Merge branches 'acpica', 'aml-custom', 'bugzilla-16548', 'bugzilla-20242', 'd3-cold...
[pandora-kernel.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 static struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         /*
109          * In cache coherence emulation mode, we need to have the
110          * D-cache enabled before running any atomic operation which
111          * might involve cache invalidation (i.e. spinlock, rwlock).
112          * So printk's are deferred until then.
113          */
114 #ifdef CONFIG_BFIN_ICACHE
115         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116         printk(KERN_INFO "  External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118                " cacheable"
119 # else
120                " uncacheable"
121 # endif
122                " in instruction cache\n");
123         if (L2_LENGTH)
124                 printk(KERN_INFO "  L2 SRAM        :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126                        " cacheable"
127 # else
128                        " uncacheable"
129 # endif
130                        " in instruction cache\n");
131
132 #else
133         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
135
136 #ifdef CONFIG_BFIN_DCACHE
137         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138         printk(KERN_INFO "  External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140                " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142                " cacheable (write-through)"
143 # else
144                " uncacheable"
145 # endif
146                " in data cache\n");
147         if (L2_LENGTH)
148                 printk(KERN_INFO "  L2 SRAM        :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150                        " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152                        " cacheable (write-through)"
153 # else
154                        " uncacheable"
155 # endif
156                        " in data cache\n");
157 #else
158         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
160 }
161
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163 {
164         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165
166         cpudata->idle = current;
167         cpudata->imemctl = bfin_read_IMEM_CONTROL();
168         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169 }
170
171 void __init bfin_cache_init(void)
172 {
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174         generate_cplb_tables();
175 #endif
176         bfin_setup_caches(0);
177 }
178
179 void __init bfin_relocate_l1_mem(void)
180 {
181         unsigned long text_l1_len = (unsigned long)_text_l1_len;
182         unsigned long data_l1_len = (unsigned long)_data_l1_len;
183         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184         unsigned long l2_len = (unsigned long)_l2_len;
185
186         early_shadow_stamp();
187
188         /*
189          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190          * we know that everything about l1 text/data is nice and aligned,
191          * so copy by 4 byte chunks, and don't worry about overlapping
192          * src/dest.
193          *
194          * We can't use the dma_memcpy functions, since they can call
195          * scheduler functions which might be in L1 :( and core writes
196          * into L1 instruction cause bad access errors, so we are stuck,
197          * we are required to use DMA, but can't use the common dma
198          * functions. We can't use memcpy either - since that might be
199          * going to be in the relocated L1
200          */
201
202         blackfin_dma_early_init();
203
204         /* if necessary, copy L1 text to L1 instruction SRAM */
205         if (L1_CODE_LENGTH && text_l1_len)
206                 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
207
208         /* if necessary, copy L1 data to L1 data bank A SRAM */
209         if (L1_DATA_A_LENGTH && data_l1_len)
210                 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
211
212         /* if necessary, copy L1 data B to L1 data bank B SRAM */
213         if (L1_DATA_B_LENGTH && data_b_l1_len)
214                 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
215
216         early_dma_memcpy_done();
217
218 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
219         blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
220 #endif
221
222         /* if necessary, copy L2 text/data to L2 SRAM */
223         if (L2_LENGTH && l2_len)
224                 memcpy(_stext_l2, _l2_lma, l2_len);
225 }
226
227 #ifdef CONFIG_SMP
228 void __init bfin_relocate_coreb_l1_mem(void)
229 {
230         unsigned long text_l1_len = (unsigned long)_text_l1_len;
231         unsigned long data_l1_len = (unsigned long)_data_l1_len;
232         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
233
234         blackfin_dma_early_init();
235
236         /* if necessary, copy L1 text to L1 instruction SRAM */
237         if (L1_CODE_LENGTH && text_l1_len)
238                 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
239                                 text_l1_len);
240
241         /* if necessary, copy L1 data to L1 data bank A SRAM */
242         if (L1_DATA_A_LENGTH && data_l1_len)
243                 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
244                                 data_l1_len);
245
246         /* if necessary, copy L1 data B to L1 data bank B SRAM */
247         if (L1_DATA_B_LENGTH && data_b_l1_len)
248                 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
249                                 data_b_l1_len);
250
251         early_dma_memcpy_done();
252
253 #ifdef CONFIG_ICACHE_FLUSH_L1
254         blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
255                         (unsigned long)_stext_l1 + COREB_L1_CODE_START;
256 #endif
257 }
258 #endif
259
260 #ifdef CONFIG_ROMKERNEL
261 void __init bfin_relocate_xip_data(void)
262 {
263         early_shadow_stamp();
264
265         memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
266         memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
267 }
268 #endif
269
270 /* add_memory_region to memmap */
271 static void __init add_memory_region(unsigned long long start,
272                               unsigned long long size, int type)
273 {
274         int i;
275
276         i = bfin_memmap.nr_map;
277
278         if (i == BFIN_MEMMAP_MAX) {
279                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
280                 return;
281         }
282
283         bfin_memmap.map[i].addr = start;
284         bfin_memmap.map[i].size = size;
285         bfin_memmap.map[i].type = type;
286         bfin_memmap.nr_map++;
287 }
288
289 /*
290  * Sanitize the boot memmap, removing overlaps.
291  */
292 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
293 {
294         struct change_member *change_tmp;
295         unsigned long current_type, last_type;
296         unsigned long long last_addr;
297         int chgidx, still_changing;
298         int overlap_entries;
299         int new_entry;
300         int old_nr, new_nr, chg_nr;
301         int i;
302
303         /*
304                 Visually we're performing the following (1,2,3,4 = memory types)
305
306                 Sample memory map (w/overlaps):
307                    ____22__________________
308                    ______________________4_
309                    ____1111________________
310                    _44_____________________
311                    11111111________________
312                    ____________________33__
313                    ___________44___________
314                    __________33333_________
315                    ______________22________
316                    ___________________2222_
317                    _________111111111______
318                    _____________________11_
319                    _________________4______
320
321                 Sanitized equivalent (no overlap):
322                    1_______________________
323                    _44_____________________
324                    ___1____________________
325                    ____22__________________
326                    ______11________________
327                    _________1______________
328                    __________3_____________
329                    ___________44___________
330                    _____________33_________
331                    _______________2________
332                    ________________1_______
333                    _________________4______
334                    ___________________2____
335                    ____________________33__
336                    ______________________4_
337         */
338         /* if there's only one memory region, don't bother */
339         if (*pnr_map < 2)
340                 return -1;
341
342         old_nr = *pnr_map;
343
344         /* bail out if we find any unreasonable addresses in memmap */
345         for (i = 0; i < old_nr; i++)
346                 if (map[i].addr + map[i].size < map[i].addr)
347                         return -1;
348
349         /* create pointers for initial change-point information (for sorting) */
350         for (i = 0; i < 2*old_nr; i++)
351                 change_point[i] = &change_point_list[i];
352
353         /* record all known change-points (starting and ending addresses),
354            omitting those that are for empty memory regions */
355         chgidx = 0;
356         for (i = 0; i < old_nr; i++) {
357                 if (map[i].size != 0) {
358                         change_point[chgidx]->addr = map[i].addr;
359                         change_point[chgidx++]->pentry = &map[i];
360                         change_point[chgidx]->addr = map[i].addr + map[i].size;
361                         change_point[chgidx++]->pentry = &map[i];
362                 }
363         }
364         chg_nr = chgidx;        /* true number of change-points */
365
366         /* sort change-point list by memory addresses (low -> high) */
367         still_changing = 1;
368         while (still_changing) {
369                 still_changing = 0;
370                 for (i = 1; i < chg_nr; i++) {
371                         /* if <current_addr> > <last_addr>, swap */
372                         /* or, if current=<start_addr> & last=<end_addr>, swap */
373                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
374                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
375                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
376                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
377                            ) {
378                                 change_tmp = change_point[i];
379                                 change_point[i] = change_point[i-1];
380                                 change_point[i-1] = change_tmp;
381                                 still_changing = 1;
382                         }
383                 }
384         }
385
386         /* create a new memmap, removing overlaps */
387         overlap_entries = 0;    /* number of entries in the overlap table */
388         new_entry = 0;          /* index for creating new memmap entries */
389         last_type = 0;          /* start with undefined memory type */
390         last_addr = 0;          /* start with 0 as last starting address */
391         /* loop through change-points, determining affect on the new memmap */
392         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
393                 /* keep track of all overlapping memmap entries */
394                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
395                         /* add map entry to overlap list (> 1 entry implies an overlap) */
396                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
397                 } else {
398                         /* remove entry from list (order independent, so swap with last) */
399                         for (i = 0; i < overlap_entries; i++) {
400                                 if (overlap_list[i] == change_point[chgidx]->pentry)
401                                         overlap_list[i] = overlap_list[overlap_entries-1];
402                         }
403                         overlap_entries--;
404                 }
405                 /* if there are overlapping entries, decide which "type" to use */
406                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
407                 current_type = 0;
408                 for (i = 0; i < overlap_entries; i++)
409                         if (overlap_list[i]->type > current_type)
410                                 current_type = overlap_list[i]->type;
411                 /* continue building up new memmap based on this information */
412                 if (current_type != last_type) {
413                         if (last_type != 0) {
414                                 new_map[new_entry].size =
415                                         change_point[chgidx]->addr - last_addr;
416                                 /* move forward only if the new size was non-zero */
417                                 if (new_map[new_entry].size != 0)
418                                         if (++new_entry >= BFIN_MEMMAP_MAX)
419                                                 break;  /* no more space left for new entries */
420                         }
421                         if (current_type != 0) {
422                                 new_map[new_entry].addr = change_point[chgidx]->addr;
423                                 new_map[new_entry].type = current_type;
424                                 last_addr = change_point[chgidx]->addr;
425                         }
426                         last_type = current_type;
427                 }
428         }
429         new_nr = new_entry;     /* retain count for new entries */
430
431         /* copy new mapping into original location */
432         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
433         *pnr_map = new_nr;
434
435         return 0;
436 }
437
438 static void __init print_memory_map(char *who)
439 {
440         int i;
441
442         for (i = 0; i < bfin_memmap.nr_map; i++) {
443                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
444                         bfin_memmap.map[i].addr,
445                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
446                 switch (bfin_memmap.map[i].type) {
447                 case BFIN_MEMMAP_RAM:
448                         printk(KERN_CONT "(usable)\n");
449                         break;
450                 case BFIN_MEMMAP_RESERVED:
451                         printk(KERN_CONT "(reserved)\n");
452                         break;
453                 default:
454                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
455                         break;
456                 }
457         }
458 }
459
460 static __init int parse_memmap(char *arg)
461 {
462         unsigned long long start_at, mem_size;
463
464         if (!arg)
465                 return -EINVAL;
466
467         mem_size = memparse(arg, &arg);
468         if (*arg == '@') {
469                 start_at = memparse(arg+1, &arg);
470                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
471         } else if (*arg == '$') {
472                 start_at = memparse(arg+1, &arg);
473                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
474         }
475
476         return 0;
477 }
478
479 /*
480  * Initial parsing of the command line.  Currently, we support:
481  *  - Controlling the linux memory size: mem=xxx[KMG]
482  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
483  *       $ -> reserved memory is dcacheable
484  *       # -> reserved memory is icacheable
485  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
486  *       @ from <start> to <start>+<mem>, type RAM
487  *       $ from <start> to <start>+<mem>, type RESERVED
488  */
489 static __init void parse_cmdline_early(char *cmdline_p)
490 {
491         char c = ' ', *to = cmdline_p;
492         unsigned int memsize;
493         for (;;) {
494                 if (c == ' ') {
495                         if (!memcmp(to, "mem=", 4)) {
496                                 to += 4;
497                                 memsize = memparse(to, &to);
498                                 if (memsize)
499                                         _ramend = memsize;
500
501                         } else if (!memcmp(to, "max_mem=", 8)) {
502                                 to += 8;
503                                 memsize = memparse(to, &to);
504                                 if (memsize) {
505                                         physical_mem_end = memsize;
506                                         if (*to != ' ') {
507                                                 if (*to == '$'
508                                                     || *(to + 1) == '$')
509                                                         reserved_mem_dcache_on = 1;
510                                                 if (*to == '#'
511                                                     || *(to + 1) == '#')
512                                                         reserved_mem_icache_on = 1;
513                                         }
514                                 }
515                         } else if (!memcmp(to, "clkin_hz=", 9)) {
516                                 to += 9;
517                                 early_init_clkin_hz(to);
518 #ifdef CONFIG_EARLY_PRINTK
519                         } else if (!memcmp(to, "earlyprintk=", 12)) {
520                                 to += 12;
521                                 setup_early_printk(to);
522 #endif
523                         } else if (!memcmp(to, "memmap=", 7)) {
524                                 to += 7;
525                                 parse_memmap(to);
526                         }
527                 }
528                 c = *(to++);
529                 if (!c)
530                         break;
531         }
532 }
533
534 /*
535  * Setup memory defaults from user config.
536  * The physical memory layout looks like:
537  *
538  *  [_rambase, _ramstart]:              kernel image
539  *  [memory_start, memory_end]:         dynamic memory managed by kernel
540  *  [memory_end, _ramend]:              reserved memory
541  *      [memory_mtd_start(memory_end),
542  *              memory_mtd_start + mtd_size]:   rootfs (if any)
543  *      [_ramend - DMA_UNCACHED_REGION,
544  *              _ramend]:                       uncached DMA region
545  *  [_ramend, physical_mem_end]:        memory not managed by kernel
546  */
547 static __init void memory_setup(void)
548 {
549 #ifdef CONFIG_MTD_UCLINUX
550         unsigned long mtd_phys = 0;
551 #endif
552         unsigned long max_mem;
553
554         _rambase = CONFIG_BOOT_LOAD;
555         _ramstart = (unsigned long)_end;
556
557         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
558                 console_init();
559                 panic("DMA region exceeds memory limit: %lu.",
560                         _ramend - _ramstart);
561         }
562         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
563
564 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
565         /* Due to a Hardware Anomaly we need to limit the size of usable
566          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
567          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
568          */
569 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
570         if (max_mem >= 56 * 1024 * 1024)
571                 max_mem = 56 * 1024 * 1024;
572 # else
573         if (max_mem >= 60 * 1024 * 1024)
574                 max_mem = 60 * 1024 * 1024;
575 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
576 #endif                          /* ANOMALY_05000263 */
577
578
579 #ifdef CONFIG_MPU
580         /* Round up to multiple of 4MB */
581         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
582 #else
583         memory_start = PAGE_ALIGN(_ramstart);
584 #endif
585
586 #if defined(CONFIG_MTD_UCLINUX)
587         /* generic memory mapped MTD driver */
588         memory_mtd_end = memory_end;
589
590         mtd_phys = _ramstart;
591         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
592
593 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
594         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
595                 mtd_size =
596                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
597 # endif
598
599 # if defined(CONFIG_CRAMFS)
600         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
601                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
602 # endif
603
604 # if defined(CONFIG_ROMFS_FS)
605         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
606             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
607                 mtd_size =
608                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
609
610                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
611                 if (memory_end > max_mem) {
612                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
613                         memory_end = max_mem;
614                 }
615         }
616 # endif                         /* CONFIG_ROMFS_FS */
617
618         /* Since the default MTD_UCLINUX has no magic number, we just blindly
619          * read 8 past the end of the kernel's image, and look at it.
620          * When no image is attached, mtd_size is set to a random number
621          * Do some basic sanity checks before operating on things
622          */
623         if (mtd_size == 0 || memory_end <= mtd_size) {
624                 pr_emerg("Could not find valid ram mtd attached.\n");
625         } else {
626                 memory_end -= mtd_size;
627
628                 /* Relocate MTD image to the top of memory after the uncached memory area */
629                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
630                 uclinux_ram_map.size = mtd_size;
631                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
632                         _end, mtd_size, (void *)memory_mtd_start);
633                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
634         }
635 #endif                          /* CONFIG_MTD_UCLINUX */
636
637         /* We need lo limit memory, since everything could have a text section
638          * of userspace in it, and expose anomaly 05000263. If the anomaly
639          * doesn't exist, or we don't need to - then dont.
640          */
641         if (memory_end > max_mem) {
642                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
643                 memory_end = max_mem;
644         }
645
646 #ifdef CONFIG_MPU
647 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
648         page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
649                                         ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
650 #else
651         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
652 #endif
653         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
654 #endif
655
656         init_mm.start_code = (unsigned long)_stext;
657         init_mm.end_code = (unsigned long)_etext;
658         init_mm.end_data = (unsigned long)_edata;
659         init_mm.brk = (unsigned long)0;
660
661         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
662         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
663
664         printk(KERN_INFO "Memory map:\n"
665                "  fixedcode = 0x%p-0x%p\n"
666                "  text      = 0x%p-0x%p\n"
667                "  rodata    = 0x%p-0x%p\n"
668                "  bss       = 0x%p-0x%p\n"
669                "  data      = 0x%p-0x%p\n"
670                "    stack   = 0x%p-0x%p\n"
671                "  init      = 0x%p-0x%p\n"
672                "  available = 0x%p-0x%p\n"
673 #ifdef CONFIG_MTD_UCLINUX
674                "  rootfs    = 0x%p-0x%p\n"
675 #endif
676 #if DMA_UNCACHED_REGION > 0
677                "  DMA Zone  = 0x%p-0x%p\n"
678 #endif
679                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
680                 _stext, _etext,
681                 __start_rodata, __end_rodata,
682                 __bss_start, __bss_stop,
683                 _sdata, _edata,
684                 (void *)&init_thread_union,
685                 (void *)((int)(&init_thread_union) + THREAD_SIZE),
686                 __init_begin, __init_end,
687                 (void *)_ramstart, (void *)memory_end
688 #ifdef CONFIG_MTD_UCLINUX
689                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
690 #endif
691 #if DMA_UNCACHED_REGION > 0
692                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
693 #endif
694                 );
695 }
696
697 /*
698  * Find the lowest, highest page frame number we have available
699  */
700 void __init find_min_max_pfn(void)
701 {
702         int i;
703
704         max_pfn = 0;
705         min_low_pfn = memory_end;
706
707         for (i = 0; i < bfin_memmap.nr_map; i++) {
708                 unsigned long start, end;
709                 /* RAM? */
710                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
711                         continue;
712                 start = PFN_UP(bfin_memmap.map[i].addr);
713                 end = PFN_DOWN(bfin_memmap.map[i].addr +
714                                 bfin_memmap.map[i].size);
715                 if (start >= end)
716                         continue;
717                 if (end > max_pfn)
718                         max_pfn = end;
719                 if (start < min_low_pfn)
720                         min_low_pfn = start;
721         }
722 }
723
724 static __init void setup_bootmem_allocator(void)
725 {
726         int bootmap_size;
727         int i;
728         unsigned long start_pfn, end_pfn;
729         unsigned long curr_pfn, last_pfn, size;
730
731         /* mark memory between memory_start and memory_end usable */
732         add_memory_region(memory_start,
733                 memory_end - memory_start, BFIN_MEMMAP_RAM);
734         /* sanity check for overlap */
735         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
736         print_memory_map("boot memmap");
737
738         /* initialize globals in linux/bootmem.h */
739         find_min_max_pfn();
740         /* pfn of the last usable page frame */
741         if (max_pfn > memory_end >> PAGE_SHIFT)
742                 max_pfn = memory_end >> PAGE_SHIFT;
743         /* pfn of last page frame directly mapped by kernel */
744         max_low_pfn = max_pfn;
745         /* pfn of the first usable page frame after kernel image*/
746         if (min_low_pfn < memory_start >> PAGE_SHIFT)
747                 min_low_pfn = memory_start >> PAGE_SHIFT;
748
749         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
750         end_pfn = memory_end >> PAGE_SHIFT;
751
752         /*
753          * give all the memory to the bootmap allocator, tell it to put the
754          * boot mem_map at the start of memory.
755          */
756         bootmap_size = init_bootmem_node(NODE_DATA(0),
757                         memory_start >> PAGE_SHIFT,     /* map goes here */
758                         start_pfn, end_pfn);
759
760         /* register the memmap regions with the bootmem allocator */
761         for (i = 0; i < bfin_memmap.nr_map; i++) {
762                 /*
763                  * Reserve usable memory
764                  */
765                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
766                         continue;
767                 /*
768                  * We are rounding up the start address of usable memory:
769                  */
770                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
771                 if (curr_pfn >= end_pfn)
772                         continue;
773                 /*
774                  * ... and at the end of the usable range downwards:
775                  */
776                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
777                                          bfin_memmap.map[i].size);
778
779                 if (last_pfn > end_pfn)
780                         last_pfn = end_pfn;
781
782                 /*
783                  * .. finally, did all the rounding and playing
784                  * around just make the area go away?
785                  */
786                 if (last_pfn <= curr_pfn)
787                         continue;
788
789                 size = last_pfn - curr_pfn;
790                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
791         }
792
793         /* reserve memory before memory_start, including bootmap */
794         reserve_bootmem(PAGE_OFFSET,
795                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
796                 BOOTMEM_DEFAULT);
797 }
798
799 #define EBSZ_TO_MEG(ebsz) \
800 ({ \
801         int meg = 0; \
802         switch (ebsz & 0xf) { \
803                 case 0x1: meg =  16; break; \
804                 case 0x3: meg =  32; break; \
805                 case 0x5: meg =  64; break; \
806                 case 0x7: meg = 128; break; \
807                 case 0x9: meg = 256; break; \
808                 case 0xb: meg = 512; break; \
809         } \
810         meg; \
811 })
812 static inline int __init get_mem_size(void)
813 {
814 #if defined(EBIU_SDBCTL)
815 # if defined(BF561_FAMILY)
816         int ret = 0;
817         u32 sdbctl = bfin_read_EBIU_SDBCTL();
818         ret += EBSZ_TO_MEG(sdbctl >>  0);
819         ret += EBSZ_TO_MEG(sdbctl >>  8);
820         ret += EBSZ_TO_MEG(sdbctl >> 16);
821         ret += EBSZ_TO_MEG(sdbctl >> 24);
822         return ret;
823 # else
824         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
825 # endif
826 #elif defined(EBIU_DDRCTL1)
827         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
828         int ret = 0;
829         switch (ddrctl & 0xc0000) {
830                 case DEVSZ_64:  ret = 64 / 8;
831                 case DEVSZ_128: ret = 128 / 8;
832                 case DEVSZ_256: ret = 256 / 8;
833                 case DEVSZ_512: ret = 512 / 8;
834         }
835         switch (ddrctl & 0x30000) {
836                 case DEVWD_4:  ret *= 2;
837                 case DEVWD_8:  ret *= 2;
838                 case DEVWD_16: break;
839         }
840         if ((ddrctl & 0xc000) == 0x4000)
841                 ret *= 2;
842         return ret;
843 #endif
844         BUG();
845 }
846
847 __attribute__((weak))
848 void __init native_machine_early_platform_add_devices(void)
849 {
850 }
851
852 void __init setup_arch(char **cmdline_p)
853 {
854         unsigned long sclk, cclk;
855
856         native_machine_early_platform_add_devices();
857
858         enable_shadow_console();
859
860         /* Check to make sure we are running on the right processor */
861         if (unlikely(CPUID != bfin_cpuid()))
862                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
863                         CPU, bfin_cpuid(), bfin_revid());
864
865 #ifdef CONFIG_DUMMY_CONSOLE
866         conswitchp = &dummy_con;
867 #endif
868
869 #if defined(CONFIG_CMDLINE_BOOL)
870         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
871         command_line[sizeof(command_line) - 1] = 0;
872 #endif
873
874         /* Keep a copy of command line */
875         *cmdline_p = &command_line[0];
876         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
877         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
878
879         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
880
881         /* If the user does not specify things on the command line, use
882          * what the bootloader set things up as
883          */
884         physical_mem_end = 0;
885         parse_cmdline_early(&command_line[0]);
886
887         if (_ramend == 0)
888                 _ramend = get_mem_size() * 1024 * 1024;
889
890         if (physical_mem_end == 0)
891                 physical_mem_end = _ramend;
892
893         memory_setup();
894
895         /* Initialize Async memory banks */
896         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
897         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
898         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
899 #ifdef CONFIG_EBIU_MBSCTLVAL
900         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
901         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
902         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
903 #endif
904 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
905         bfin_write_PORTF_HYSTERISIS(HYST_PORTF_0_15);
906         bfin_write_PORTG_HYSTERISIS(HYST_PORTG_0_15);
907         bfin_write_PORTH_HYSTERISIS(HYST_PORTH_0_15);
908         bfin_write_MISCPORT_HYSTERISIS((bfin_read_MISCPORT_HYSTERISIS() &
909                                         ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
910 #endif
911
912         cclk = get_cclk();
913         sclk = get_sclk();
914
915         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
916                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
917
918 #ifdef BF561_FAMILY
919         if (ANOMALY_05000266) {
920                 bfin_read_IMDMA_D0_IRQ_STATUS();
921                 bfin_read_IMDMA_D1_IRQ_STATUS();
922         }
923 #endif
924         printk(KERN_INFO "Hardware Trace ");
925         if (bfin_read_TBUFCTL() & 0x1)
926                 printk(KERN_CONT "Active ");
927         else
928                 printk(KERN_CONT "Off ");
929         if (bfin_read_TBUFCTL() & 0x2)
930                 printk(KERN_CONT "and Enabled\n");
931         else
932                 printk(KERN_CONT "and Disabled\n");
933
934         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
935
936         /* Newer parts mirror SWRST bits in SYSCR */
937 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
938     defined(CONFIG_BF538) || defined(CONFIG_BF539)
939         _bfin_swrst = bfin_read_SWRST();
940 #else
941         /* Clear boot mode field */
942         _bfin_swrst = bfin_read_SYSCR() & ~0xf;
943 #endif
944
945 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
946         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
947 #endif
948 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
949         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
950 #endif
951
952 #ifdef CONFIG_SMP
953         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
954 #else
955         if (_bfin_swrst & RESET_DOUBLE) {
956 #endif
957                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
958 #ifdef CONFIG_DEBUG_DOUBLEFAULT
959                 /* We assume the crashing kernel, and the current symbol table match */
960                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
961                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
962                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
963                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
964 #endif
965                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
966                         init_retx);
967         } else if (_bfin_swrst & RESET_WDOG)
968                 printk(KERN_INFO "Recovering from Watchdog event\n");
969         else if (_bfin_swrst & RESET_SOFTWARE)
970                 printk(KERN_NOTICE "Reset caused by Software reset\n");
971
972         printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
973         if (bfin_compiled_revid() == 0xffff)
974                 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
975         else if (bfin_compiled_revid() == -1)
976                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
977         else
978                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
979
980         if (likely(CPUID == bfin_cpuid())) {
981                 if (bfin_revid() != bfin_compiled_revid()) {
982                         if (bfin_compiled_revid() == -1)
983                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
984                                        bfin_revid());
985                         else if (bfin_compiled_revid() != 0xffff) {
986                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
987                                        bfin_compiled_revid(), bfin_revid());
988                                 if (bfin_compiled_revid() > bfin_revid())
989                                         panic("Error: you are missing anomaly workarounds for this rev");
990                         }
991                 }
992                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
993                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
994                                CPU, bfin_revid());
995         }
996
997         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
998
999         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1000                cclk / 1000000, sclk / 1000000);
1001
1002         setup_bootmem_allocator();
1003
1004         paging_init();
1005
1006         /* Copy atomic sequences to their fixed location, and sanity check that
1007            these locations are the ones that we advertise to userspace.  */
1008         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1009                FIXED_CODE_END - FIXED_CODE_START);
1010         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1011                != SIGRETURN_STUB - FIXED_CODE_START);
1012         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1013                != ATOMIC_XCHG32 - FIXED_CODE_START);
1014         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1015                != ATOMIC_CAS32 - FIXED_CODE_START);
1016         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1017                != ATOMIC_ADD32 - FIXED_CODE_START);
1018         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1019                != ATOMIC_SUB32 - FIXED_CODE_START);
1020         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1021                != ATOMIC_IOR32 - FIXED_CODE_START);
1022         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1023                != ATOMIC_AND32 - FIXED_CODE_START);
1024         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1025                != ATOMIC_XOR32 - FIXED_CODE_START);
1026         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1027                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1028
1029 #ifdef CONFIG_SMP
1030         platform_init_cpus();
1031 #endif
1032         init_exception_vectors();
1033         bfin_cache_init();      /* Initialize caches for the boot CPU */
1034 }
1035
1036 static int __init topology_init(void)
1037 {
1038         unsigned int cpu;
1039         /* Record CPU-private information for the boot processor. */
1040         bfin_setup_cpudata(0);
1041
1042         for_each_possible_cpu(cpu) {
1043                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1044         }
1045
1046         return 0;
1047 }
1048
1049 subsys_initcall(topology_init);
1050
1051 /* Get the input clock frequency */
1052 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1053 static u_long get_clkin_hz(void)
1054 {
1055         return cached_clkin_hz;
1056 }
1057 static int __init early_init_clkin_hz(char *buf)
1058 {
1059         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1060 #ifdef BFIN_KERNEL_CLOCK
1061         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1062                 panic("cannot change clkin_hz when reprogramming clocks");
1063 #endif
1064         return 1;
1065 }
1066 early_param("clkin_hz=", early_init_clkin_hz);
1067
1068 /* Get the voltage input multiplier */
1069 static u_long get_vco(void)
1070 {
1071         static u_long cached_vco;
1072         u_long msel, pll_ctl;
1073
1074         /* The assumption here is that VCO never changes at runtime.
1075          * If, someday, we support that, then we'll have to change this.
1076          */
1077         if (cached_vco)
1078                 return cached_vco;
1079
1080         pll_ctl = bfin_read_PLL_CTL();
1081         msel = (pll_ctl >> 9) & 0x3F;
1082         if (0 == msel)
1083                 msel = 64;
1084
1085         cached_vco = get_clkin_hz();
1086         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1087         cached_vco *= msel;
1088         return cached_vco;
1089 }
1090
1091 /* Get the Core clock */
1092 u_long get_cclk(void)
1093 {
1094         static u_long cached_cclk_pll_div, cached_cclk;
1095         u_long csel, ssel;
1096
1097         if (bfin_read_PLL_STAT() & 0x1)
1098                 return get_clkin_hz();
1099
1100         ssel = bfin_read_PLL_DIV();
1101         if (ssel == cached_cclk_pll_div)
1102                 return cached_cclk;
1103         else
1104                 cached_cclk_pll_div = ssel;
1105
1106         csel = ((ssel >> 4) & 0x03);
1107         ssel &= 0xf;
1108         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1109                 cached_cclk = get_vco() / ssel;
1110         else
1111                 cached_cclk = get_vco() >> csel;
1112         return cached_cclk;
1113 }
1114 EXPORT_SYMBOL(get_cclk);
1115
1116 /* Get the System clock */
1117 u_long get_sclk(void)
1118 {
1119         static u_long cached_sclk;
1120         u_long ssel;
1121
1122         /* The assumption here is that SCLK never changes at runtime.
1123          * If, someday, we support that, then we'll have to change this.
1124          */
1125         if (cached_sclk)
1126                 return cached_sclk;
1127
1128         if (bfin_read_PLL_STAT() & 0x1)
1129                 return get_clkin_hz();
1130
1131         ssel = bfin_read_PLL_DIV() & 0xf;
1132         if (0 == ssel) {
1133                 printk(KERN_WARNING "Invalid System Clock\n");
1134                 ssel = 1;
1135         }
1136
1137         cached_sclk = get_vco() / ssel;
1138         return cached_sclk;
1139 }
1140 EXPORT_SYMBOL(get_sclk);
1141
1142 unsigned long sclk_to_usecs(unsigned long sclk)
1143 {
1144         u64 tmp = USEC_PER_SEC * (u64)sclk;
1145         do_div(tmp, get_sclk());
1146         return tmp;
1147 }
1148 EXPORT_SYMBOL(sclk_to_usecs);
1149
1150 unsigned long usecs_to_sclk(unsigned long usecs)
1151 {
1152         u64 tmp = get_sclk() * (u64)usecs;
1153         do_div(tmp, USEC_PER_SEC);
1154         return tmp;
1155 }
1156 EXPORT_SYMBOL(usecs_to_sclk);
1157
1158 /*
1159  *      Get CPU information for use by the procfs.
1160  */
1161 static int show_cpuinfo(struct seq_file *m, void *v)
1162 {
1163         char *cpu, *mmu, *fpu, *vendor, *cache;
1164         uint32_t revid;
1165         int cpu_num = *(unsigned int *)v;
1166         u_long sclk, cclk;
1167         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1168         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1169
1170         cpu = CPU;
1171         mmu = "none";
1172         fpu = "none";
1173         revid = bfin_revid();
1174
1175         sclk = get_sclk();
1176         cclk = get_cclk();
1177
1178         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1179         case 0xca:
1180                 vendor = "Analog Devices";
1181                 break;
1182         default:
1183                 vendor = "unknown";
1184                 break;
1185         }
1186
1187         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1188
1189         if (CPUID == bfin_cpuid())
1190                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1191         else
1192                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1193                         CPUID, bfin_cpuid());
1194
1195         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1196                 "stepping\t: %d ",
1197                 cpu, cclk/1000000, sclk/1000000,
1198 #ifdef CONFIG_MPU
1199                 "mpu on",
1200 #else
1201                 "mpu off",
1202 #endif
1203                 revid);
1204
1205         if (bfin_revid() != bfin_compiled_revid()) {
1206                 if (bfin_compiled_revid() == -1)
1207                         seq_printf(m, "(Compiled for Rev none)");
1208                 else if (bfin_compiled_revid() == 0xffff)
1209                         seq_printf(m, "(Compiled for Rev any)");
1210                 else
1211                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1212         }
1213
1214         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1215                 cclk/1000000, cclk%1000000,
1216                 sclk/1000000, sclk%1000000);
1217         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1218                 "Calibration\t: %lu loops\n",
1219                 (loops_per_jiffy * HZ) / 500000,
1220                 ((loops_per_jiffy * HZ) / 5000) % 100,
1221                 (loops_per_jiffy * HZ));
1222
1223         /* Check Cache configutation */
1224         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1225         case ACACHE_BSRAM:
1226                 cache = "dbank-A/B\t: cache/sram";
1227                 dcache_size = 16;
1228                 dsup_banks = 1;
1229                 break;
1230         case ACACHE_BCACHE:
1231                 cache = "dbank-A/B\t: cache/cache";
1232                 dcache_size = 32;
1233                 dsup_banks = 2;
1234                 break;
1235         case ASRAM_BSRAM:
1236                 cache = "dbank-A/B\t: sram/sram";
1237                 dcache_size = 0;
1238                 dsup_banks = 0;
1239                 break;
1240         default:
1241                 cache = "unknown";
1242                 dcache_size = 0;
1243                 dsup_banks = 0;
1244                 break;
1245         }
1246
1247         /* Is it turned on? */
1248         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1249                 dcache_size = 0;
1250
1251         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1252                 icache_size = 0;
1253
1254         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1255                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1256                 icache_size, dcache_size, 0);
1257         seq_printf(m, "%s\n", cache);
1258         seq_printf(m, "external memory\t: "
1259 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1260                    "cacheable"
1261 #else
1262                    "uncacheable"
1263 #endif
1264                    " in instruction cache\n");
1265         seq_printf(m, "external memory\t: "
1266 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1267                       "cacheable (write-back)"
1268 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1269                       "cacheable (write-through)"
1270 #else
1271                       "uncacheable"
1272 #endif
1273                       " in data cache\n");
1274
1275         if (icache_size)
1276                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1277                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1278         else
1279                 seq_printf(m, "icache setup\t: off\n");
1280
1281         seq_printf(m,
1282                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1283                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1284                    BFIN_DLINES);
1285 #ifdef __ARCH_SYNC_CORE_DCACHE
1286         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count[cpu_num]);
1287 #endif
1288 #ifdef __ARCH_SYNC_CORE_ICACHE
1289         seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count[cpu_num]);
1290 #endif
1291
1292         if (cpu_num != num_possible_cpus() - 1)
1293                 return 0;
1294
1295         if (L2_LENGTH) {
1296                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1297                 seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1299                               "cacheable"
1300 #else
1301                               "uncacheable"
1302 #endif
1303                               " in instruction cache\n");
1304                 seq_printf(m, "L2 SRAM\t\t: "
1305 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1306                               "cacheable (write-back)"
1307 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1308                               "cacheable (write-through)"
1309 #else
1310                               "uncacheable"
1311 #endif
1312                               " in data cache\n");
1313         }
1314         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1315         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1316                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1317         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1318                 ((int)memory_end - (int)_rambase) >> 10,
1319                 (void *)_rambase,
1320                 (void *)memory_end);
1321         seq_printf(m, "\n");
1322
1323         return 0;
1324 }
1325
1326 static void *c_start(struct seq_file *m, loff_t *pos)
1327 {
1328         if (*pos == 0)
1329                 *pos = first_cpu(cpu_online_map);
1330         if (*pos >= num_online_cpus())
1331                 return NULL;
1332
1333         return pos;
1334 }
1335
1336 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1337 {
1338         *pos = next_cpu(*pos, cpu_online_map);
1339
1340         return c_start(m, pos);
1341 }
1342
1343 static void c_stop(struct seq_file *m, void *v)
1344 {
1345 }
1346
1347 const struct seq_operations cpuinfo_op = {
1348         .start = c_start,
1349         .next = c_next,
1350         .stop = c_stop,
1351         .show = show_cpuinfo,
1352 };
1353
1354 void __init cmdline_init(const char *r0)
1355 {
1356         early_shadow_stamp();
1357         if (r0)
1358                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1359 }