[CPUFREQ][7/8] acpi-cpufreq: Fix get of current frequency breakage
[pandora-kernel.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h>        /* current */
36 #include <linux/dmi.h>
37
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
40
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 enum {
55         UNDEFINED_CAPABLE = 0,
56         SYSTEM_INTEL_MSR_CAPABLE,
57         SYSTEM_IO_CAPABLE,
58 };
59
60 #define INTEL_MSR_RANGE         (0xffff)
61
62 struct acpi_cpufreq_data {
63         struct acpi_processor_performance *acpi_data;
64         struct cpufreq_frequency_table *freq_table;
65         unsigned int resume;
66         unsigned int cpu_feature;
67 };
68
69 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
70 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
71
72 static struct cpufreq_driver acpi_cpufreq_driver;
73
74 static unsigned int acpi_pstate_strict;
75
76 static int check_est_cpu(unsigned int cpuid)
77 {
78         struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
79
80         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
81             !cpu_has(cpu, X86_FEATURE_EST))
82                 return 0;
83
84         return 1;
85 }
86
87 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
88 {
89         struct acpi_processor_performance *perf;
90         int i;
91
92         perf = data->acpi_data;
93
94         for (i = 0; i < perf->state_count; i++) {
95                 if (value == perf->states[i].status)
96                         return data->freq_table[i].frequency;
97         }
98         return 0;
99 }
100
101 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
102 {
103         int i;
104         struct acpi_processor_performance *perf;
105
106         msr &= INTEL_MSR_RANGE;
107         perf = data->acpi_data;
108
109         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
110                 if (msr == perf->states[data->freq_table[i].index].status)
111                         return data->freq_table[i].frequency;
112         }
113         return data->freq_table[0].frequency;
114 }
115
116 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
117 {
118         switch (data->cpu_feature) {
119         case SYSTEM_INTEL_MSR_CAPABLE:
120                 return extract_msr(val, data);
121         case SYSTEM_IO_CAPABLE:
122                 return extract_io(val, data);
123         default:
124                 return 0;
125         }
126 }
127
128 static void wrport(u16 port, u8 bit_width, u32 value)
129 {
130         if (bit_width <= 8) {
131                 outb(value, port);
132         } else if (bit_width <= 16) {
133                 outw(value, port);
134         } else if (bit_width <= 32) {
135                 outl(value, port);
136         }
137 }
138
139 static void rdport(u16 port, u8 bit_width, u32 * ret)
140 {
141         *ret = 0;
142         if (bit_width <= 8) {
143                 *ret = inb(port);
144         } else if (bit_width <= 16) {
145                 *ret = inw(port);
146         } else if (bit_width <= 32) {
147                 *ret = inl(port);
148         }
149 }
150
151 struct msr_addr {
152         u32 reg;
153 };
154
155 struct io_addr {
156         u16 port;
157         u8 bit_width;
158 };
159
160 typedef union {
161         struct msr_addr msr;
162         struct io_addr io;
163 } drv_addr_union;
164
165 struct drv_cmd {
166         unsigned int type;
167         cpumask_t mask;
168         drv_addr_union addr;
169         u32 val;
170 };
171
172 static void do_drv_read(struct drv_cmd *cmd)
173 {
174         u32 h;
175
176         switch (cmd->type) {
177         case SYSTEM_INTEL_MSR_CAPABLE:
178                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
179                 break;
180         case SYSTEM_IO_CAPABLE:
181                 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
182                 break;
183         default:
184                 break;
185         }
186 }
187
188 static void do_drv_write(struct drv_cmd *cmd)
189 {
190         u32 h = 0;
191
192         switch (cmd->type) {
193         case SYSTEM_INTEL_MSR_CAPABLE:
194                 wrmsr(cmd->addr.msr.reg, cmd->val, h);
195                 break;
196         case SYSTEM_IO_CAPABLE:
197                 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
198                 break;
199         default:
200                 break;
201         }
202 }
203
204 static inline void drv_read(struct drv_cmd *cmd)
205 {
206         cpumask_t saved_mask = current->cpus_allowed;
207         cmd->val = 0;
208
209         set_cpus_allowed(current, cmd->mask);
210         do_drv_read(cmd);
211         set_cpus_allowed(current, saved_mask);
212
213 }
214
215 static void drv_write(struct drv_cmd *cmd)
216 {
217         cpumask_t saved_mask = current->cpus_allowed;
218         unsigned int i;
219
220         for_each_cpu_mask(i, cmd->mask) {
221                 set_cpus_allowed(current, cpumask_of_cpu(i));
222                 do_drv_write(cmd);
223         }
224
225         set_cpus_allowed(current, saved_mask);
226         return;
227 }
228
229 static u32 get_cur_val(cpumask_t mask)
230 {
231         struct acpi_processor_performance *perf;
232         struct drv_cmd cmd;
233
234         if (unlikely(cpus_empty(mask)))
235                 return 0;
236
237         switch (drv_data[first_cpu(mask)]->cpu_feature) {
238         case SYSTEM_INTEL_MSR_CAPABLE:
239                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
240                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
241                 break;
242         case SYSTEM_IO_CAPABLE:
243                 cmd.type = SYSTEM_IO_CAPABLE;
244                 perf = drv_data[first_cpu(mask)]->acpi_data;
245                 cmd.addr.io.port = perf->control_register.address;
246                 cmd.addr.io.bit_width = perf->control_register.bit_width;
247                 break;
248         default:
249                 return 0;
250         }
251
252         cmd.mask = mask;
253
254         drv_read(&cmd);
255
256         dprintk("get_cur_val = %u\n", cmd.val);
257
258         return cmd.val;
259 }
260
261 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
262 {
263         struct acpi_cpufreq_data *data = drv_data[cpu];
264         unsigned int freq;
265
266         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
267
268         if (unlikely(data == NULL ||
269                      data->acpi_data == NULL || data->freq_table == NULL)) {
270                 return 0;
271         }
272
273         freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
274         dprintk("cur freq = %u\n", freq);
275
276         return freq;
277 }
278
279 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
280                                 struct acpi_cpufreq_data *data)
281 {
282         unsigned int cur_freq;
283         unsigned int i;
284
285         for (i = 0; i < 100; i++) {
286                 cur_freq = extract_freq(get_cur_val(mask), data);
287                 if (cur_freq == freq)
288                         return 1;
289                 udelay(10);
290         }
291         return 0;
292 }
293
294 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
295                                unsigned int target_freq, unsigned int relation)
296 {
297         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
298         struct acpi_processor_performance *perf;
299         struct cpufreq_freqs freqs;
300         cpumask_t online_policy_cpus;
301         struct drv_cmd cmd;
302         unsigned int msr;
303         unsigned int next_state = 0;
304         unsigned int next_perf_state = 0;
305         unsigned int i;
306         int result = 0;
307
308         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
309
310         if (unlikely(data == NULL ||
311                      data->acpi_data == NULL || data->freq_table == NULL)) {
312                 return -ENODEV;
313         }
314
315         perf = data->acpi_data;
316         result = cpufreq_frequency_table_target(policy,
317                                                 data->freq_table,
318                                                 target_freq,
319                                                 relation, &next_state);
320         if (unlikely(result))
321                 return -ENODEV;
322
323 #ifdef CONFIG_HOTPLUG_CPU
324         /* cpufreq holds the hotplug lock, so we are safe from here on */
325         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
326 #else
327         online_policy_cpus = policy->cpus;
328 #endif
329
330         next_perf_state = data->freq_table[next_state].index;
331         if (perf->state == next_perf_state) {
332                 if (unlikely(data->resume)) {
333                         dprintk("Called after resume, resetting to P%d\n",
334                                 next_perf_state);
335                         data->resume = 0;
336                 } else {
337                         dprintk("Already at target state (P%d)\n",
338                                 next_perf_state);
339                         return 0;
340                 }
341         }
342
343         switch (data->cpu_feature) {
344         case SYSTEM_INTEL_MSR_CAPABLE:
345                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
346                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
347                 msr =
348                     (u32) perf->states[next_perf_state].
349                     control & INTEL_MSR_RANGE;
350                 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
351                 break;
352         case SYSTEM_IO_CAPABLE:
353                 cmd.type = SYSTEM_IO_CAPABLE;
354                 cmd.addr.io.port = perf->control_register.address;
355                 cmd.addr.io.bit_width = perf->control_register.bit_width;
356                 cmd.val = (u32) perf->states[next_perf_state].control;
357                 break;
358         default:
359                 return -ENODEV;
360         }
361
362         cpus_clear(cmd.mask);
363
364         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
365                 cmd.mask = online_policy_cpus;
366         else
367                 cpu_set(policy->cpu, cmd.mask);
368
369         freqs.old = data->freq_table[perf->state].frequency;
370         freqs.new = data->freq_table[next_perf_state].frequency;
371         for_each_cpu_mask(i, cmd.mask) {
372                 freqs.cpu = i;
373                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
374         }
375
376         drv_write(&cmd);
377
378         if (acpi_pstate_strict) {
379                 if (!check_freqs(cmd.mask, freqs.new, data)) {
380                         dprintk("acpi_cpufreq_target failed (%d)\n",
381                                 policy->cpu);
382                         return -EAGAIN;
383                 }
384         }
385
386         for_each_cpu_mask(i, cmd.mask) {
387                 freqs.cpu = i;
388                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
389         }
390         perf->state = next_perf_state;
391
392         return result;
393 }
394
395 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
396 {
397         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
398
399         dprintk("acpi_cpufreq_verify\n");
400
401         return cpufreq_frequency_table_verify(policy, data->freq_table);
402 }
403
404 static unsigned long
405 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
406 {
407         struct acpi_processor_performance *perf = data->acpi_data;
408
409         if (cpu_khz) {
410                 /* search the closest match to cpu_khz */
411                 unsigned int i;
412                 unsigned long freq;
413                 unsigned long freqn = perf->states[0].core_frequency * 1000;
414
415                 for (i = 0; i < (perf->state_count - 1); i++) {
416                         freq = freqn;
417                         freqn = perf->states[i + 1].core_frequency * 1000;
418                         if ((2 * cpu_khz) > (freqn + freq)) {
419                                 perf->state = i;
420                                 return freq;
421                         }
422                 }
423                 perf->state = perf->state_count - 1;
424                 return freqn;
425         } else {
426                 /* assume CPU is at P0... */
427                 perf->state = 0;
428                 return perf->states[0].core_frequency * 1000;
429         }
430 }
431
432 /*
433  * acpi_cpufreq_early_init - initialize ACPI P-States library
434  *
435  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
436  * in order to determine correct frequency and voltage pairings. We can
437  * do _PDC and _PSD and find out the processor dependency for the
438  * actual init that will happen later...
439  */
440 static int acpi_cpufreq_early_init(void)
441 {
442         struct acpi_processor_performance *data;
443         cpumask_t covered;
444         unsigned int i, j;
445
446         dprintk("acpi_cpufreq_early_init\n");
447
448         for_each_possible_cpu(i) {
449                 data = kzalloc(sizeof(struct acpi_processor_performance),
450                                GFP_KERNEL);
451                 if (!data) {
452                         for_each_cpu_mask(j, covered) {
453                                 kfree(acpi_perf_data[j]);
454                                 acpi_perf_data[j] = NULL;
455                         }
456                         return -ENOMEM;
457                 }
458                 acpi_perf_data[i] = data;
459                 cpu_set(i, covered);
460         }
461
462         /* Do initialization in ACPI core */
463         acpi_processor_preregister_performance(acpi_perf_data);
464         return 0;
465 }
466
467 /*
468  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
469  * or do it in BIOS firmware and won't inform about it to OS. If not
470  * detected, this has a side effect of making CPU run at a different speed
471  * than OS intended it to run at. Detect it and handle it cleanly.
472  */
473 static int bios_with_sw_any_bug;
474
475 static int sw_any_bug_found(struct dmi_system_id *d)
476 {
477         bios_with_sw_any_bug = 1;
478         return 0;
479 }
480
481 static struct dmi_system_id sw_any_bug_dmi_table[] = {
482         {
483                 .callback = sw_any_bug_found,
484                 .ident = "Supermicro Server X6DLP",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
487                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
488                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
489                 },
490         },
491         { }
492 };
493
494 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
495 {
496         unsigned int i;
497         unsigned int valid_states = 0;
498         unsigned int cpu = policy->cpu;
499         struct acpi_cpufreq_data *data;
500         unsigned int l, h;
501         unsigned int result = 0;
502         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
503         struct acpi_processor_performance *perf;
504
505         dprintk("acpi_cpufreq_cpu_init\n");
506
507         if (!acpi_perf_data[cpu])
508                 return -ENODEV;
509
510         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
511         if (!data)
512                 return -ENOMEM;
513
514         data->acpi_data = acpi_perf_data[cpu];
515         drv_data[cpu] = data;
516
517         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
518                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
519         }
520
521         result = acpi_processor_register_performance(data->acpi_data, cpu);
522         if (result)
523                 goto err_free;
524
525         perf = data->acpi_data;
526         policy->shared_type = perf->shared_type;
527         /*
528          * Will let policy->cpus know about dependency only when software 
529          * coordination is required.
530          */
531         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
532             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
533                 policy->cpus = perf->shared_cpu_map;
534         }
535
536 #ifdef CONFIG_SMP
537         dmi_check_system(sw_any_bug_dmi_table);
538         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
539                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
540                 policy->cpus = cpu_core_map[cpu];
541         }
542 #endif
543
544         /* capability check */
545         if (perf->state_count <= 1) {
546                 dprintk("No P-States\n");
547                 result = -ENODEV;
548                 goto err_unreg;
549         }
550
551         if (perf->control_register.space_id != perf->status_register.space_id) {
552                 result = -ENODEV;
553                 goto err_unreg;
554         }
555
556         switch (perf->control_register.space_id) {
557         case ACPI_ADR_SPACE_SYSTEM_IO:
558                 dprintk("SYSTEM IO addr space\n");
559                 data->cpu_feature = SYSTEM_IO_CAPABLE;
560                 break;
561         case ACPI_ADR_SPACE_FIXED_HARDWARE:
562                 dprintk("HARDWARE addr space\n");
563                 if (!check_est_cpu(cpu)) {
564                         result = -ENODEV;
565                         goto err_unreg;
566                 }
567                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
568                 break;
569         default:
570                 dprintk("Unknown addr space %d\n",
571                         (u32) (perf->control_register.space_id));
572                 result = -ENODEV;
573                 goto err_unreg;
574         }
575
576         data->freq_table =
577             kmalloc(sizeof(struct cpufreq_frequency_table) *
578                     (perf->state_count + 1), GFP_KERNEL);
579         if (!data->freq_table) {
580                 result = -ENOMEM;
581                 goto err_unreg;
582         }
583
584         /* detect transition latency */
585         policy->cpuinfo.transition_latency = 0;
586         for (i = 0; i < perf->state_count; i++) {
587                 if ((perf->states[i].transition_latency * 1000) >
588                     policy->cpuinfo.transition_latency)
589                         policy->cpuinfo.transition_latency =
590                             perf->states[i].transition_latency * 1000;
591         }
592         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
593
594         /* table init */
595         for (i = 0; i < perf->state_count; i++) {
596                 if (i > 0 && perf->states[i].core_frequency ==
597                     perf->states[i - 1].core_frequency)
598                         continue;
599
600                 data->freq_table[valid_states].index = i;
601                 data->freq_table[valid_states].frequency =
602                     perf->states[i].core_frequency * 1000;
603                 valid_states++;
604         }
605         data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
606
607         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
608         if (result) {
609                 goto err_freqfree;
610         }
611
612         switch (data->cpu_feature) {
613         case ACPI_ADR_SPACE_SYSTEM_IO:
614                 /* Current speed is unknown and not detectable by IO port */
615                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
616                 break;
617         case ACPI_ADR_SPACE_FIXED_HARDWARE:
618                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
619                 get_cur_freq_on_cpu(cpu);
620                 break;
621         default:
622                 break;
623         }
624
625         /* notify BIOS that we exist */
626         acpi_processor_notify_smm(THIS_MODULE);
627
628         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
629         for (i = 0; i < perf->state_count; i++)
630                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
631                         (i == perf->state ? '*' : ' '), i,
632                         (u32) perf->states[i].core_frequency,
633                         (u32) perf->states[i].power,
634                         (u32) perf->states[i].transition_latency);
635
636         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
637
638         /*
639          * the first call to ->target() should result in us actually
640          * writing something to the appropriate registers.
641          */
642         data->resume = 1;
643
644         return result;
645
646       err_freqfree:
647         kfree(data->freq_table);
648       err_unreg:
649         acpi_processor_unregister_performance(perf, cpu);
650       err_free:
651         kfree(data);
652         drv_data[cpu] = NULL;
653
654         return result;
655 }
656
657 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
658 {
659         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
660
661         dprintk("acpi_cpufreq_cpu_exit\n");
662
663         if (data) {
664                 cpufreq_frequency_table_put_attr(policy->cpu);
665                 drv_data[policy->cpu] = NULL;
666                 acpi_processor_unregister_performance(data->acpi_data,
667                                                       policy->cpu);
668                 kfree(data);
669         }
670
671         return 0;
672 }
673
674 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
675 {
676         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
677
678         dprintk("acpi_cpufreq_resume\n");
679
680         data->resume = 1;
681
682         return 0;
683 }
684
685 static struct freq_attr *acpi_cpufreq_attr[] = {
686         &cpufreq_freq_attr_scaling_available_freqs,
687         NULL,
688 };
689
690 static struct cpufreq_driver acpi_cpufreq_driver = {
691         .verify = acpi_cpufreq_verify,
692         .target = acpi_cpufreq_target,
693         .init = acpi_cpufreq_cpu_init,
694         .exit = acpi_cpufreq_cpu_exit,
695         .resume = acpi_cpufreq_resume,
696         .name = "acpi-cpufreq",
697         .owner = THIS_MODULE,
698         .attr = acpi_cpufreq_attr,
699 };
700
701 static int __init acpi_cpufreq_init(void)
702 {
703         dprintk("acpi_cpufreq_init\n");
704
705         acpi_cpufreq_early_init();
706
707         return cpufreq_register_driver(&acpi_cpufreq_driver);
708 }
709
710 static void __exit acpi_cpufreq_exit(void)
711 {
712         unsigned int i;
713         dprintk("acpi_cpufreq_exit\n");
714
715         cpufreq_unregister_driver(&acpi_cpufreq_driver);
716
717         for_each_possible_cpu(i) {
718                 kfree(acpi_perf_data[i]);
719                 acpi_perf_data[i] = NULL;
720         }
721         return;
722 }
723
724 module_param(acpi_pstate_strict, uint, 0644);
725 MODULE_PARM_DESC(acpi_pstate_strict,
726                  "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
727
728 late_initcall(acpi_cpufreq_init);
729 module_exit(acpi_cpufreq_exit);
730
731 MODULE_ALIAS("acpi");