia64_mca_wakeup
533  *
534  *      Send an inter-cpu interrupt to wake-up a particular cpu
535  *      and mark that cpu to be out of rendez.
536  *
537  *  Inputs  :   cpuid
538  *  Outputs :   None
539  */
540 static void
541 ia64_mca_wakeup(int cpu)
542 {
543         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
544         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
545
546 }
547
548 /*
549  * ia64_mca_wakeup_all
550  *
551  *      Wakeup all the cpus which have rendez'ed previously.
552  *
553  *  Inputs  :   None
554  *  Outputs :   None
555  */
556 static void
557 ia64_mca_wakeup_all(void)
558 {
559         int cpu;
560
561         /* Clear the Rendez checkin flag for all cpus */
562         for_each_online_cpu(cpu) {
563                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
564                         ia64_mca_wakeup(cpu);
565         }
566
567 }
568
569 /*
570  * ia64_mca_rendez_interrupt_handler
571  *
572  *      This is handler used to put slave processors into spinloop
573  *      while the monarch processor does the mca handling and later
574  *      wake each slave up once the monarch is done.
575  *
576  *  Inputs  :   None
577  *  Outputs :   None
578  */
579 static irqreturn_t
580 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
581 {
582         unsigned long flags;
583         int cpu = smp_processor_id();
584
585         /* Mask all interrupts */
586         local_irq_save(flags);
587         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
588                         == NOTIFY_STOP)
589                 ia64_mca_spin(__FUNCTION__);
590
591         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
592         /* Register with the SAL monarch that the slave has
593          * reached SAL
594          */
595         ia64_sal_mc_rendez();
596
597         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
598                         == NOTIFY_STOP)
599                 ia64_mca_spin(__FUNCTION__);
600
601         /* Wait for the monarch cpu to exit. */
602         while (monarch_cpu != -1)
603                cpu_relax();     /* spin until monarch leaves */
604
605         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
606                         == NOTIFY_STOP)
607                 ia64_mca_spin(__FUNCTION__);
608
609         /* Enable all interrupts */
610         local_irq_restore(flags);
611         return IRQ_HANDLED;
612 }
613
614 /*
615  * ia64_mca_wakeup_int_handler
616  *
617  *      The interrupt handler for processing the inter-cpu interrupt to the
618  *      slave cpu which was spinning in the rendez loop.
619  *      Since this spinning is done by turning off the interrupts and
620  *      polling on the wakeup-interrupt bit in the IRR, there is
621  *      nothing useful to be done in the handler.
622  *
623  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
624  *      arg             (Interrupt handler specific argument)
625  *      ptregs          (Exception frame at the time of the interrupt)
626  *  Outputs :   None
627  *
628  */
629 static irqreturn_t
630 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
631 {
632         return IRQ_HANDLED;
633 }
634
635 /* Function pointer for extra MCA recovery */
636 int (*ia64_mca_ucmc_extension)
637         (void*,struct ia64_sal_os_state*)
638         = NULL;
639
640 int
641 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
642 {
643         if (ia64_mca_ucmc_extension)
644                 return 1;
645
646         ia64_mca_ucmc_extension = fn;
647         return 0;
648 }
649
650 void
651 ia64_unreg_MCA_extension(void)
652 {
653         if (ia64_mca_ucmc_extension)
654                 ia64_mca_ucmc_extension = NULL;
655 }
656
657 EXPORT_SYMBOL(ia64_reg_MCA_extension);
658 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
659
660
661 static inline void
662 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
663 {
664         u64 fslot, tslot, nat;
665         *tr = *fr;
666         fslot = ((unsigned long)fr >> 3) & 63;
667         tslot = ((unsigned long)tr >> 3) & 63;
668         *tnat &= ~(1UL << tslot);
669         nat = (fnat >> fslot) & 1;
670         *tnat |= (nat << tslot);
671 }
672
673 /* Change the comm field on the MCA/INT task to include the pid that
674  * was interrupted, it makes for easier debugging.  If that pid was 0
675  * (swapper or nested MCA/INIT) then use the start of the previous comm
676  * field suffixed with its cpu.
677  */
678
679 static void
680 ia64_mca_modify_comm(const task_t *previous_current)
681 {
682         char *p, comm[sizeof(current->comm)];
683         if (previous_current->pid)
684                 snprintf(comm, sizeof(comm), "%s %d",
685                         current->comm, previous_current->pid);
686         else {
687                 int l;
688                 if ((p = strchr(previous_current->comm, ' ')))
689                         l = p - previous_current->comm;
690                 else
691                         l = strlen(previous_current->comm);
692                 snprintf(comm, sizeof(comm), "%s %*s %d",
693                         current->comm, l, previous_current->comm,
694                         task_thread_info(previous_current)->cpu);
695         }
696         memcpy(current->comm, comm, sizeof(current->comm));
697 }
698
699 /* On entry to this routine, we are running on the per cpu stack, see
700  * mca_asm.h.  The original stack has not been touched by this event.  Some of
701  * the original stack's registers will be in the RBS on this stack.  This stack
702  * also contains a partial pt_regs and switch_stack, the rest of the data is in
703  * PAL minstate.
704  *
705  * The first thing to do is modify the original stack to look like a blocked
706  * task so we can run backtrace on the original task.  Also mark the per cpu
707  * stack as current to ensure that we use the correct task state, it also means
708  * that we can do backtrace on the MCA/INIT handler code itself.
709  */
710
711 static task_t *
712 ia64_mca_modify_original_stack(struct pt_regs *regs,
713                 const struct switch_stack *sw,
714                 struct ia64_sal_os_state *sos,
715                 const char *type)
716 {
717         char *p;
718         ia64_va va;
719         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
720         const pal_min_state_area_t *ms = sos->pal_min_state;
721         task_t *previous_current;
722         struct pt_regs *old_regs;
723         struct switch_stack *old_sw;
724         unsigned size = sizeof(struct pt_regs) +
725                         sizeof(struct switch_stack) + 16;
726         u64 *old_bspstore, *old_bsp;
727         u64 *new_bspstore, *new_bsp;
728         u64 old_unat, old_rnat, new_rnat, nat;
729         u64 slots, loadrs = regs->loadrs;
730         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
731         u64 ar_bspstore = regs->ar_bspstore;
732         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
733         const u64 *bank;
734         const char *msg;
735         int cpu = smp_processor_id();
736
737         previous_current = curr_task(cpu);
738         set_curr_task(cpu, current);
739         if ((p = strchr(current->comm, ' ')))
740                 *p = '\0';
741
742         /* Best effort attempt to cope with MCA/INIT delivered while in
743          * physical mode.
744          */
745         regs->cr_ipsr = ms->pmsa_ipsr;
746         if (ia64_psr(regs)->dt == 0) {
747                 va.l = r12;
748                 if (va.f.reg == 0) {
749                         va.f.reg = 7;
750                         r12 = va.l;
751                 }
752                 va.l = r13;
753                 if (va.f.reg == 0) {
754                         va.f.reg = 7;
755                         r13 = va.l;
756                 }
757         }
758         if (ia64_psr(regs)->rt == 0) {
759                 va.l = ar_bspstore;
760                 if (va.f.reg == 0) {
761                         va.f.reg = 7;
762                         ar_bspstore = va.l;
763                 }
764                 va.l = ar_bsp;
765                 if (va.f.reg == 0) {
766                         va.f.reg = 7;
767                         ar_bsp = va.l;
768                 }
769         }
770
771         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
772          * have been copied to the old stack, the old stack may fail the
773          * validation tests below.  So ia64_old_stack() must restore the dirty
774          * registers from the new stack.  The old and new bspstore probably
775          * have different alignments, so loadrs calculated on the old bsp
776          * cannot be used to restore from the new bsp.  Calculate a suitable
777          * loadrs for the new stack and save it in the new pt_regs, where
778          * ia64_old_stack() can get it.
779          */
780         old_bspstore = (u64 *)ar_bspstore;
781         old_bsp = (u64 *)ar_bsp;
782         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
783         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
784         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
785         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
786
787         /* Verify the previous stack state before we change it */
788         if (user_mode(regs)) {
789                 msg = "occurred in user space";
790                 /* previous_current is guaranteed to be valid when the task was
791                  * in user space, so ...
792                  */
793                 ia64_mca_modify_comm(previous_current);
794                 goto no_mod;
795         }
796
797         if (!mca_recover_range(ms->pmsa_iip)) {
798                 if (r13 != sos->prev_IA64_KR_CURRENT) {
799                         msg = "inconsistent previous current and r13";
800                         goto no_mod;
801                 }
802                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
803                         msg = "inconsistent r12 and r13";
804                         goto no_mod;
805                 }
806                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
807                         msg = "inconsistent ar.bspstore and r13";
808                         goto no_mod;
809                 }
810                 va.p = old_bspstore;
811                 if (va.f.reg < 5) {
812                         msg = "old_bspstore is in the wrong region";
813                         goto no_mod;
814                 }
815                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
816                         msg = "inconsistent ar.bsp and r13";
817                         goto no_mod;
818                 }
819                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
820                 if (ar_bspstore + size > r12) {
821                         msg = "no room for blocked state";
822                         goto no_mod;
823                 }
824         }
825
826         ia64_mca_modify_comm(previous_current);
827
828         /* Make the original task look blocked.  First stack a struct pt_regs,
829          * describing the state at the time of interrupt.  mca_asm.S built a
830          * partial pt_regs, copy it and fill in the blanks using minstate.
831          */
832         p = (char *)r12 - sizeof(*regs);
833         old_regs = (struct pt_regs *)p;
834         memcpy(old_regs, regs, sizeof(*regs));
835         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
836          * pmsa_{xip,xpsr,xfs}
837          */
838         if (ia64_psr(regs)->ic) {
839                 old_regs->cr_iip = ms->pmsa_iip;
840                 old_regs->cr_ipsr = ms->pmsa_ipsr;
841                 old_regs->cr_ifs = ms->pmsa_ifs;
842         } else {
843                 old_regs->cr_iip = ms->pmsa_xip;
844                 old_regs->cr_ipsr = ms->pmsa_xpsr;
845                 old_regs->cr_ifs = ms->pmsa_xfs;
846         }
847         old_regs->pr = ms->pmsa_pr;
848         old_regs->b0 = ms->pmsa_br0;
849         old_regs->loadrs = loadrs;
850         old_regs->ar_rsc = ms->pmsa_rsc;
851         old_unat = old_regs->ar_unat;
852         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
853         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
854         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
855         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
856         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
857         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
858         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
859         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
860         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
861         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
862         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
863         if (ia64_psr(old_regs)->bn)
864                 bank = ms->pmsa_bank1_gr;
865         else
866                 bank = ms->pmsa_bank0_gr;
867         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
868         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
869         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
870         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
871         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
872         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
873         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
874         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
875         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
876         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
877         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
878         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
879         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
880         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
881         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
882         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
883
884         /* Next stack a struct switch_stack.  mca_asm.S built a partial
885          * switch_stack, copy it and fill in the blanks using pt_regs and
886          * minstate.
887          *
888          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
889          * ar.pfs is set to 0.
890          *
891          * unwind.c::unw_unwind() does special processing for interrupt frames.
892          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
893          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
894          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
895          * switch_stack on the original stack so it will unwind correctly when
896          * unwind.c reads pt_regs.
897          *
898          * thread.ksp is updated to point to the synthesized switch_stack.
899          */
900         p -= sizeof(struct switch_stack);
901         old_sw = (struct switch_stack *)p;
902         memcpy(old_sw, sw, sizeof(*sw));
903         old_sw->caller_unat = old_unat;
904         old_sw->ar_fpsr = old_regs->ar_fpsr;
905         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
906         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
907         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
908         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
909         old_sw->b0 = (u64)ia64_leave_kernel;
910         old_sw->b1 = ms->pmsa_br1;
911         old_sw->ar_pfs = 0;
912         old_sw->ar_unat = old_unat;
913         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
914         previous_current->thread.ksp = (u64)p - 16;
915
916         /* Finally copy the original stack's registers back to its RBS.
917          * Registers from ar.bspstore through ar.bsp at the time of the event
918          * are in the current RBS, copy them back to the original stack.  The
919          * copy must be done register by register because the original bspstore
920          * and the current one have different alignments, so the saved RNAT
921          * data occurs at different places.
922          *
923          * mca_asm does cover, so the old_bsp already includes all registers at
924          * the time of MCA/INIT.  It also does flushrs, so all registers before
925          * this function have been written to backing store on the MCA/INIT
926          * stack.
927          */
928         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
929         old_rnat = regs->ar_rnat;
930         while (slots--) {
931                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
932                         new_rnat = ia64_get_rnat(new_bspstore++);
933                 }
934                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
935                         *old_bspstore++ = old_rnat;
936                         old_rnat = 0;
937                 }
938                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
939                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
940                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
941                 *old_bspstore++ = *new_bspstore++;
942         }
943         old_sw->ar_bspstore = (unsigned long)old_bspstore;
944         old_sw->ar_rnat = old_rnat;
945
946         sos->prev_task = previous_current;
947         return previous_current;
948
949 no_mod:
950         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
951                         smp_processor_id(), type, msg);
952         return previous_current;
953 }
954
955 /* The monarch/slave interaction is based on monarch_cpu and requires that all
956  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
957  * not entered rendezvous yet then wait a bit.  The assumption is that any
958  * slave that has not rendezvoused after a reasonable time is never going to do
959  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
960  * interrupt, as well as cpus that receive the INIT slave event.
961  */
962
963 static void
964 ia64_wait_for_slaves(int monarch)
965 {
966         int c, wait = 0, missing = 0;
967         for_each_online_cpu(c) {
968                 if (c == monarch)
969                         continue;
970                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
971                         udelay(1000);           /* short wait first */
972                         wait = 1;
973                         break;
974                 }
975         }
976         if (!wait)
977                 goto all_in;
978         for_each_online_cpu(c) {
979                 if (c == monarch)
980                         continue;
981                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
982                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
983                         if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
984                                 missing = 1;
985                         break;
986                 }
987         }
988         if (!missing)
989                 goto all_in;
990         printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
991         for_each_online_cpu(c) {
992                 if (c == monarch)
993                         continue;
994                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
995                         printk(" %d", c);
996         }
997         printk("\n");
998         return;
999
1000 all_in:
1001         printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
1002         return;
1003 }
1004
1005 /*
1006  * ia64_mca_handler
1007  *
1008  *      This is uncorrectable machine check handler called from OS_MCA
1009  *      dispatch code which is in turn called from SAL_CHECK().
1010  *      This is the place where the core of OS MCA handling is done.
1011  *      Right now the logs are extracted and displayed in a well-defined
1012  *      format. This handler code is supposed to be run only on the
1013  *      monarch processor. Once the monarch is done with MCA handling
1014  *      further MCA logging is enabled by clearing logs.
1015  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1016  *      slave processors out of rendezvous spinloop.
1017  */
1018 void
1019 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1020                  struct ia64_sal_os_state *sos)
1021 {
1022         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1023                 &sos->proc_state_param;
1024         int recover, cpu = smp_processor_id();
1025         task_t *previous_current;
1026
1027         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1028         console_loglevel = 15;  /* make sure printks make it to console */
1029         printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1030                 sos->proc_state_param, cpu, sos->monarch);
1031
1032         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1033         monarch_cpu = cpu;
1034         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
1035                         == NOTIFY_STOP)
1036                 ia64_mca_spin(__FUNCTION__);
1037         ia64_wait_for_slaves(cpu);
1038
1039         /* Wakeup all the processors which are spinning in the rendezvous loop.
1040          * They will leave SAL, then spin in the OS with interrupts disabled
1041          * until this monarch cpu leaves the MCA handler.  That gets control
1042          * back to the OS so we can backtrace the other cpus, backtrace when
1043          * spinning in SAL does not work.
1044          */
1045         ia64_mca_wakeup_all();
1046         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
1047                         == NOTIFY_STOP)
1048                 ia64_mca_spin(__FUNCTION__);
1049
1050         /* Get the MCA error record and log it */
1051         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1052
1053         /* TLB error is only exist in this SAL error record */
1054         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1055         /* other error recovery */
1056            || (ia64_mca_ucmc_extension
1057                 && ia64_mca_ucmc_extension(
1058                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1059                         sos));
1060
1061         if (recover) {
1062                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1063                 rh->severity = sal_log_severity_corrected;
1064                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1065                 sos->os_status = IA64_MCA_CORRECTED;
1066         }
1067         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1068                         == NOTIFY_STOP)
1069                 ia64_mca_spin(__FUNCTION__);
1070
1071         set_curr_task(cpu, previous_current);
1072         monarch_cpu = -1;
1073 }
1074
1075 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1076 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1077
1078 /*
1079  * ia64_mca_cmc_int_handler
1080  *
1081  *  This is corrected machine check interrupt handler.
1082  *      Right now the logs are extracted and displayed in a well-defined
1083  *      format.
1084  *
1085  * Inputs
1086  *      interrupt number
1087  *      client data arg ptr
1088  *      saved registers ptr
1089  *
1090  * Outputs
1091  *      None
1092  */
1093 static irqreturn_t
1094 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1095 {
1096         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1097         static int              index;
1098         static DEFINE_SPINLOCK(cmc_history_lock);
1099
1100         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1101                        __FUNCTION__, cmc_irq, smp_processor_id());
1102
1103         /* SAL spec states this should run w/ interrupts enabled */
1104         local_irq_enable();
1105
1106         /* Get the CMC error record and log it */
1107         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1108
1109         spin_lock(&cmc_history_lock);
1110         if (!cmc_polling_enabled) {
1111                 int i, count = 1; /* we know 1 happened now */
1112                 unsigned long now = jiffies;
1113
1114                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1115                         if (now - cmc_history[i] <= HZ)
1116                                 count++;
1117                 }
1118
1119                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1120                 if (count >= CMC_HISTORY_LENGTH) {
1121
1122                         cmc_polling_enabled = 1;
1123                         spin_unlock(&cmc_history_lock);
1124                         /* If we're being hit with CMC interrupts, we won't
1125                          * ever execute the schedule_work() below.  Need to
1126                          * disable CMC interrupts on this processor now.
1127                          */
1128                         ia64_mca_cmc_vector_disable(NULL);
1129                         schedule_work(&cmc_disable_work);
1130
1131                         /*
1132                          * Corrected errors will still be corrected, but
1133                          * make sure there's a log somewhere that indicates
1134                          * something is generating more than we can handle.
1135                          */
1136                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1137
1138                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1139
1140                         /* lock already released, get out now */
1141                         return IRQ_HANDLED;
1142                 } else {
1143                         cmc_history[index++] = now;
1144                         if (index == CMC_HISTORY_LENGTH)
1145                                 index = 0;
1146                 }
1147         }
1148         spin_unlock(&cmc_history_lock);
1149         return IRQ_HANDLED;
1150 }
1151
1152 /*
1153  *  ia64_mca_cmc_int_caller
1154  *
1155  *      Triggered by sw interrupt from CMC polling routine.  Calls
1156  *      real interrupt handler and either triggers a sw interrupt
1157  *      on the next cpu or does cleanup at the end.
1158  *
1159  * Inputs
1160  *      interrupt number
1161  *      client data arg ptr
1162  *      saved registers ptr
1163  * Outputs
1164  *      handled
1165  */
1166 static irqreturn_t
1167 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1168 {
1169         static int start_count = -1;
1170         unsigned int cpuid;
1171
1172         cpuid = smp_processor_id();
1173
1174         /* If first cpu, update count */
1175         if (start_count == -1)
1176                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1177
1178         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1179
1180         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1181
1182         if (cpuid < NR_CPUS) {
1183                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1184         } else {
1185                 /* If no log record, switch out of polling mode */
1186                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1187
1188                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1189                         schedule_work(&cmc_enable_work);
1190                         cmc_polling_enabled = 0;
1191
1192                 } else {
1193
1194                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1195                 }
1196
1197                 start_count = -1;
1198         }
1199
1200         return IRQ_HANDLED;
1201 }
1202
1203 /*
1204  *  ia64_mca_cmc_poll
1205  *
1206  *      Poll for Corrected Machine Checks (CMCs)
1207  *
1208  * Inputs   :   dummy(unused)
1209  * Outputs  :   None
1210  *
1211  */
1212 static void
1213 ia64_mca_cmc_poll (unsigned long dummy)
1214 {
1215         /* Trigger a CMC interrupt cascade  */
1216         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1217 }
1218
1219 /*
1220  *  ia64_mca_cpe_int_caller
1221  *
1222  *      Triggered by sw interrupt from CPE polling routine.  Calls
1223  *      real interrupt handler and either triggers a sw interrupt
1224  *      on the next cpu or does cleanup at the end.
1225  *
1226  * Inputs
1227  *      interrupt number
1228  *      client data arg ptr
1229  *      saved registers ptr
1230  * Outputs
1231  *      handled
1232  */
1233 #ifdef CONFIG_ACPI
1234
1235 static irqreturn_t
1236 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1237 {
1238         static int start_count = -1;
1239         static int poll_time = MIN_CPE_POLL_INTERVAL;
1240         unsigned int cpuid;
1241
1242         cpuid = smp_processor_id();
1243
1244         /* If first cpu, update count */
1245         if (start_count == -1)
1246                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1247
1248         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1249
1250         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1251
1252         if (cpuid < NR_CPUS) {
1253                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1254         } else {
1255                 /*
1256                  * If a log was recorded, increase our polling frequency,
1257                  * otherwise, backoff or return to interrupt mode.
1258                  */
1259                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1260                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1261                 } else if (cpe_vector < 0) {
1262                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1263                 } else {
1264                         poll_time = MIN_CPE_POLL_INTERVAL;
1265
1266                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1267                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1268                         cpe_poll_enabled = 0;
1269                 }
1270
1271                 if (cpe_poll_enabled)
1272                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1273                 start_count = -1;
1274         }
1275
1276         return IRQ_HANDLED;
1277 }
1278
1279 /*
1280  *  ia64_mca_cpe_poll
1281  *
1282  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1283  *      on first cpu, from there it will trickle through all the cpus.
1284  *
1285  * Inputs   :   dummy(unused)
1286  * Outputs  :   None
1287  *
1288  */
1289 static void
1290 ia64_mca_cpe_poll (unsigned long dummy)
1291 {
1292         /* Trigger a CPE interrupt cascade  */
1293         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1294 }
1295
1296 #endif /* CONFIG_ACPI */
1297
1298 static int
1299 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1300 {
1301         int c;
1302         struct task_struct *g, *t;
1303         if (val != DIE_INIT_MONARCH_PROCESS)
1304                 return NOTIFY_DONE;
1305         printk(KERN_ERR "Processes interrupted by INIT -");
1306         for_each_online_cpu(c) {
1307                 struct ia64_sal_os_state *s;
1308                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1309                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1310                 g = s->prev_task;
1311                 if (g) {
1312                         if (g->pid)
1313                                 printk(" %d", g->pid);
1314                         else
1315                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1316                 }
1317         }
1318         printk("\n\n");
1319         if (read_trylock(&tasklist_lock)) {
1320                 do_each_thread (g, t) {
1321                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1322                         show_stack(t, NULL);
1323                 } while_each_thread (g, t);
1324                 read_unlock(&tasklist_lock);
1325         }
1326         return NOTIFY_DONE;
1327 }
1328
1329 /*
1330  * C portion of the OS INIT handler
1331  *
1332  * Called from ia64_os_init_dispatch
1333  *
1334  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1335  * this event.  This code is used for both monarch and slave INIT events, see
1336  * sos->monarch.
1337  *
1338  * All INIT events switch to the INIT stack and change the previous process to
1339  * blocked status.  If one of the INIT events is the monarch then we are
1340  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1341  * the processes.  The slave INIT events all spin until the monarch cpu
1342  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1343  * process is the monarch.
1344  */
1345
1346 void
1347 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1348                   struct ia64_sal_os_state *sos)
1349 {
1350         static atomic_t slaves;
1351         static atomic_t monarchs;
1352         task_t *previous_current;
1353         int cpu = smp_processor_id();
1354
1355         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1356         console_loglevel = 15;  /* make sure printks make it to console */
1357
1358         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1359                 sos->proc_state_param, cpu, sos->monarch);
1360         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1361
1362         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1363         sos->os_status = IA64_INIT_RESUME;
1364
1365         /* FIXME: Workaround for broken proms that drive all INIT events as
1366          * slaves.  The last slave that enters is promoted to be a monarch.
1367          * Remove this code in September 2006, that gives platforms a year to
1368          * fix their proms and get their customers updated.
1369          */
1370         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1371                 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1372                        __FUNCTION__, cpu);
1373                 atomic_dec(&slaves);
1374                 sos->monarch = 1;
1375         }
1376
1377         /* FIXME: Workaround for broken proms that drive all INIT events as
1378          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1379          * Remove this code in September 2006, that gives platforms a year to
1380          * fix their proms and get their customers updated.
1381          */
1382         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1383                 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1384                                __FUNCTION__, cpu);
1385                 atomic_dec(&monarchs);
1386                 sos->monarch = 0;
1387         }
1388
1389         if (!sos->monarch) {
1390                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1391                 while (monarch_cpu == -1)
1392                        cpu_relax();     /* spin until monarch enters */
1393                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1394                                 == NOTIFY_STOP)
1395                         ia64_mca_spin(__FUNCTION__);
1396                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1397                                 == NOTIFY_STOP)
1398                         ia64_mca_spin(__FUNCTION__);
1399                 while (monarch_cpu != -1)
1400                        cpu_relax();     /* spin until monarch leaves */
1401                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1402                                 == NOTIFY_STOP)
1403                         ia64_mca_spin(__FUNCTION__);
1404                 printk("Slave on cpu %d returning to normal service.\n", cpu);
1405                 set_curr_task(cpu, previous_current);
1406                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1407                 atomic_dec(&slaves);
1408                 return;
1409         }
1410
1411         monarch_cpu = cpu;
1412         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1413                         == NOTIFY_STOP)
1414                 ia64_mca_spin(__FUNCTION__);
1415
1416         /*
1417          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1418          * generated via the BMC's command-line interface, but since the console is on the
1419          * same serial line, the user will need some time to switch out of the BMC before
1420          * the dump begins.
1421          */
1422         printk("Delaying for 5 seconds...\n");
1423         udelay(5*1000000);
1424         ia64_wait_for_slaves(cpu);
1425         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1426          * to default_monarch_init_process() above and just print all the
1427          * tasks.
1428          */
1429         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1430                         == NOTIFY_STOP)
1431                 ia64_mca_spin(__FUNCTION__);
1432         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1433                         == NOTIFY_STOP)
1434                 ia64_mca_spin(__FUNCTION__);
1435         printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1436         atomic_dec(&monarchs);
1437         set_curr_task(cpu, previous_current);
1438         monarch_cpu = -1;
1439         return;
1440 }
1441
1442 static int __init
1443 ia64_mca_disable_cpe_polling(char *str)
1444 {
1445         cpe_poll_enabled = 0;
1446         return 1;
1447 }
1448
1449 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1450
1451 static struct irqaction cmci_irqaction = {
1452         .handler =      ia64_mca_cmc_int_handler,
1453         .flags =        SA_INTERRUPT,
1454         .name =         "cmc_hndlr"
1455 };
1456
1457 static struct irqaction cmcp_irqaction = {
1458         .handler =      ia64_mca_cmc_int_caller,
1459         .flags =        SA_INTERRUPT,
1460         .name =         "cmc_poll"
1461 };
1462
1463 static struct irqaction mca_rdzv_irqaction = {
1464         .handler =      ia64_mca_rendez_int_handler,
1465         .flags =        SA_INTERRUPT,
1466         .name =         "mca_rdzv"
1467 };
1468
1469 static struct irqaction mca_wkup_irqaction = {
1470         .handler =      ia64_mca_wakeup_int_handler,
1471         .flags =        SA_INTERRUPT,
1472         .name =         "mca_wkup"
1473 };
1474
1475 #ifdef CONFIG_ACPI
1476 static struct irqaction mca_cpe_irqaction = {
1477         .handler =      ia64_mca_cpe_int_handler,
1478         .flags =        SA_INTERRUPT,
1479         .name =         "cpe_hndlr"
1480 };
1481
1482 static struct irqaction mca_cpep_irqaction = {
1483         .handler =      ia64_mca_cpe_int_caller,
1484         .flags =        SA_INTERRUPT,
1485         .name =         "cpe_poll"
1486 };
1487 #endif /* CONFIG_ACPI */
1488
1489 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1490  * these stacks can never sleep, they cannot return from the kernel to user
1491  * space, they do not appear in a normal ps listing.  So there is no need to
1492  * format most of the fields.
1493  */
1494
1495 static void __cpuinit
1496 format_mca_init_stack(void *mca_data, unsigned long offset,
1497                 const char *type, int cpu)
1498 {
1499         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1500         struct thread_info *ti;
1501         memset(p, 0, KERNEL_STACK_SIZE);
1502         ti = task_thread_info(p);
1503         ti->flags = _TIF_MCA_INIT;
1504         ti->preempt_count = 1;
1505         ti->task = p;
1506         ti->cpu = cpu;
1507         p->thread_info = ti;
1508         p->state = TASK_UNINTERRUPTIBLE;
1509         cpu_set(cpu, p->cpus_allowed);
1510         INIT_LIST_HEAD(&p->tasks);
1511         p->parent = p->real_parent = p->group_leader = p;
1512         INIT_LIST_HEAD(&p->children);
1513         INIT_LIST_HEAD(&p->sibling);
1514         strncpy(p->comm, type, sizeof(p->comm)-1);
1515 }
1516
1517 /* Do per-CPU MCA-related initialization.  */
1518
1519 void __cpuinit
1520 ia64_mca_cpu_init(void *cpu_data)
1521 {
1522         void *pal_vaddr;
1523         static int first_time = 1;
1524
1525         if (first_time) {
1526                 void *mca_data;
1527                 int cpu;
1528
1529                 first_time = 0;
1530                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1531                                          * NR_CPUS + KERNEL_STACK_SIZE);
1532                 mca_data = (void *)(((unsigned long)mca_data +
1533                                         KERNEL_STACK_SIZE - 1) &
1534                                 (-KERNEL_STACK_SIZE));
1535                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1536                         format_mca_init_stack(mca_data,
1537                                         offsetof(struct ia64_mca_cpu, mca_stack),
1538                                         "MCA", cpu);
1539                         format_mca_init_stack(mca_data,
1540                                         offsetof(struct ia64_mca_cpu, init_stack),
1541                                         "INIT", cpu);
1542                         __per_cpu_mca[cpu] = __pa(mca_data);
1543                         mca_data += sizeof(struct ia64_mca_cpu);
1544                 }
1545         }
1546
1547         /*
1548          * The MCA info structure was allocated earlier and its
1549          * physical address saved in __per_cpu_mca[cpu].  Copy that
1550          * address * to ia64_mca_data so we can access it as a per-CPU
1551          * variable.
1552          */
1553         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1554
1555         /*
1556          * Stash away a copy of the PTE needed to map the per-CPU page.
1557          * We may need it during MCA recovery.
1558          */
1559         __get_cpu_var(ia64_mca_per_cpu_pte) =
1560                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1561
1562         /*
1563          * Also, stash away a copy of the PAL address and the PTE
1564          * needed to map it.
1565          */
1566         pal_vaddr = efi_get_pal_addr();
1567         if (!pal_vaddr)
1568                 return;
1569         __get_cpu_var(ia64_mca_pal_base) =
1570                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1571         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1572                                                               PAGE_KERNEL));
1573 }
1574
1575 /*
1576  * ia64_mca_init
1577  *
1578  *  Do all the system level mca specific initialization.
1579  *
1580  *      1. Register spinloop and wakeup request interrupt vectors
1581  *
1582  *      2. Register OS_MCA handler entry point
1583  *
1584  *      3. Register OS_INIT handler entry point
1585  *
1586  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1587  *
1588  *  Note that this initialization is done very early before some kernel
1589  *  services are available.
1590  *
1591  *  Inputs  :   None
1592  *
1593  *  Outputs :   None
1594  */
1595 void __init
1596 ia64_mca_init(void)
1597 {
1598         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1599         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1600         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1601         int i;
1602         s64 rc;
1603         struct ia64_sal_retval isrv;
1604         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1605         static struct notifier_block default_init_monarch_nb = {
1606                 .notifier_call = default_monarch_init_process,
1607                 .priority = 0/* we need to notified last */
1608         };
1609
1610         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1611
1612         /* Clear the Rendez checkin flag for all cpus */
1613         for(i = 0 ; i < NR_CPUS; i++)
1614                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1615
1616         /*
1617          * Register the rendezvous spinloop and wakeup mechanism with SAL
1618          */
1619
1620         /* Register the rendezvous interrupt vector with SAL */
1621         while (1) {
1622                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1623                                               SAL_MC_PARAM_MECHANISM_INT,
1624                                               IA64_MCA_RENDEZ_VECTOR,
1625                                               timeout,
1626                                               SAL_MC_PARAM_RZ_ALWAYS);
1627                 rc = isrv.status;
1628                 if (rc == 0)
1629                         break;
1630                 if (rc == -2) {
1631                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1632                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1633                         timeout = isrv.v0;
1634                         continue;
1635                 }
1636                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1637                        "with SAL (status %ld)\n", rc);
1638                 return;
1639         }
1640
1641         /* Register the wakeup interrupt vector with SAL */
1642         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1643                                       SAL_MC_PARAM_MECHANISM_INT,
1644                                       IA64_MCA_WAKEUP_VECTOR,
1645                                       0, 0);
1646         rc = isrv.status;
1647         if (rc) {
1648                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1649                        "(status %ld)\n", rc);
1650                 return;
1651         }
1652
1653         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1654
1655         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1656         /*
1657          * XXX - disable SAL checksum by setting size to 0; should be
1658          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1659          */
1660         ia64_mc_info.imi_mca_handler_size       = 0;
1661
1662         /* Register the os mca handler with SAL */
1663         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1664                                        ia64_mc_info.imi_mca_handler,
1665                                        ia64_tpa(mca_hldlr_ptr->gp),
1666                                        ia64_mc_info.imi_mca_handler_size,
1667                                        0, 0, 0)))
1668         {
1669                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1670                        "(status %ld)\n", rc);
1671                 return;
1672         }
1673
1674         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1675                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1676
1677         /*
1678          * XXX - disable SAL checksum by setting size to 0, should be
1679          * size of the actual init handler in mca_asm.S.
1680          */
1681         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1682         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1683         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1684         ia64_mc_info.imi_slave_init_handler_size        = 0;
1685
1686         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1687                        ia64_mc_info.imi_monarch_init_handler);
1688
1689         /* Register the os init handler with SAL */
1690         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1691                                        ia64_mc_info.imi_monarch_init_handler,
1692                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1693                                        ia64_mc_info.imi_monarch_init_handler_size,
1694                                        ia64_mc_info.imi_slave_init_handler,
1695                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1696                                        ia64_mc_info.imi_slave_init_handler_size)))
1697         {
1698                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1699                        "(status %ld)\n", rc);
1700                 return;
1701         }
1702         if (register_die_notifier(&default_init_monarch_nb)) {
1703                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1704                 return;
1705         }
1706
1707         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1708
1709         /*
1710          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1711          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1712          */
1713         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1714         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1715         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1716
1717         /* Setup the MCA rendezvous interrupt vector */
1718         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1719
1720         /* Setup the MCA wakeup interrupt vector */
1721         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1722
1723 #ifdef CONFIG_ACPI
1724         /* Setup the CPEI/P handler */
1725         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1726 #endif
1727
1728         /* Initialize the areas set aside by the OS to buffer the
1729          * platform/processor error states for MCA/INIT/CMC
1730          * handling.
1731          */
1732         ia64_log_init(SAL_INFO_TYPE_MCA);
1733         ia64_log_init(SAL_INFO_TYPE_INIT);
1734         ia64_log_init(SAL_INFO_TYPE_CMC);
1735         ia64_log_init(SAL_INFO_TYPE_CPE);
1736
1737         mca_init = 1;
1738         printk(KERN_INFO "MCA related initialization done\n");
1739 }
1740
1741 /*
1742  * ia64_mca_late_init
1743  *
1744  *      Opportunity to setup things that require initialization later
1745  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1746  *      platform doesn't support an interrupt driven mechanism.
1747  *
1748  *  Inputs  :   None
1749  *  Outputs :   Status
1750  */
1751 static int __init
1752 ia64_mca_late_init(void)
1753 {
1754         if (!mca_init)
1755                 return 0;
1756
1757         /* Setup the CMCI/P vector and handler */
1758         init_timer(&cmc_poll_timer);
1759         cmc_poll_timer.function = ia64_mca_cmc_poll;
1760
1761         /* Unmask/enable the vector */
1762         cmc_polling_enabled = 0;
1763         schedule_work(&cmc_enable_work);
1764
1765         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1766
1767 #ifdef CONFIG_ACPI
1768         /* Setup the CPEI/P vector and handler */
1769         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1770         init_timer(&cpe_poll_timer);
1771         cpe_poll_timer.function = ia64_mca_cpe_poll;
1772
1773         {
1774                 irq_desc_t *desc;
1775                 unsigned int irq;
1776
1777                 if (cpe_vector >= 0) {
1778                         /* If platform supports CPEI, enable the irq. */
1779                         cpe_poll_enabled = 0;
1780                         for (irq = 0; irq < NR_IRQS; ++irq)
1781                                 if (irq_to_vector(irq) == cpe_vector) {
1782                                         desc = irq_descp(irq);
1783                                         desc->status |= IRQ_PER_CPU;
1784                                         setup_irq(irq, &mca_cpe_irqaction);
1785                                         ia64_cpe_irq = irq;
1786                                 }
1787                         ia64_mca_register_cpev(cpe_vector);
1788                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1789                 } else {
1790                         /* If platform doesn't support CPEI, get the timer going. */
1791                         if (cpe_poll_enabled) {
1792                                 ia64_mca_cpe_poll(0UL);
1793                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1794                         }
1795                 }
1796         }
1797 #endif
1798
1799         return 0;
1800 }
1801
1802 device_initcall(ia64_mca_late_init);