Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or (at
13  *  your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/cpufreq.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/compiler.h>
34 #include <linux/sched.h>        /* current */
35 #include <linux/dmi.h>
36 #include <asm/io.h>
37 #include <asm/delay.h>
38 #include <asm/uaccess.h>
39
40 #include <linux/acpi.h>
41 #include <acpi/processor.h>
42
43 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
44
45 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
46 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
47 MODULE_LICENSE("GPL");
48
49
50 struct cpufreq_acpi_io {
51         struct acpi_processor_performance       *acpi_data;
52         struct cpufreq_frequency_table          *freq_table;
53         unsigned int                            resume;
54 };
55
56 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
57 static struct acpi_processor_performance        *acpi_perf_data[NR_CPUS];
58
59 static struct cpufreq_driver acpi_cpufreq_driver;
60
61 static unsigned int acpi_pstate_strict;
62
63 static int
64 acpi_processor_write_port(
65         u16     port,
66         u8      bit_width,
67         u32     value)
68 {
69         if (bit_width <= 8) {
70                 outb(value, port);
71         } else if (bit_width <= 16) {
72                 outw(value, port);
73         } else if (bit_width <= 32) {
74                 outl(value, port);
75         } else {
76                 return -ENODEV;
77         }
78         return 0;
79 }
80
81 static int
82 acpi_processor_read_port(
83         u16     port,
84         u8      bit_width,
85         u32     *ret)
86 {
87         *ret = 0;
88         if (bit_width <= 8) {
89                 *ret = inb(port);
90         } else if (bit_width <= 16) {
91                 *ret = inw(port);
92         } else if (bit_width <= 32) {
93                 *ret = inl(port);
94         } else {
95                 return -ENODEV;
96         }
97         return 0;
98 }
99
100 static int
101 acpi_processor_set_performance (
102         struct cpufreq_acpi_io  *data,
103         unsigned int            cpu,
104         int                     state)
105 {
106         u16                     port = 0;
107         u8                      bit_width = 0;
108         int                     i = 0;
109         int                     ret = 0;
110         u32                     value = 0;
111         int                     retval;
112         struct acpi_processor_performance       *perf;
113
114         dprintk("acpi_processor_set_performance\n");
115
116         retval = 0;
117         perf = data->acpi_data; 
118         if (state == perf->state) {
119                 if (unlikely(data->resume)) {
120                         dprintk("Called after resume, resetting to P%d\n", state);
121                         data->resume = 0;
122                 } else {
123                         dprintk("Already at target state (P%d)\n", state);
124                         return (retval);
125                 }
126         }
127
128         dprintk("Transitioning from P%d to P%d\n", perf->state, state);
129
130         /*
131          * First we write the target state's 'control' value to the
132          * control_register.
133          */
134
135         port = perf->control_register.address;
136         bit_width = perf->control_register.bit_width;
137         value = (u32) perf->states[state].control;
138
139         dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
140
141         ret = acpi_processor_write_port(port, bit_width, value);
142         if (ret) {
143                 dprintk("Invalid port width 0x%04x\n", bit_width);
144                 return (ret);
145         }
146
147         /*
148          * Assume the write went through when acpi_pstate_strict is not used.
149          * As read status_register is an expensive operation and there 
150          * are no specific error cases where an IO port write will fail.
151          */
152         if (acpi_pstate_strict) {
153                 /* Then we read the 'status_register' and compare the value 
154                  * with the target state's 'status' to make sure the 
155                  * transition was successful.
156                  * Note that we'll poll for up to 1ms (100 cycles of 10us) 
157                  * before giving up.
158                  */
159
160                 port = perf->status_register.address;
161                 bit_width = perf->status_register.bit_width;
162
163                 dprintk("Looking for 0x%08x from port 0x%04x\n",
164                         (u32) perf->states[state].status, port);
165
166                 for (i = 0; i < 100; i++) {
167                         ret = acpi_processor_read_port(port, bit_width, &value);
168                         if (ret) {      
169                                 dprintk("Invalid port width 0x%04x\n", bit_width);
170                                 return (ret);
171                         }
172                         if (value == (u32) perf->states[state].status)
173                                 break;
174                         udelay(10);
175                 }
176         } else {
177                 value = (u32) perf->states[state].status;
178         }
179
180         if (unlikely(value != (u32) perf->states[state].status)) {
181                 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
182                 retval = -ENODEV;
183                 return (retval);
184         }
185
186         dprintk("Transition successful after %d microseconds\n", i * 10);
187
188         perf->state = state;
189         return (retval);
190 }
191
192
193 static int
194 acpi_cpufreq_target (
195         struct cpufreq_policy   *policy,
196         unsigned int target_freq,
197         unsigned int relation)
198 {
199         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
200         struct acpi_processor_performance *perf;
201         struct cpufreq_freqs freqs;
202         cpumask_t online_policy_cpus;
203         cpumask_t saved_mask;
204         cpumask_t set_mask;
205         cpumask_t covered_cpus;
206         unsigned int cur_state = 0;
207         unsigned int next_state = 0;
208         unsigned int result = 0;
209         unsigned int j;
210         unsigned int tmp;
211
212         dprintk("acpi_cpufreq_setpolicy\n");
213
214         result = cpufreq_frequency_table_target(policy,
215                         data->freq_table,
216                         target_freq,
217                         relation,
218                         &next_state);
219         if (unlikely(result))
220                 return (result);
221
222         perf = data->acpi_data;
223         cur_state = perf->state;
224         freqs.old = data->freq_table[cur_state].frequency;
225         freqs.new = data->freq_table[next_state].frequency;
226
227 #ifdef CONFIG_HOTPLUG_CPU
228         /* cpufreq holds the hotplug lock, so we are safe from here on */
229         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
230 #else
231         online_policy_cpus = policy->cpus;
232 #endif
233
234         for_each_cpu_mask(j, online_policy_cpus) {
235                 freqs.cpu = j;
236                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
237         }
238
239         /*
240          * We need to call driver->target() on all or any CPU in
241          * policy->cpus, depending on policy->shared_type.
242          */
243         saved_mask = current->cpus_allowed;
244         cpus_clear(covered_cpus);
245         for_each_cpu_mask(j, online_policy_cpus) {
246                 /*
247                  * Support for SMP systems.
248                  * Make sure we are running on CPU that wants to change freq
249                  */
250                 cpus_clear(set_mask);
251                 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
252                         cpus_or(set_mask, set_mask, online_policy_cpus);
253                 else
254                         cpu_set(j, set_mask);
255
256                 set_cpus_allowed(current, set_mask);
257                 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
258                         dprintk("couldn't limit to CPUs in this domain\n");
259                         result = -EAGAIN;
260                         break;
261                 }
262
263                 result = acpi_processor_set_performance (data, j, next_state);
264                 if (result) {
265                         result = -EAGAIN;
266                         break;
267                 }
268
269                 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
270                         break;
271  
272                 cpu_set(j, covered_cpus);
273         }
274
275         for_each_cpu_mask(j, online_policy_cpus) {
276                 freqs.cpu = j;
277                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
278         }
279
280         if (unlikely(result)) {
281                 /*
282                  * We have failed halfway through the frequency change.
283                  * We have sent callbacks to online_policy_cpus and
284                  * acpi_processor_set_performance() has been called on 
285                  * coverd_cpus. Best effort undo..
286                  */
287
288                 if (!cpus_empty(covered_cpus)) {
289                         for_each_cpu_mask(j, covered_cpus) {
290                                 policy->cpu = j;
291                                 acpi_processor_set_performance (data, 
292                                                 j, 
293                                                 cur_state);
294                         }
295                 }
296
297                 tmp = freqs.new;
298                 freqs.new = freqs.old;
299                 freqs.old = tmp;
300                 for_each_cpu_mask(j, online_policy_cpus) {
301                         freqs.cpu = j;
302                         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
303                         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
304                 }
305         }
306
307         set_cpus_allowed(current, saved_mask);
308         return (result);
309 }
310
311
312 static int
313 acpi_cpufreq_verify (
314         struct cpufreq_policy   *policy)
315 {
316         unsigned int result = 0;
317         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
318
319         dprintk("acpi_cpufreq_verify\n");
320
321         result = cpufreq_frequency_table_verify(policy, 
322                         data->freq_table);
323
324         return (result);
325 }
326
327
328 static unsigned long
329 acpi_cpufreq_guess_freq (
330         struct cpufreq_acpi_io  *data,
331         unsigned int            cpu)
332 {
333         struct acpi_processor_performance       *perf = data->acpi_data;
334
335         if (cpu_khz) {
336                 /* search the closest match to cpu_khz */
337                 unsigned int i;
338                 unsigned long freq;
339                 unsigned long freqn = perf->states[0].core_frequency * 1000;
340
341                 for (i = 0; i < (perf->state_count - 1); i++) {
342                         freq = freqn;
343                         freqn = perf->states[i+1].core_frequency * 1000;
344                         if ((2 * cpu_khz) > (freqn + freq)) {
345                                 perf->state = i;
346                                 return (freq);
347                         }
348                 }
349                 perf->state = perf->state_count - 1;
350                 return (freqn);
351         } else {
352                 /* assume CPU is at P0... */
353                 perf->state = 0;
354                 return perf->states[0].core_frequency * 1000;
355         }
356 }
357
358
359 /*
360  * acpi_cpufreq_early_init - initialize ACPI P-States library
361  *
362  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
363  * in order to determine correct frequency and voltage pairings. We can
364  * do _PDC and _PSD and find out the processor dependency for the
365  * actual init that will happen later...
366  */
367 static int acpi_cpufreq_early_init_acpi(void)
368 {
369         struct acpi_processor_performance       *data;
370         unsigned int                            i, j;
371
372         dprintk("acpi_cpufreq_early_init\n");
373
374         for_each_possible_cpu(i) {
375                 data = kzalloc(sizeof(struct acpi_processor_performance), 
376                         GFP_KERNEL);
377                 if (!data) {
378                         for_each_possible_cpu(j) {
379                                 kfree(acpi_perf_data[j]);
380                                 acpi_perf_data[j] = NULL;
381                         }
382                         return (-ENOMEM);
383                 }
384                 acpi_perf_data[i] = data;
385         }
386
387         /* Do initialization in ACPI core */
388         return acpi_processor_preregister_performance(acpi_perf_data);
389 }
390
391 /*
392  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
393  * or do it in BIOS firmware and won't inform about it to OS. If not
394  * detected, this has a side effect of making CPU run at a different speed
395  * than OS intended it to run at. Detect it and handle it cleanly.
396  */
397 static int bios_with_sw_any_bug;
398
399 static int __init sw_any_bug_found(struct dmi_system_id *d)
400 {
401         bios_with_sw_any_bug = 1;
402         return 0;
403 }
404
405 static struct dmi_system_id __initdata sw_any_bug_dmi_table[] = {
406         {
407                 .callback = sw_any_bug_found,
408                 .ident = "Supermicro Server X6DLP",
409                 .matches = {
410                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
411                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
412                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
413                 },
414         },
415         { }
416 };
417
418 static int
419 acpi_cpufreq_cpu_init (
420         struct cpufreq_policy   *policy)
421 {
422         unsigned int            i;
423         unsigned int            cpu = policy->cpu;
424         struct cpufreq_acpi_io  *data;
425         unsigned int            result = 0;
426         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
427         struct acpi_processor_performance       *perf;
428
429         dprintk("acpi_cpufreq_cpu_init\n");
430
431         if (!acpi_perf_data[cpu])
432                 return (-ENODEV);
433
434         data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
435         if (!data)
436                 return (-ENOMEM);
437
438         data->acpi_data = acpi_perf_data[cpu];
439         acpi_io_data[cpu] = data;
440
441         result = acpi_processor_register_performance(data->acpi_data, cpu);
442
443         if (result)
444                 goto err_free;
445
446         perf = data->acpi_data;
447         policy->shared_type = perf->shared_type;
448         /*
449          * Will let policy->cpus know about dependency only when software 
450          * coordination is required.
451          */
452         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
453             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
454                 policy->cpus = perf->shared_cpu_map;
455         }
456
457 #ifdef CONFIG_SMP
458         dmi_check_system(sw_any_bug_dmi_table);
459         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
460                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
461                 policy->cpus = cpu_core_map[cpu];
462         }
463 #endif
464
465         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
466                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
467         }
468
469         /* capability check */
470         if (perf->state_count <= 1) {
471                 dprintk("No P-States\n");
472                 result = -ENODEV;
473                 goto err_unreg;
474         }
475
476         if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
477             (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
478                 dprintk("Unsupported address space [%d, %d]\n",
479                         (u32) (perf->control_register.space_id),
480                         (u32) (perf->status_register.space_id));
481                 result = -ENODEV;
482                 goto err_unreg;
483         }
484
485         /* alloc freq_table */
486         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
487         if (!data->freq_table) {
488                 result = -ENOMEM;
489                 goto err_unreg;
490         }
491
492         /* detect transition latency */
493         policy->cpuinfo.transition_latency = 0;
494         for (i=0; i<perf->state_count; i++) {
495                 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
496                         policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
497         }
498         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
499
500         /* The current speed is unknown and not detectable by ACPI...  */
501         policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
502
503         /* table init */
504         for (i=0; i<=perf->state_count; i++)
505         {
506                 data->freq_table[i].index = i;
507                 if (i<perf->state_count)
508                         data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
509                 else
510                         data->freq_table[i].frequency = CPUFREQ_TABLE_END;
511         }
512
513         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
514         if (result) {
515                 goto err_freqfree;
516         }
517
518         /* notify BIOS that we exist */
519         acpi_processor_notify_smm(THIS_MODULE);
520
521         printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
522                cpu);
523         for (i = 0; i < perf->state_count; i++)
524                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
525                         (i == perf->state?'*':' '), i,
526                         (u32) perf->states[i].core_frequency,
527                         (u32) perf->states[i].power,
528                         (u32) perf->states[i].transition_latency);
529
530         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
531         
532         /*
533          * the first call to ->target() should result in us actually
534          * writing something to the appropriate registers.
535          */
536         data->resume = 1;
537         
538         return (result);
539
540  err_freqfree:
541         kfree(data->freq_table);
542  err_unreg:
543         acpi_processor_unregister_performance(perf, cpu);
544  err_free:
545         kfree(data);
546         acpi_io_data[cpu] = NULL;
547
548         return (result);
549 }
550
551
552 static int
553 acpi_cpufreq_cpu_exit (
554         struct cpufreq_policy   *policy)
555 {
556         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
557
558
559         dprintk("acpi_cpufreq_cpu_exit\n");
560
561         if (data) {
562                 cpufreq_frequency_table_put_attr(policy->cpu);
563                 acpi_io_data[policy->cpu] = NULL;
564                 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
565                 kfree(data);
566         }
567
568         return (0);
569 }
570
571 static int
572 acpi_cpufreq_resume (
573         struct cpufreq_policy   *policy)
574 {
575         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
576
577
578         dprintk("acpi_cpufreq_resume\n");
579
580         data->resume = 1;
581
582         return (0);
583 }
584
585
586 static struct freq_attr* acpi_cpufreq_attr[] = {
587         &cpufreq_freq_attr_scaling_available_freqs,
588         NULL,
589 };
590
591 static struct cpufreq_driver acpi_cpufreq_driver = {
592         .verify = acpi_cpufreq_verify,
593         .target = acpi_cpufreq_target,
594         .init   = acpi_cpufreq_cpu_init,
595         .exit   = acpi_cpufreq_cpu_exit,
596         .resume = acpi_cpufreq_resume,
597         .name   = "acpi-cpufreq",
598         .owner  = THIS_MODULE,
599         .attr   = acpi_cpufreq_attr,
600         .flags  = CPUFREQ_STICKY,
601 };
602
603
604 static int __init
605 acpi_cpufreq_init (void)
606 {
607         dprintk("acpi_cpufreq_init\n");
608
609         acpi_cpufreq_early_init_acpi();
610
611         return cpufreq_register_driver(&acpi_cpufreq_driver);
612 }
613
614
615 static void __exit
616 acpi_cpufreq_exit (void)
617 {
618         unsigned int    i;
619         dprintk("acpi_cpufreq_exit\n");
620
621         cpufreq_unregister_driver(&acpi_cpufreq_driver);
622
623         for_each_possible_cpu(i) {
624                 kfree(acpi_perf_data[i]);
625                 acpi_perf_data[i] = NULL;
626         }
627         return;
628 }
629
630 module_param(acpi_pstate_strict, uint, 0644);
631 MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
632
633 late_initcall(acpi_cpufreq_init);
634 module_exit(acpi_cpufreq_exit);
635
636 MODULE_ALIAS("acpi");