Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         unsigned int    pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static void __init early_cachepolicy(char **p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         *p += len;
115                         break;
116                 }
117         }
118         if (i == ARRAY_SIZE(cache_policies))
119                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
121                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
122                 cachepolicy = CPOLICY_WRITEBACK;
123         }
124         flush_cache_all();
125         set_cr(cr_alignment);
126 }
127 __early_param("cachepolicy=", early_cachepolicy);
128
129 static void __init early_nocache(char **__unused)
130 {
131         char *p = "buffered";
132         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
133         early_cachepolicy(&p);
134 }
135 __early_param("nocache", early_nocache);
136
137 static void __init early_nowrite(char **__unused)
138 {
139         char *p = "uncached";
140         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
141         early_cachepolicy(&p);
142 }
143 __early_param("nowb", early_nowrite);
144
145 static void __init early_ecc(char **p)
146 {
147         if (memcmp(*p, "on", 2) == 0) {
148                 ecc_mask = PMD_PROTECTION;
149                 *p += 2;
150         } else if (memcmp(*p, "off", 3) == 0) {
151                 ecc_mask = 0;
152                 *p += 3;
153         }
154 }
155 __early_param("ecc=", early_ecc);
156
157 static int __init noalign_setup(char *__unused)
158 {
159         cr_alignment &= ~CR_A;
160         cr_no_alignment &= ~CR_A;
161         set_cr(cr_alignment);
162         return 1;
163 }
164 __setup("noalign", noalign_setup);
165
166 #ifndef CONFIG_SMP
167 void adjust_cr(unsigned long mask, unsigned long set)
168 {
169         unsigned long flags;
170
171         mask &= ~CR_A;
172
173         set &= mask;
174
175         local_irq_save(flags);
176
177         cr_no_alignment = (cr_no_alignment & ~mask) | set;
178         cr_alignment = (cr_alignment & ~mask) | set;
179
180         set_cr((get_cr() & ~mask) | set);
181
182         local_irq_restore(flags);
183 }
184 #endif
185
186 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
187 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
188
189 static struct mem_type mem_types[] = {
190         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
191                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
192                                   L_PTE_SHARED,
193                 .prot_l1        = PMD_TYPE_TABLE,
194                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
195                 .domain         = DOMAIN_IO,
196         },
197         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
199                 .prot_l1        = PMD_TYPE_TABLE,
200                 .prot_sect      = PROT_SECT_DEVICE,
201                 .domain         = DOMAIN_IO,
202         },
203         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
204                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
205                 .prot_l1        = PMD_TYPE_TABLE,
206                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
207                 .domain         = DOMAIN_IO,
208         },      
209         [MT_DEVICE_WC] = {      /* ioremap_wc */
210                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
211                 .prot_l1        = PMD_TYPE_TABLE,
212                 .prot_sect      = PROT_SECT_DEVICE,
213                 .domain         = DOMAIN_IO,
214         },
215         [MT_UNCACHED] = {
216                 .prot_pte       = PROT_PTE_DEVICE,
217                 .prot_l1        = PMD_TYPE_TABLE,
218                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
219                 .domain         = DOMAIN_IO,
220         },
221         [MT_CACHECLEAN] = {
222                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
223                 .domain    = DOMAIN_KERNEL,
224         },
225         [MT_MINICLEAN] = {
226                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
227                 .domain    = DOMAIN_KERNEL,
228         },
229         [MT_LOW_VECTORS] = {
230                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
231                                 L_PTE_EXEC,
232                 .prot_l1   = PMD_TYPE_TABLE,
233                 .domain    = DOMAIN_USER,
234         },
235         [MT_HIGH_VECTORS] = {
236                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
237                                 L_PTE_USER | L_PTE_EXEC,
238                 .prot_l1   = PMD_TYPE_TABLE,
239                 .domain    = DOMAIN_USER,
240         },
241         [MT_MEMORY] = {
242                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
243                 .domain    = DOMAIN_KERNEL,
244         },
245         [MT_ROM] = {
246                 .prot_sect = PMD_TYPE_SECT,
247                 .domain    = DOMAIN_KERNEL,
248         },
249         [MT_MEMORY_NONCACHED] = {
250                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251                 .domain    = DOMAIN_KERNEL,
252         },
253 };
254
255 const struct mem_type *get_mem_type(unsigned int type)
256 {
257         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
258 }
259 EXPORT_SYMBOL(get_mem_type);
260
261 /*
262  * Adjust the PMD section entries according to the CPU in use.
263  */
264 static void __init build_mem_type_table(void)
265 {
266         struct cachepolicy *cp;
267         unsigned int cr = get_cr();
268         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
269         int cpu_arch = cpu_architecture();
270         int i;
271
272         if (cpu_arch < CPU_ARCH_ARMv6) {
273 #if defined(CONFIG_CPU_DCACHE_DISABLE)
274                 if (cachepolicy > CPOLICY_BUFFERED)
275                         cachepolicy = CPOLICY_BUFFERED;
276 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
277                 if (cachepolicy > CPOLICY_WRITETHROUGH)
278                         cachepolicy = CPOLICY_WRITETHROUGH;
279 #endif
280         }
281         if (cpu_arch < CPU_ARCH_ARMv5) {
282                 if (cachepolicy >= CPOLICY_WRITEALLOC)
283                         cachepolicy = CPOLICY_WRITEBACK;
284                 ecc_mask = 0;
285         }
286 #ifdef CONFIG_SMP
287         cachepolicy = CPOLICY_WRITEALLOC;
288 #endif
289
290         /*
291          * Strip out features not present on earlier architectures.
292          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
293          * without extended page tables don't have the 'Shared' bit.
294          */
295         if (cpu_arch < CPU_ARCH_ARMv5)
296                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
297                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
298         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
299                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
300                         mem_types[i].prot_sect &= ~PMD_SECT_S;
301
302         /*
303          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
304          * "update-able on write" bit on ARM610).  However, Xscale and
305          * Xscale3 require this bit to be cleared.
306          */
307         if (cpu_is_xscale() || cpu_is_xsc3()) {
308                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
309                         mem_types[i].prot_sect &= ~PMD_BIT4;
310                         mem_types[i].prot_l1 &= ~PMD_BIT4;
311                 }
312         } else if (cpu_arch < CPU_ARCH_ARMv6) {
313                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
314                         if (mem_types[i].prot_l1)
315                                 mem_types[i].prot_l1 |= PMD_BIT4;
316                         if (mem_types[i].prot_sect)
317                                 mem_types[i].prot_sect |= PMD_BIT4;
318                 }
319         }
320
321         /*
322          * Mark the device areas according to the CPU/architecture.
323          */
324         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
325                 if (!cpu_is_xsc3()) {
326                         /*
327                          * Mark device regions on ARMv6+ as execute-never
328                          * to prevent speculative instruction fetches.
329                          */
330                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
331                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
332                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
333                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
334                 }
335                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
336                         /*
337                          * For ARMv7 with TEX remapping,
338                          * - shared device is SXCB=1100
339                          * - nonshared device is SXCB=0100
340                          * - write combine device mem is SXCB=0001
341                          * (Uncached Normal memory)
342                          */
343                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
344                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
345                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
346                 } else if (cpu_is_xsc3()) {
347                         /*
348                          * For Xscale3,
349                          * - shared device is TEXCB=00101
350                          * - nonshared device is TEXCB=01000
351                          * - write combine device mem is TEXCB=00100
352                          * (Inner/Outer Uncacheable in xsc3 parlance)
353                          */
354                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
355                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
356                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
357                 } else {
358                         /*
359                          * For ARMv6 and ARMv7 without TEX remapping,
360                          * - shared device is TEXCB=00001
361                          * - nonshared device is TEXCB=01000
362                          * - write combine device mem is TEXCB=00100
363                          * (Uncached Normal in ARMv6 parlance).
364                          */
365                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
366                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
367                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
368                 }
369         } else {
370                 /*
371                  * On others, write combining is "Uncached/Buffered"
372                  */
373                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
374         }
375
376         /*
377          * Now deal with the memory-type mappings
378          */
379         cp = &cache_policies[cachepolicy];
380         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
381
382 #ifndef CONFIG_SMP
383         /*
384          * Only use write-through for non-SMP systems
385          */
386         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
387                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
388 #endif
389
390         /*
391          * Enable CPU-specific coherency if supported.
392          * (Only available on XSC3 at the moment.)
393          */
394         if (arch_is_coherent() && cpu_is_xsc3())
395                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
396
397         /*
398          * ARMv6 and above have extended page tables.
399          */
400         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
401                 /*
402                  * Mark cache clean areas and XIP ROM read only
403                  * from SVC mode and no access from userspace.
404                  */
405                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
406                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
407                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
408
409 #ifdef CONFIG_SMP
410                 /*
411                  * Mark memory with the "shared" attribute for SMP systems
412                  */
413                 user_pgprot |= L_PTE_SHARED;
414                 kern_pgprot |= L_PTE_SHARED;
415                 vecs_pgprot |= L_PTE_SHARED;
416                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
417                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
418 #endif
419         }
420
421         /*
422          * Non-cacheable Normal - intended for memory areas that must
423          * not cause dirty cache line writebacks when used
424          */
425         if (cpu_arch >= CPU_ARCH_ARMv6) {
426                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
427                         /* Non-cacheable Normal is XCB = 001 */
428                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
429                                 PMD_SECT_BUFFERED;
430                 } else {
431                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
432                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
433                                 PMD_SECT_TEX(1);
434                 }
435         } else {
436                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
437         }
438
439         for (i = 0; i < 16; i++) {
440                 unsigned long v = pgprot_val(protection_map[i]);
441                 protection_map[i] = __pgprot(v | user_pgprot);
442         }
443
444         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
445         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
446
447         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
448         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
449                                  L_PTE_DIRTY | L_PTE_WRITE |
450                                  L_PTE_EXEC | kern_pgprot);
451
452         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
453         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
454         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
455         mem_types[MT_ROM].prot_sect |= cp->pmd;
456
457         switch (cp->pmd) {
458         case PMD_SECT_WT:
459                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
460                 break;
461         case PMD_SECT_WB:
462         case PMD_SECT_WBWA:
463                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
464                 break;
465         }
466         printk("Memory policy: ECC %sabled, Data cache %s\n",
467                 ecc_mask ? "en" : "dis", cp->policy);
468
469         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
470                 struct mem_type *t = &mem_types[i];
471                 if (t->prot_l1)
472                         t->prot_l1 |= PMD_DOMAIN(t->domain);
473                 if (t->prot_sect)
474                         t->prot_sect |= PMD_DOMAIN(t->domain);
475         }
476 }
477
478 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
479
480 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
481                                   unsigned long end, unsigned long pfn,
482                                   const struct mem_type *type)
483 {
484         pte_t *pte;
485
486         if (pmd_none(*pmd)) {
487                 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
488                 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
489         }
490
491         pte = pte_offset_kernel(pmd, addr);
492         do {
493                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
494                 pfn++;
495         } while (pte++, addr += PAGE_SIZE, addr != end);
496 }
497
498 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
499                                       unsigned long end, unsigned long phys,
500                                       const struct mem_type *type)
501 {
502         pmd_t *pmd = pmd_offset(pgd, addr);
503
504         /*
505          * Try a section mapping - end, addr and phys must all be aligned
506          * to a section boundary.  Note that PMDs refer to the individual
507          * L1 entries, whereas PGDs refer to a group of L1 entries making
508          * up one logical pointer to an L2 table.
509          */
510         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
511                 pmd_t *p = pmd;
512
513                 if (addr & SECTION_SIZE)
514                         pmd++;
515
516                 do {
517                         *pmd = __pmd(phys | type->prot_sect);
518                         phys += SECTION_SIZE;
519                 } while (pmd++, addr += SECTION_SIZE, addr != end);
520
521                 flush_pmd_entry(p);
522         } else {
523                 /*
524                  * No need to loop; pte's aren't interested in the
525                  * individual L1 entries.
526                  */
527                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
528         }
529 }
530
531 static void __init create_36bit_mapping(struct map_desc *md,
532                                         const struct mem_type *type)
533 {
534         unsigned long phys, addr, length, end;
535         pgd_t *pgd;
536
537         addr = md->virtual;
538         phys = (unsigned long)__pfn_to_phys(md->pfn);
539         length = PAGE_ALIGN(md->length);
540
541         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
542                 printk(KERN_ERR "MM: CPU does not support supersection "
543                        "mapping for 0x%08llx at 0x%08lx\n",
544                        __pfn_to_phys((u64)md->pfn), addr);
545                 return;
546         }
547
548         /* N.B. ARMv6 supersections are only defined to work with domain 0.
549          *      Since domain assignments can in fact be arbitrary, the
550          *      'domain == 0' check below is required to insure that ARMv6
551          *      supersections are only allocated for domain 0 regardless
552          *      of the actual domain assignments in use.
553          */
554         if (type->domain) {
555                 printk(KERN_ERR "MM: invalid domain in supersection "
556                        "mapping for 0x%08llx at 0x%08lx\n",
557                        __pfn_to_phys((u64)md->pfn), addr);
558                 return;
559         }
560
561         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
562                 printk(KERN_ERR "MM: cannot create mapping for "
563                        "0x%08llx at 0x%08lx invalid alignment\n",
564                        __pfn_to_phys((u64)md->pfn), addr);
565                 return;
566         }
567
568         /*
569          * Shift bits [35:32] of address into bits [23:20] of PMD
570          * (See ARMv6 spec).
571          */
572         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
573
574         pgd = pgd_offset_k(addr);
575         end = addr + length;
576         do {
577                 pmd_t *pmd = pmd_offset(pgd, addr);
578                 int i;
579
580                 for (i = 0; i < 16; i++)
581                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
582
583                 addr += SUPERSECTION_SIZE;
584                 phys += SUPERSECTION_SIZE;
585                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
586         } while (addr != end);
587 }
588
589 /*
590  * Create the page directory entries and any necessary
591  * page tables for the mapping specified by `md'.  We
592  * are able to cope here with varying sizes and address
593  * offsets, and we take full advantage of sections and
594  * supersections.
595  */
596 void __init create_mapping(struct map_desc *md)
597 {
598         unsigned long phys, addr, length, end;
599         const struct mem_type *type;
600         pgd_t *pgd;
601
602         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
603                 printk(KERN_WARNING "BUG: not creating mapping for "
604                        "0x%08llx at 0x%08lx in user region\n",
605                        __pfn_to_phys((u64)md->pfn), md->virtual);
606                 return;
607         }
608
609         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
610             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
611                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
612                        "overlaps vmalloc space\n",
613                        __pfn_to_phys((u64)md->pfn), md->virtual);
614         }
615
616         type = &mem_types[md->type];
617
618         /*
619          * Catch 36-bit addresses
620          */
621         if (md->pfn >= 0x100000) {
622                 create_36bit_mapping(md, type);
623                 return;
624         }
625
626         addr = md->virtual & PAGE_MASK;
627         phys = (unsigned long)__pfn_to_phys(md->pfn);
628         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
629
630         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
631                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
632                        "be mapped using pages, ignoring.\n",
633                        __pfn_to_phys(md->pfn), addr);
634                 return;
635         }
636
637         pgd = pgd_offset_k(addr);
638         end = addr + length;
639         do {
640                 unsigned long next = pgd_addr_end(addr, end);
641
642                 alloc_init_section(pgd, addr, next, phys, type);
643
644                 phys += next - addr;
645                 addr = next;
646         } while (pgd++, addr != end);
647 }
648
649 /*
650  * Create the architecture specific mappings
651  */
652 void __init iotable_init(struct map_desc *io_desc, int nr)
653 {
654         int i;
655
656         for (i = 0; i < nr; i++)
657                 create_mapping(io_desc + i);
658 }
659
660 static unsigned long __initdata vmalloc_reserve = SZ_128M;
661
662 /*
663  * vmalloc=size forces the vmalloc area to be exactly 'size'
664  * bytes. This can be used to increase (or decrease) the vmalloc
665  * area - the default is 128m.
666  */
667 static void __init early_vmalloc(char **arg)
668 {
669         vmalloc_reserve = memparse(*arg, arg);
670
671         if (vmalloc_reserve < SZ_16M) {
672                 vmalloc_reserve = SZ_16M;
673                 printk(KERN_WARNING
674                         "vmalloc area too small, limiting to %luMB\n",
675                         vmalloc_reserve >> 20);
676         }
677
678         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
679                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
680                 printk(KERN_WARNING
681                         "vmalloc area is too big, limiting to %luMB\n",
682                         vmalloc_reserve >> 20);
683         }
684 }
685 __early_param("vmalloc=", early_vmalloc);
686
687 #define VMALLOC_MIN     (void *)(VMALLOC_END - vmalloc_reserve)
688
689 static void __init sanity_check_meminfo(void)
690 {
691         int i, j, highmem = 0;
692
693         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
694                 struct membank *bank = &meminfo.bank[j];
695                 *bank = meminfo.bank[i];
696
697 #ifdef CONFIG_HIGHMEM
698                 if (__va(bank->start) > VMALLOC_MIN ||
699                     __va(bank->start) < (void *)PAGE_OFFSET)
700                         highmem = 1;
701
702                 bank->highmem = highmem;
703
704                 /*
705                  * Split those memory banks which are partially overlapping
706                  * the vmalloc area greatly simplifying things later.
707                  */
708                 if (__va(bank->start) < VMALLOC_MIN &&
709                     bank->size > VMALLOC_MIN - __va(bank->start)) {
710                         if (meminfo.nr_banks >= NR_BANKS) {
711                                 printk(KERN_CRIT "NR_BANKS too low, "
712                                                  "ignoring high memory\n");
713                         } else {
714                                 memmove(bank + 1, bank,
715                                         (meminfo.nr_banks - i) * sizeof(*bank));
716                                 meminfo.nr_banks++;
717                                 i++;
718                                 bank[1].size -= VMALLOC_MIN - __va(bank->start);
719                                 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
720                                 bank[1].highmem = highmem = 1;
721                                 j++;
722                         }
723                         bank->size = VMALLOC_MIN - __va(bank->start);
724                 }
725 #else
726                 bank->highmem = highmem;
727
728                 /*
729                  * Check whether this memory bank would entirely overlap
730                  * the vmalloc area.
731                  */
732                 if (__va(bank->start) >= VMALLOC_MIN ||
733                     __va(bank->start) < (void *)PAGE_OFFSET) {
734                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
735                                "(vmalloc region overlap).\n",
736                                bank->start, bank->start + bank->size - 1);
737                         continue;
738                 }
739
740                 /*
741                  * Check whether this memory bank would partially overlap
742                  * the vmalloc area.
743                  */
744                 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
745                     __va(bank->start + bank->size) < __va(bank->start)) {
746                         unsigned long newsize = VMALLOC_MIN - __va(bank->start);
747                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
748                                "to -%.8lx (vmalloc region overlap).\n",
749                                bank->start, bank->start + bank->size - 1,
750                                bank->start + newsize - 1);
751                         bank->size = newsize;
752                 }
753 #endif
754                 j++;
755         }
756 #ifdef CONFIG_HIGHMEM
757         if (highmem) {
758                 const char *reason = NULL;
759
760                 if (cache_is_vipt_aliasing()) {
761                         /*
762                          * Interactions between kmap and other mappings
763                          * make highmem support with aliasing VIPT caches
764                          * rather difficult.
765                          */
766                         reason = "with VIPT aliasing cache";
767 #ifdef CONFIG_SMP
768                 } else if (tlb_ops_need_broadcast()) {
769                         /*
770                          * kmap_high needs to occasionally flush TLB entries,
771                          * however, if the TLB entries need to be broadcast
772                          * we may deadlock:
773                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
774                          *  flush_tlb_kernel_range->smp_call_function_many
775                          *   (must not be called with irqs off)
776                          */
777                         reason = "without hardware TLB ops broadcasting";
778 #endif
779                 }
780                 if (reason) {
781                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
782                                 reason);
783                         while (j > 0 && meminfo.bank[j - 1].highmem)
784                                 j--;
785                 }
786         }
787 #endif
788         meminfo.nr_banks = j;
789 }
790
791 static inline void prepare_page_table(void)
792 {
793         unsigned long addr;
794
795         /*
796          * Clear out all the mappings below the kernel image.
797          */
798         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
799                 pmd_clear(pmd_off_k(addr));
800
801 #ifdef CONFIG_XIP_KERNEL
802         /* The XIP kernel is mapped in the module area -- skip over it */
803         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
804 #endif
805         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
806                 pmd_clear(pmd_off_k(addr));
807
808         /*
809          * Clear out all the kernel space mappings, except for the first
810          * memory bank, up to the end of the vmalloc region.
811          */
812         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
813              addr < VMALLOC_END; addr += PGDIR_SIZE)
814                 pmd_clear(pmd_off_k(addr));
815 }
816
817 /*
818  * Reserve the various regions of node 0
819  */
820 void __init reserve_node_zero(pg_data_t *pgdat)
821 {
822         unsigned long res_size = 0;
823
824         /*
825          * Register the kernel text and data with bootmem.
826          * Note that this can only be in node 0.
827          */
828 #ifdef CONFIG_XIP_KERNEL
829         reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
830                         BOOTMEM_DEFAULT);
831 #else
832         reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
833                         BOOTMEM_DEFAULT);
834 #endif
835
836         /*
837          * Reserve the page tables.  These are already in use,
838          * and can only be in node 0.
839          */
840         reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
841                              PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
842
843         /*
844          * Hmm... This should go elsewhere, but we really really need to
845          * stop things allocating the low memory; ideally we need a better
846          * implementation of GFP_DMA which does not assume that DMA-able
847          * memory starts at zero.
848          */
849         if (machine_is_integrator() || machine_is_cintegrator())
850                 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
851
852         /*
853          * These should likewise go elsewhere.  They pre-reserve the
854          * screen memory region at the start of main system memory.
855          */
856         if (machine_is_edb7211())
857                 res_size = 0x00020000;
858         if (machine_is_p720t())
859                 res_size = 0x00014000;
860
861         /* H1940 and RX3715 need to reserve this for suspend */
862
863         if (machine_is_h1940() || machine_is_rx3715()) {
864                 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
865                                 BOOTMEM_DEFAULT);
866                 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
867                                 BOOTMEM_DEFAULT);
868         }
869
870         if (machine_is_palmld() || machine_is_palmtx()) {
871                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
872                                 BOOTMEM_EXCLUSIVE);
873                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
874                                 BOOTMEM_EXCLUSIVE);
875         }
876
877         if (machine_is_treo680()) {
878                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
879                                 BOOTMEM_EXCLUSIVE);
880                 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
881                                 BOOTMEM_EXCLUSIVE);
882         }
883
884         if (machine_is_palmt5())
885                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
886                                 BOOTMEM_EXCLUSIVE);
887
888         /*
889          * U300 - This platform family can share physical memory
890          * between two ARM cpus, one running Linux and the other
891          * running another OS.
892          */
893         if (machine_is_u300()) {
894 #ifdef CONFIG_MACH_U300_SINGLE_RAM
895 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&    \
896         CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
897                 res_size = 0x00100000;
898 #endif
899 #endif
900         }
901
902 #ifdef CONFIG_SA1111
903         /*
904          * Because of the SA1111 DMA bug, we want to preserve our
905          * precious DMA-able memory...
906          */
907         res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
908 #endif
909         if (res_size)
910                 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
911                                 BOOTMEM_DEFAULT);
912 }
913
914 /*
915  * Set up device the mappings.  Since we clear out the page tables for all
916  * mappings above VMALLOC_END, we will remove any debug device mappings.
917  * This means you have to be careful how you debug this function, or any
918  * called function.  This means you can't use any function or debugging
919  * method which may touch any device, otherwise the kernel _will_ crash.
920  */
921 static void __init devicemaps_init(struct machine_desc *mdesc)
922 {
923         struct map_desc map;
924         unsigned long addr;
925         void *vectors;
926
927         /*
928          * Allocate the vector page early.
929          */
930         vectors = alloc_bootmem_low_pages(PAGE_SIZE);
931
932         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
933                 pmd_clear(pmd_off_k(addr));
934
935         /*
936          * Map the kernel if it is XIP.
937          * It is always first in the modulearea.
938          */
939 #ifdef CONFIG_XIP_KERNEL
940         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
941         map.virtual = MODULES_VADDR;
942         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
943         map.type = MT_ROM;
944         create_mapping(&map);
945 #endif
946
947         /*
948          * Map the cache flushing regions.
949          */
950 #ifdef FLUSH_BASE
951         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
952         map.virtual = FLUSH_BASE;
953         map.length = SZ_1M;
954         map.type = MT_CACHECLEAN;
955         create_mapping(&map);
956 #endif
957 #ifdef FLUSH_BASE_MINICACHE
958         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
959         map.virtual = FLUSH_BASE_MINICACHE;
960         map.length = SZ_1M;
961         map.type = MT_MINICLEAN;
962         create_mapping(&map);
963 #endif
964
965         /*
966          * Create a mapping for the machine vectors at the high-vectors
967          * location (0xffff0000).  If we aren't using high-vectors, also
968          * create a mapping at the low-vectors virtual address.
969          */
970         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
971         map.virtual = 0xffff0000;
972         map.length = PAGE_SIZE;
973         map.type = MT_HIGH_VECTORS;
974         create_mapping(&map);
975
976         if (!vectors_high()) {
977                 map.virtual = 0;
978                 map.type = MT_LOW_VECTORS;
979                 create_mapping(&map);
980         }
981
982         /*
983          * Ask the machine support to map in the statically mapped devices.
984          */
985         if (mdesc->map_io)
986                 mdesc->map_io();
987
988         /*
989          * Finally flush the caches and tlb to ensure that we're in a
990          * consistent state wrt the writebuffer.  This also ensures that
991          * any write-allocated cache lines in the vector page are written
992          * back.  After this point, we can start to touch devices again.
993          */
994         local_flush_tlb_all();
995         flush_cache_all();
996 }
997
998 static void __init kmap_init(void)
999 {
1000 #ifdef CONFIG_HIGHMEM
1001         pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1002         pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1003         BUG_ON(!pmd_none(*pmd) || !pte);
1004         __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1005         pkmap_page_table = pte + PTRS_PER_PTE;
1006 #endif
1007 }
1008
1009 /*
1010  * paging_init() sets up the page tables, initialises the zone memory
1011  * maps, and sets up the zero page, bad page and bad page tables.
1012  */
1013 void __init paging_init(struct machine_desc *mdesc)
1014 {
1015         void *zero_page;
1016
1017         build_mem_type_table();
1018         sanity_check_meminfo();
1019         prepare_page_table();
1020         bootmem_init();
1021         devicemaps_init(mdesc);
1022         kmap_init();
1023
1024         top_pmd = pmd_off_k(0xffff0000);
1025
1026         /*
1027          * allocate the zero page.  Note that this always succeeds and
1028          * returns a zeroed result.
1029          */
1030         zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1031         empty_zero_page = virt_to_page(zero_page);
1032         flush_dcache_page(empty_zero_page);
1033 }
1034
1035 /*
1036  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1037  * the user-mode pages.  This will then ensure that we have predictable
1038  * results when turning the mmu off
1039  */
1040 void setup_mm_for_reboot(char mode)
1041 {
1042         unsigned long base_pmdval;
1043         pgd_t *pgd;
1044         int i;
1045
1046         if (current->mm && current->mm->pgd)
1047                 pgd = current->mm->pgd;
1048         else
1049                 pgd = init_mm.pgd;
1050
1051         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1052         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1053                 base_pmdval |= PMD_BIT4;
1054
1055         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1056                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1057                 pmd_t *pmd;
1058
1059                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1060                 pmd[0] = __pmd(pmdval);
1061                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1062                 flush_pmd_entry(pmd);
1063         }
1064 }