[PATCH] Kprobes: Track kprobe on a per_cpu basis - ia64 changes
[pandora-kernel.git] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/slab.h>
32 #include <linux/preempt.h>
33 #include <linux/moduleloader.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/kdebug.h>
37 #include <asm/sections.h>
38
39 extern void jprobe_inst_return(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 enum instruction_type {A, I, M, F, B, L, X, u};
45 static enum instruction_type bundle_encoding[32][3] = {
46   { M, I, I },                          /* 00 */
47   { M, I, I },                          /* 01 */
48   { M, I, I },                          /* 02 */
49   { M, I, I },                          /* 03 */
50   { M, L, X },                          /* 04 */
51   { M, L, X },                          /* 05 */
52   { u, u, u },                          /* 06 */
53   { u, u, u },                          /* 07 */
54   { M, M, I },                          /* 08 */
55   { M, M, I },                          /* 09 */
56   { M, M, I },                          /* 0A */
57   { M, M, I },                          /* 0B */
58   { M, F, I },                          /* 0C */
59   { M, F, I },                          /* 0D */
60   { M, M, F },                          /* 0E */
61   { M, M, F },                          /* 0F */
62   { M, I, B },                          /* 10 */
63   { M, I, B },                          /* 11 */
64   { M, B, B },                          /* 12 */
65   { M, B, B },                          /* 13 */
66   { u, u, u },                          /* 14 */
67   { u, u, u },                          /* 15 */
68   { B, B, B },                          /* 16 */
69   { B, B, B },                          /* 17 */
70   { M, M, B },                          /* 18 */
71   { M, M, B },                          /* 19 */
72   { u, u, u },                          /* 1A */
73   { u, u, u },                          /* 1B */
74   { M, F, B },                          /* 1C */
75   { M, F, B },                          /* 1D */
76   { u, u, u },                          /* 1E */
77   { u, u, u },                          /* 1F */
78 };
79
80 /*
81  * In this function we check to see if the instruction
82  * is IP relative instruction and update the kprobe
83  * inst flag accordingly
84  */
85 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
86                                               uint major_opcode,
87                                               unsigned long kprobe_inst,
88                                               struct kprobe *p)
89 {
90         p->ainsn.inst_flag = 0;
91         p->ainsn.target_br_reg = 0;
92
93         /* Check for Break instruction
94          * Bits 37:40 Major opcode to be zero
95          * Bits 27:32 X6 to be zero
96          * Bits 32:35 X3 to be zero
97          */
98         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
99                 /* is a break instruction */
100                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
101                 return;
102         }
103
104         if (bundle_encoding[template][slot] == B) {
105                 switch (major_opcode) {
106                   case INDIRECT_CALL_OPCODE:
107                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
108                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109                         break;
110                   case IP_RELATIVE_PREDICT_OPCODE:
111                   case IP_RELATIVE_BRANCH_OPCODE:
112                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113                         break;
114                   case IP_RELATIVE_CALL_OPCODE:
115                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
116                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
117                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
118                         break;
119                 }
120         } else if (bundle_encoding[template][slot] == X) {
121                 switch (major_opcode) {
122                   case LONG_CALL_OPCODE:
123                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
124                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
125                   break;
126                 }
127         }
128         return;
129 }
130
131 /*
132  * In this function we check to see if the instruction
133  * on which we are inserting kprobe is supported.
134  * Returns 0 if supported
135  * Returns -EINVAL if unsupported
136  */
137 static int __kprobes unsupported_inst(uint template, uint  slot,
138                                       uint major_opcode,
139                                       unsigned long kprobe_inst,
140                                       struct kprobe *p)
141 {
142         unsigned long addr = (unsigned long)p->addr;
143
144         if (bundle_encoding[template][slot] == I) {
145                 switch (major_opcode) {
146                         case 0x0: //I_UNIT_MISC_OPCODE:
147                         /*
148                          * Check for Integer speculation instruction
149                          * - Bit 33-35 to be equal to 0x1
150                          */
151                         if (((kprobe_inst >> 33) & 0x7) == 1) {
152                                 printk(KERN_WARNING
153                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
154                                         addr);
155                                 return -EINVAL;
156                         }
157
158                         /*
159                          * IP relative mov instruction
160                          *  - Bit 27-35 to be equal to 0x30
161                          */
162                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
163                                 printk(KERN_WARNING
164                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
165                                         addr);
166                                 return -EINVAL;
167
168                         }
169                 }
170         }
171         return 0;
172 }
173
174
175 /*
176  * In this function we check to see if the instruction
177  * (qp) cmpx.crel.ctype p1,p2=r2,r3
178  * on which we are inserting kprobe is cmp instruction
179  * with ctype as unc.
180  */
181 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
182                                             uint major_opcode,
183                                             unsigned long kprobe_inst)
184 {
185         cmp_inst_t cmp_inst;
186         uint ctype_unc = 0;
187
188         if (!((bundle_encoding[template][slot] == I) ||
189                 (bundle_encoding[template][slot] == M)))
190                 goto out;
191
192         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
193                 (major_opcode == 0xE)))
194                 goto out;
195
196         cmp_inst.l = kprobe_inst;
197         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
198                 /* Integere compare - Register Register (A6 type)*/
199                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
200                                 &&(cmp_inst.f.c == 1))
201                         ctype_unc = 1;
202         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
203                 /* Integere compare - Immediate Register (A8 type)*/
204                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
205                         ctype_unc = 1;
206         }
207 out:
208         return ctype_unc;
209 }
210
211 /*
212  * In this function we override the bundle with
213  * the break instruction at the given slot.
214  */
215 static void __kprobes prepare_break_inst(uint template, uint  slot,
216                                          uint major_opcode,
217                                          unsigned long kprobe_inst,
218                                          struct kprobe *p)
219 {
220         unsigned long break_inst = BREAK_INST;
221         bundle_t *bundle = &p->ainsn.insn.bundle;
222
223         /*
224          * Copy the original kprobe_inst qualifying predicate(qp)
225          * to the break instruction iff !is_cmp_ctype_unc_inst
226          * because for cmp instruction with ctype equal to unc,
227          * which is a special instruction always needs to be
228          * executed regradless of qp
229          */
230         if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
231                 break_inst |= (0x3f & kprobe_inst);
232
233         switch (slot) {
234           case 0:
235                 bundle->quad0.slot0 = break_inst;
236                 break;
237           case 1:
238                 bundle->quad0.slot1_p0 = break_inst;
239                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
240                 break;
241           case 2:
242                 bundle->quad1.slot2 = break_inst;
243                 break;
244         }
245
246         /*
247          * Update the instruction flag, so that we can
248          * emulate the instruction properly after we
249          * single step on original instruction
250          */
251         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
252 }
253
254 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
255                 unsigned long *kprobe_inst, uint *major_opcode)
256 {
257         unsigned long kprobe_inst_p0, kprobe_inst_p1;
258         unsigned int template;
259
260         template = bundle->quad0.template;
261
262         switch (slot) {
263           case 0:
264                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
265                 *kprobe_inst = bundle->quad0.slot0;
266                 break;
267           case 1:
268                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
269                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
270                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
271                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
272                 break;
273           case 2:
274                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
275                 *kprobe_inst = bundle->quad1.slot2;
276                 break;
277         }
278 }
279
280 /* Returns non-zero if the addr is in the Interrupt Vector Table */
281 static inline int in_ivt_functions(unsigned long addr)
282 {
283         return (addr >= (unsigned long)__start_ivt_text
284                 && addr < (unsigned long)__end_ivt_text);
285 }
286
287 static int __kprobes valid_kprobe_addr(int template, int slot,
288                                        unsigned long addr)
289 {
290         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
291                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
292                                 "at 0x%lx\n", addr);
293                 return -EINVAL;
294         }
295
296         if (in_ivt_functions(addr)) {
297                 printk(KERN_WARNING "Kprobes can't be inserted inside "
298                                 "IVT functions at 0x%lx\n", addr);
299                 return -EINVAL;
300         }
301
302         if (slot == 1 && bundle_encoding[template][1] != L) {
303                 printk(KERN_WARNING "Inserting kprobes on slot #1 "
304                        "is not supported\n");
305                 return -EINVAL;
306         }
307
308         return 0;
309 }
310
311 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
312 {
313         kcb->prev_kprobe.kp = kprobe_running();
314         kcb->prev_kprobe.status = kcb->kprobe_status;
315 }
316
317 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318 {
319         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
320         kcb->kprobe_status = kcb->prev_kprobe.status;
321 }
322
323 static inline void set_current_kprobe(struct kprobe *p,
324                         struct kprobe_ctlblk *kcb)
325 {
326         __get_cpu_var(current_kprobe) = p;
327 }
328
329 static void kretprobe_trampoline(void)
330 {
331 }
332
333 /*
334  * At this point the target function has been tricked into
335  * returning into our trampoline.  Lookup the associated instance
336  * and then:
337  *    - call the handler function
338  *    - cleanup by marking the instance as unused
339  *    - long jump back to the original return address
340  */
341 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 {
343         struct kretprobe_instance *ri = NULL;
344         struct hlist_head *head;
345         struct hlist_node *node, *tmp;
346         unsigned long orig_ret_address = 0;
347         unsigned long trampoline_address =
348                 ((struct fnptr *)kretprobe_trampoline)->ip;
349
350         head = kretprobe_inst_table_head(current);
351
352         /*
353          * It is possible to have multiple instances associated with a given
354          * task either because an multiple functions in the call path
355          * have a return probe installed on them, and/or more then one return
356          * return probe was registered for a target function.
357          *
358          * We can handle this because:
359          *     - instances are always inserted at the head of the list
360          *     - when multiple return probes are registered for the same
361          *       function, the first instance's ret_addr will point to the
362          *       real return address, and all the rest will point to
363          *       kretprobe_trampoline
364          */
365         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366                 if (ri->task != current)
367                         /* another task is sharing our hash bucket */
368                         continue;
369
370                 if (ri->rp && ri->rp->handler)
371                         ri->rp->handler(ri, regs);
372
373                 orig_ret_address = (unsigned long)ri->ret_addr;
374                 recycle_rp_inst(ri);
375
376                 if (orig_ret_address != trampoline_address)
377                         /*
378                          * This is the real return address. Any other
379                          * instances associated with this task are for
380                          * other calls deeper on the call stack
381                          */
382                         break;
383         }
384
385         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
386         regs->cr_iip = orig_ret_address;
387
388         reset_current_kprobe();
389         unlock_kprobes();
390         preempt_enable_no_resched();
391
392         /*
393          * By returning a non-zero value, we are telling
394          * kprobe_handler() that we have handled unlocking
395          * and re-enabling preemption
396          */
397         return 1;
398 }
399
400 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
401                                       struct pt_regs *regs)
402 {
403         struct kretprobe_instance *ri;
404
405         if ((ri = get_free_rp_inst(rp)) != NULL) {
406                 ri->rp = rp;
407                 ri->task = current;
408                 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
409
410                 /* Replace the return addr with trampoline addr */
411                 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
412
413                 add_rp_inst(ri);
414         } else {
415                 rp->nmissed++;
416         }
417 }
418
419 int __kprobes arch_prepare_kprobe(struct kprobe *p)
420 {
421         unsigned long addr = (unsigned long) p->addr;
422         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
423         unsigned long kprobe_inst=0;
424         unsigned int slot = addr & 0xf, template, major_opcode = 0;
425         bundle_t *bundle = &p->ainsn.insn.bundle;
426
427         memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
428         memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
429
430         template = bundle->quad0.template;
431
432         if(valid_kprobe_addr(template, slot, addr))
433                 return -EINVAL;
434
435         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
436         if (slot == 1 && bundle_encoding[template][1] == L)
437                 slot++;
438
439         /* Get kprobe_inst and major_opcode from the bundle */
440         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
441
442         if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
443                         return -EINVAL;
444
445         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
446
447         return 0;
448 }
449
450 void __kprobes arch_arm_kprobe(struct kprobe *p)
451 {
452         unsigned long addr = (unsigned long)p->addr;
453         unsigned long arm_addr = addr & ~0xFULL;
454
455         memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
456         flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
457 }
458
459 void __kprobes arch_disarm_kprobe(struct kprobe *p)
460 {
461         unsigned long addr = (unsigned long)p->addr;
462         unsigned long arm_addr = addr & ~0xFULL;
463
464         /* p->opcode contains the original unaltered bundle */
465         memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
466         flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
467 }
468
469 void __kprobes arch_remove_kprobe(struct kprobe *p)
470 {
471 }
472
473 /*
474  * We are resuming execution after a single step fault, so the pt_regs
475  * structure reflects the register state after we executed the instruction
476  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
477  * the ip to point back to the original stack address. To set the IP address
478  * to original stack address, handle the case where we need to fixup the
479  * relative IP address and/or fixup branch register.
480  */
481 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
482 {
483         unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
484         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
485         unsigned long template;
486         int slot = ((unsigned long)p->addr & 0xf);
487
488         template = p->opcode.bundle.quad0.template;
489
490         if (slot == 1 && bundle_encoding[template][1] == L)
491                 slot = 2;
492
493         if (p->ainsn.inst_flag) {
494
495                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
496                         /* Fix relative IP address */
497                         regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
498                 }
499
500                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
501                 /*
502                  * Fix target branch register, software convention is
503                  * to use either b0 or b6 or b7, so just checking
504                  * only those registers
505                  */
506                         switch (p->ainsn.target_br_reg) {
507                         case 0:
508                                 if ((regs->b0 == bundle_addr) ||
509                                         (regs->b0 == bundle_addr + 0x10)) {
510                                         regs->b0 = (regs->b0 - bundle_addr) +
511                                                 resume_addr;
512                                 }
513                                 break;
514                         case 6:
515                                 if ((regs->b6 == bundle_addr) ||
516                                         (regs->b6 == bundle_addr + 0x10)) {
517                                         regs->b6 = (regs->b6 - bundle_addr) +
518                                                 resume_addr;
519                                 }
520                                 break;
521                         case 7:
522                                 if ((regs->b7 == bundle_addr) ||
523                                         (regs->b7 == bundle_addr + 0x10)) {
524                                         regs->b7 = (regs->b7 - bundle_addr) +
525                                                 resume_addr;
526                                 }
527                                 break;
528                         } /* end switch */
529                 }
530                 goto turn_ss_off;
531         }
532
533         if (slot == 2) {
534                 if (regs->cr_iip == bundle_addr + 0x10) {
535                         regs->cr_iip = resume_addr + 0x10;
536                 }
537         } else {
538                 if (regs->cr_iip == bundle_addr) {
539                         regs->cr_iip = resume_addr;
540                 }
541         }
542
543 turn_ss_off:
544         /* Turn off Single Step bit */
545         ia64_psr(regs)->ss = 0;
546 }
547
548 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
549 {
550         unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
551         unsigned long slot = (unsigned long)p->addr & 0xf;
552
553         /* single step inline if break instruction */
554         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
555                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
556         else
557                 regs->cr_iip = bundle_addr & ~0xFULL;
558
559         if (slot > 2)
560                 slot = 0;
561
562         ia64_psr(regs)->ri = slot;
563
564         /* turn on single stepping */
565         ia64_psr(regs)->ss = 1;
566 }
567
568 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
569 {
570         unsigned int slot = ia64_psr(regs)->ri;
571         unsigned int template, major_opcode;
572         unsigned long kprobe_inst;
573         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
574         bundle_t bundle;
575
576         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
577         template = bundle.quad0.template;
578
579         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
580         if (slot == 1 && bundle_encoding[template][1] == L)
581                 slot++;
582
583         /* Get Kprobe probe instruction at given slot*/
584         get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
585
586         /* For break instruction,
587          * Bits 37:40 Major opcode to be zero
588          * Bits 27:32 X6 to be zero
589          * Bits 32:35 X3 to be zero
590          */
591         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
592                 /* Not a break instruction */
593                 return 0;
594         }
595
596         /* Is a break instruction */
597         return 1;
598 }
599
600 static int __kprobes pre_kprobes_handler(struct die_args *args)
601 {
602         struct kprobe *p;
603         int ret = 0;
604         struct pt_regs *regs = args->regs;
605         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
606         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607
608         /* Handle recursion cases */
609         if (kprobe_running()) {
610                 p = get_kprobe(addr);
611                 if (p) {
612                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
613                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
614                                 ia64_psr(regs)->ss = 0;
615                                 unlock_kprobes();
616                                 goto no_kprobe;
617                         }
618                         /* We have reentered the pre_kprobe_handler(), since
619                          * another probe was hit while within the handler.
620                          * We here save the original kprobes variables and
621                          * just single step on the instruction of the new probe
622                          * without calling any user handlers.
623                          */
624                         save_previous_kprobe(kcb);
625                         set_current_kprobe(p, kcb);
626                         p->nmissed++;
627                         prepare_ss(p, regs);
628                         kcb->kprobe_status = KPROBE_REENTER;
629                         return 1;
630                 } else if (args->err == __IA64_BREAK_JPROBE) {
631                         /*
632                          * jprobe instrumented function just completed
633                          */
634                         p = __get_cpu_var(current_kprobe);
635                         if (p->break_handler && p->break_handler(p, regs)) {
636                                 goto ss_probe;
637                         }
638                 } else {
639                         /* Not our break */
640                         goto no_kprobe;
641                 }
642         }
643
644         lock_kprobes();
645         p = get_kprobe(addr);
646         if (!p) {
647                 unlock_kprobes();
648                 if (!is_ia64_break_inst(regs)) {
649                         /*
650                          * The breakpoint instruction was removed right
651                          * after we hit it.  Another cpu has removed
652                          * either a probepoint or a debugger breakpoint
653                          * at this address.  In either case, no further
654                          * handling of this interrupt is appropriate.
655                          */
656                         ret = 1;
657
658                 }
659
660                 /* Not one of our break, let kernel handle it */
661                 goto no_kprobe;
662         }
663
664         /*
665          * This preempt_disable() matches the preempt_enable_no_resched()
666          * in post_kprobes_handler()
667          */
668         preempt_disable();
669         set_current_kprobe(p, kcb);
670         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
671
672         if (p->pre_handler && p->pre_handler(p, regs))
673                 /*
674                  * Our pre-handler is specifically requesting that we just
675                  * do a return.  This is used for both the jprobe pre-handler
676                  * and the kretprobe trampoline
677                  */
678                 return 1;
679
680 ss_probe:
681         prepare_ss(p, regs);
682         kcb->kprobe_status = KPROBE_HIT_SS;
683         return 1;
684
685 no_kprobe:
686         return ret;
687 }
688
689 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
690 {
691         struct kprobe *cur = kprobe_running();
692         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
693
694         if (!cur)
695                 return 0;
696
697         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
698                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
699                 cur->post_handler(cur, regs, 0);
700         }
701
702         resume_execution(cur, regs);
703
704         /*Restore back the original saved kprobes variables and continue. */
705         if (kcb->kprobe_status == KPROBE_REENTER) {
706                 restore_previous_kprobe(kcb);
707                 goto out;
708         }
709         reset_current_kprobe();
710         unlock_kprobes();
711
712 out:
713         preempt_enable_no_resched();
714         return 1;
715 }
716
717 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
718 {
719         struct kprobe *cur = kprobe_running();
720         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
721
722         if (!cur)
723                 return 0;
724
725         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
726                 return 1;
727
728         if (kcb->kprobe_status & KPROBE_HIT_SS) {
729                 resume_execution(cur, regs);
730                 reset_current_kprobe();
731                 unlock_kprobes();
732                 preempt_enable_no_resched();
733         }
734
735         return 0;
736 }
737
738 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
739                                        unsigned long val, void *data)
740 {
741         struct die_args *args = (struct die_args *)data;
742         int ret = NOTIFY_DONE;
743
744         preempt_disable();
745         switch(val) {
746         case DIE_BREAK:
747                 if (pre_kprobes_handler(args))
748                         ret = NOTIFY_STOP;
749                 break;
750         case DIE_SS:
751                 if (post_kprobes_handler(args->regs))
752                         ret = NOTIFY_STOP;
753                 break;
754         case DIE_PAGE_FAULT:
755                 if (kprobes_fault_handler(args->regs, args->trapnr))
756                         ret = NOTIFY_STOP;
757         default:
758                 break;
759         }
760         preempt_enable();
761         return ret;
762 }
763
764 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
765 {
766         struct jprobe *jp = container_of(p, struct jprobe, kp);
767         unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
768         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
769
770         /* save architectural state */
771         kcb->jprobe_saved_regs = *regs;
772
773         /* after rfi, execute the jprobe instrumented function */
774         regs->cr_iip = addr & ~0xFULL;
775         ia64_psr(regs)->ri = addr & 0xf;
776         regs->r1 = ((struct fnptr *)(jp->entry))->gp;
777
778         /*
779          * fix the return address to our jprobe_inst_return() function
780          * in the jprobes.S file
781          */
782         regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
783
784         return 1;
785 }
786
787 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
788 {
789         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
790
791         *regs = kcb->jprobe_saved_regs;
792         return 1;
793 }
794
795 static struct kprobe trampoline_p = {
796         .pre_handler = trampoline_probe_handler
797 };
798
799 int __init arch_init_kprobes(void)
800 {
801         trampoline_p.addr =
802                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
803         return register_kprobe(&trampoline_p);
804 }