ARM: kprobes: Add hooks to override singlestep()
[pandora-kernel.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30
31 #include "kprobes.h"
32
33 #define MIN_STACK_SIZE(addr)                            \
34         min((unsigned long)MAX_STACK_SIZE,              \
35             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
36
37 #define flush_insns(addr, size)                         \
38         flush_icache_range((unsigned long)(addr),       \
39                            (unsigned long)(addr) +      \
40                            (size))
41
42 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
43 #define JPROBE_MAGIC_ADDR               0xffffffff
44
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47
48
49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51         kprobe_opcode_t insn;
52         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
53         unsigned long addr = (unsigned long)p->addr;
54         kprobe_decode_insn_t *decode_insn;
55         int is;
56
57         if (in_exception_text(addr))
58                 return -EINVAL;
59
60 #ifdef CONFIG_THUMB2_KERNEL
61         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
62         insn = ((u16 *)addr)[0];
63         if (is_wide_instruction(insn)) {
64                 insn <<= 16;
65                 insn |= ((u16 *)addr)[1];
66                 decode_insn = thumb32_kprobe_decode_insn;
67         } else
68                 decode_insn = thumb16_kprobe_decode_insn;
69 #else /* !CONFIG_THUMB2_KERNEL */
70         if (addr & 0x3)
71                 return -EINVAL;
72         insn = *p->addr;
73         decode_insn = arm_kprobe_decode_insn;
74 #endif
75
76         p->opcode = insn;
77         p->ainsn.insn = tmp_insn;
78
79         switch ((*decode_insn)(insn, &p->ainsn)) {
80         case INSN_REJECTED:     /* not supported */
81                 return -EINVAL;
82
83         case INSN_GOOD:         /* instruction uses slot */
84                 p->ainsn.insn = get_insn_slot();
85                 if (!p->ainsn.insn)
86                         return -ENOMEM;
87                 for (is = 0; is < MAX_INSN_SIZE; ++is)
88                         p->ainsn.insn[is] = tmp_insn[is];
89                 flush_insns(p->ainsn.insn,
90                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
91                 break;
92
93         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
94                 p->ainsn.insn = NULL;
95                 break;
96         }
97
98         return 0;
99 }
100
101 #ifdef CONFIG_THUMB2_KERNEL
102
103 /*
104  * For a 32-bit Thumb breakpoint spanning two memory words we need to take
105  * special precautions to insert the breakpoint atomically, especially on SMP
106  * systems. This is achieved by calling this arming function using stop_machine.
107  */
108 static int __kprobes set_t32_breakpoint(void *addr)
109 {
110         ((u16 *)addr)[0] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION >> 16;
111         ((u16 *)addr)[1] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION & 0xffff;
112         flush_insns(addr, 2*sizeof(u16));
113         return 0;
114 }
115
116 void __kprobes arch_arm_kprobe(struct kprobe *p)
117 {
118         uintptr_t addr = (uintptr_t)p->addr & ~1; /* Remove any Thumb flag */
119
120         if (!is_wide_instruction(p->opcode)) {
121                 *(u16 *)addr = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
122                 flush_insns(addr, sizeof(u16));
123         } else if (addr & 2) {
124                 /* A 32-bit instruction spanning two words needs special care */
125                 stop_machine(set_t32_breakpoint, (void *)addr, &cpu_online_map);
126         } else {
127                 /* Word aligned 32-bit instruction can be written atomically */
128                 u32 bkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
129 #ifndef __ARMEB__ /* Swap halfwords for little-endian */
130                 bkp = (bkp >> 16) | (bkp << 16);
131 #endif
132                 *(u32 *)addr = bkp;
133                 flush_insns(addr, sizeof(u32));
134         }
135 }
136
137 #else /* !CONFIG_THUMB2_KERNEL */
138
139 void __kprobes arch_arm_kprobe(struct kprobe *p)
140 {
141         kprobe_opcode_t insn = p->opcode;
142         kprobe_opcode_t brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
143         if (insn >= 0xe0000000)
144                 brkp |= 0xe0000000;  /* Unconditional instruction */
145         else
146                 brkp |= insn & 0xf0000000;  /* Copy condition from insn */
147         *p->addr = brkp;
148         flush_insns(p->addr, sizeof(p->addr[0]));
149 }
150
151 #endif /* !CONFIG_THUMB2_KERNEL */
152
153 /*
154  * The actual disarming is done here on each CPU and synchronized using
155  * stop_machine. This synchronization is necessary on SMP to avoid removing
156  * a probe between the moment the 'Undefined Instruction' exception is raised
157  * and the moment the exception handler reads the faulting instruction from
158  * memory. It is also needed to atomically set the two half-words of a 32-bit
159  * Thumb breakpoint.
160  */
161 int __kprobes __arch_disarm_kprobe(void *p)
162 {
163         struct kprobe *kp = p;
164 #ifdef CONFIG_THUMB2_KERNEL
165         u16 *addr = (u16 *)((uintptr_t)kp->addr & ~1);
166         kprobe_opcode_t insn = kp->opcode;
167         unsigned int len;
168
169         if (is_wide_instruction(insn)) {
170                 ((u16 *)addr)[0] = insn>>16;
171                 ((u16 *)addr)[1] = insn;
172                 len = 2*sizeof(u16);
173         } else {
174                 ((u16 *)addr)[0] = insn;
175                 len = sizeof(u16);
176         }
177         flush_insns(addr, len);
178
179 #else /* !CONFIG_THUMB2_KERNEL */
180         *kp->addr = kp->opcode;
181         flush_insns(kp->addr, sizeof(kp->addr[0]));
182 #endif
183         return 0;
184 }
185
186 void __kprobes arch_disarm_kprobe(struct kprobe *p)
187 {
188         stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
189 }
190
191 void __kprobes arch_remove_kprobe(struct kprobe *p)
192 {
193         if (p->ainsn.insn) {
194                 free_insn_slot(p->ainsn.insn, 0);
195                 p->ainsn.insn = NULL;
196         }
197 }
198
199 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
200 {
201         kcb->prev_kprobe.kp = kprobe_running();
202         kcb->prev_kprobe.status = kcb->kprobe_status;
203 }
204
205 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
206 {
207         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
208         kcb->kprobe_status = kcb->prev_kprobe.status;
209 }
210
211 static void __kprobes set_current_kprobe(struct kprobe *p)
212 {
213         __get_cpu_var(current_kprobe) = p;
214 }
215
216 static void __kprobes
217 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
218 {
219 #ifdef CONFIG_THUMB2_KERNEL
220         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
221         if (is_wide_instruction(p->opcode))
222                 regs->ARM_pc += 4;
223         else
224                 regs->ARM_pc += 2;
225 #else
226         regs->ARM_pc += 4;
227 #endif
228 }
229
230 static inline void __kprobes
231 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
232 {
233         p->ainsn.insn_singlestep(p, regs);
234 }
235
236 /*
237  * Called with IRQs disabled. IRQs must remain disabled from that point
238  * all the way until processing this kprobe is complete.  The current
239  * kprobes implementation cannot process more than one nested level of
240  * kprobe, and that level is reserved for user kprobe handlers, so we can't
241  * risk encountering a new kprobe in an interrupt handler.
242  */
243 void __kprobes kprobe_handler(struct pt_regs *regs)
244 {
245         struct kprobe *p, *cur;
246         struct kprobe_ctlblk *kcb;
247
248         kcb = get_kprobe_ctlblk();
249         cur = kprobe_running();
250
251 #ifdef CONFIG_THUMB2_KERNEL
252         /*
253          * First look for a probe which was registered using an address with
254          * bit 0 set, this is the usual situation for pointers to Thumb code.
255          * If not found, fallback to looking for one with bit 0 clear.
256          */
257         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
258         if (!p)
259                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
260
261 #else /* ! CONFIG_THUMB2_KERNEL */
262         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
263 #endif
264
265         if (p) {
266                 if (cur) {
267                         /* Kprobe is pending, so we're recursing. */
268                         switch (kcb->kprobe_status) {
269                         case KPROBE_HIT_ACTIVE:
270                         case KPROBE_HIT_SSDONE:
271                                 /* A pre- or post-handler probe got us here. */
272                                 kprobes_inc_nmissed_count(p);
273                                 save_previous_kprobe(kcb);
274                                 set_current_kprobe(p);
275                                 kcb->kprobe_status = KPROBE_REENTER;
276                                 singlestep(p, regs, kcb);
277                                 restore_previous_kprobe(kcb);
278                                 break;
279                         default:
280                                 /* impossible cases */
281                                 BUG();
282                         }
283                 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
284                         /* Probe hit and conditional execution check ok. */
285                         set_current_kprobe(p);
286                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
287
288                         /*
289                          * If we have no pre-handler or it returned 0, we
290                          * continue with normal processing.  If we have a
291                          * pre-handler and it returned non-zero, it prepped
292                          * for calling the break_handler below on re-entry,
293                          * so get out doing nothing more here.
294                          */
295                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
296                                 kcb->kprobe_status = KPROBE_HIT_SS;
297                                 singlestep(p, regs, kcb);
298                                 if (p->post_handler) {
299                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
300                                         p->post_handler(p, regs, 0);
301                                 }
302                                 reset_current_kprobe();
303                         }
304                 } else {
305                         /*
306                          * Probe hit but conditional execution check failed,
307                          * so just skip the instruction and continue as if
308                          * nothing had happened.
309                          */
310                         singlestep_skip(p, regs);
311                 }
312         } else if (cur) {
313                 /* We probably hit a jprobe.  Call its break handler. */
314                 if (cur->break_handler && cur->break_handler(cur, regs)) {
315                         kcb->kprobe_status = KPROBE_HIT_SS;
316                         singlestep(cur, regs, kcb);
317                         if (cur->post_handler) {
318                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
319                                 cur->post_handler(cur, regs, 0);
320                         }
321                 }
322                 reset_current_kprobe();
323         } else {
324                 /*
325                  * The probe was removed and a race is in progress.
326                  * There is nothing we can do about it.  Let's restart
327                  * the instruction.  By the time we can restart, the
328                  * real instruction will be there.
329                  */
330         }
331 }
332
333 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
334 {
335         unsigned long flags;
336         local_irq_save(flags);
337         kprobe_handler(regs);
338         local_irq_restore(flags);
339         return 0;
340 }
341
342 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
343 {
344         struct kprobe *cur = kprobe_running();
345         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
346
347         switch (kcb->kprobe_status) {
348         case KPROBE_HIT_SS:
349         case KPROBE_REENTER:
350                 /*
351                  * We are here because the instruction being single
352                  * stepped caused a page fault. We reset the current
353                  * kprobe and the PC to point back to the probe address
354                  * and allow the page fault handler to continue as a
355                  * normal page fault.
356                  */
357                 regs->ARM_pc = (long)cur->addr;
358                 if (kcb->kprobe_status == KPROBE_REENTER) {
359                         restore_previous_kprobe(kcb);
360                 } else {
361                         reset_current_kprobe();
362                 }
363                 break;
364
365         case KPROBE_HIT_ACTIVE:
366         case KPROBE_HIT_SSDONE:
367                 /*
368                  * We increment the nmissed count for accounting,
369                  * we can also use npre/npostfault count for accounting
370                  * these specific fault cases.
371                  */
372                 kprobes_inc_nmissed_count(cur);
373
374                 /*
375                  * We come here because instructions in the pre/post
376                  * handler caused the page_fault, this could happen
377                  * if handler tries to access user space by
378                  * copy_from_user(), get_user() etc. Let the
379                  * user-specified handler try to fix it.
380                  */
381                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
382                         return 1;
383                 break;
384
385         default:
386                 break;
387         }
388
389         return 0;
390 }
391
392 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
393                                        unsigned long val, void *data)
394 {
395         /*
396          * notify_die() is currently never called on ARM,
397          * so this callback is currently empty.
398          */
399         return NOTIFY_DONE;
400 }
401
402 /*
403  * When a retprobed function returns, trampoline_handler() is called,
404  * calling the kretprobe's handler. We construct a struct pt_regs to
405  * give a view of registers r0-r11 to the user return-handler.  This is
406  * not a complete pt_regs structure, but that should be plenty sufficient
407  * for kretprobe handlers which should normally be interested in r0 only
408  * anyway.
409  */
410 void __naked __kprobes kretprobe_trampoline(void)
411 {
412         __asm__ __volatile__ (
413                 "stmdb  sp!, {r0 - r11}         \n\t"
414                 "mov    r0, sp                  \n\t"
415                 "bl     trampoline_handler      \n\t"
416                 "mov    lr, r0                  \n\t"
417                 "ldmia  sp!, {r0 - r11}         \n\t"
418 #ifdef CONFIG_THUMB2_KERNEL
419                 "bx     lr                      \n\t"
420 #else
421                 "mov    pc, lr                  \n\t"
422 #endif
423                 : : : "memory");
424 }
425
426 /* Called from kretprobe_trampoline */
427 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
428 {
429         struct kretprobe_instance *ri = NULL;
430         struct hlist_head *head, empty_rp;
431         struct hlist_node *node, *tmp;
432         unsigned long flags, orig_ret_address = 0;
433         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
434
435         INIT_HLIST_HEAD(&empty_rp);
436         kretprobe_hash_lock(current, &head, &flags);
437
438         /*
439          * It is possible to have multiple instances associated with a given
440          * task either because multiple functions in the call path have
441          * a return probe installed on them, and/or more than one return
442          * probe was registered for a target function.
443          *
444          * We can handle this because:
445          *     - instances are always inserted at the head of the list
446          *     - when multiple return probes are registered for the same
447          *       function, the first instance's ret_addr will point to the
448          *       real return address, and all the rest will point to
449          *       kretprobe_trampoline
450          */
451         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
452                 if (ri->task != current)
453                         /* another task is sharing our hash bucket */
454                         continue;
455
456                 if (ri->rp && ri->rp->handler) {
457                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
458                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
459                         ri->rp->handler(ri, regs);
460                         __get_cpu_var(current_kprobe) = NULL;
461                 }
462
463                 orig_ret_address = (unsigned long)ri->ret_addr;
464                 recycle_rp_inst(ri, &empty_rp);
465
466                 if (orig_ret_address != trampoline_address)
467                         /*
468                          * This is the real return address. Any other
469                          * instances associated with this task are for
470                          * other calls deeper on the call stack
471                          */
472                         break;
473         }
474
475         kretprobe_assert(ri, orig_ret_address, trampoline_address);
476         kretprobe_hash_unlock(current, &flags);
477
478         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
479                 hlist_del(&ri->hlist);
480                 kfree(ri);
481         }
482
483         return (void *)orig_ret_address;
484 }
485
486 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
487                                       struct pt_regs *regs)
488 {
489         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
490
491         /* Replace the return addr with trampoline addr. */
492         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
493 }
494
495 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
496 {
497         struct jprobe *jp = container_of(p, struct jprobe, kp);
498         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
499         long sp_addr = regs->ARM_sp;
500         long cpsr;
501
502         kcb->jprobe_saved_regs = *regs;
503         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
504         regs->ARM_pc = (long)jp->entry;
505
506         cpsr = regs->ARM_cpsr | PSR_I_BIT;
507 #ifdef CONFIG_THUMB2_KERNEL
508         /* Set correct Thumb state in cpsr */
509         if (regs->ARM_pc & 1)
510                 cpsr |= PSR_T_BIT;
511         else
512                 cpsr &= ~PSR_T_BIT;
513 #endif
514         regs->ARM_cpsr = cpsr;
515
516         preempt_disable();
517         return 1;
518 }
519
520 void __kprobes jprobe_return(void)
521 {
522         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523
524         __asm__ __volatile__ (
525                 /*
526                  * Setup an empty pt_regs. Fill SP and PC fields as
527                  * they're needed by longjmp_break_handler.
528                  *
529                  * We allocate some slack between the original SP and start of
530                  * our fabricated regs. To be precise we want to have worst case
531                  * covered which is STMFD with all 16 regs so we allocate 2 *
532                  * sizeof(struct_pt_regs)).
533                  *
534                  * This is to prevent any simulated instruction from writing
535                  * over the regs when they are accessing the stack.
536                  */
537 #ifdef CONFIG_THUMB2_KERNEL
538                 "sub    r0, %0, %1              \n\t"
539                 "mov    sp, r0                  \n\t"
540 #else
541                 "sub    sp, %0, %1              \n\t"
542 #endif
543                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
544                 "str    %0, [sp, %2]            \n\t"
545                 "str    r0, [sp, %3]            \n\t"
546                 "mov    r0, sp                  \n\t"
547                 "bl     kprobe_handler          \n\t"
548
549                 /*
550                  * Return to the context saved by setjmp_pre_handler
551                  * and restored by longjmp_break_handler.
552                  */
553 #ifdef CONFIG_THUMB2_KERNEL
554                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
555                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
556                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
557                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
558                                                       /* rfe context */
559                 "ldmia  sp, {r0 - r12}          \n\t"
560                 "mov    sp, lr                  \n\t"
561                 "ldr    lr, [sp], #4            \n\t"
562                 "rfeia  sp!                     \n\t"
563 #else
564                 "ldr    r0, [sp, %4]            \n\t"
565                 "msr    cpsr_cxsf, r0           \n\t"
566                 "ldmia  sp, {r0 - pc}           \n\t"
567 #endif
568                 :
569                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
570                   "I" (sizeof(struct pt_regs) * 2),
571                   "J" (offsetof(struct pt_regs, ARM_sp)),
572                   "J" (offsetof(struct pt_regs, ARM_pc)),
573                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
574                   "J" (offsetof(struct pt_regs, ARM_lr))
575                 : "memory", "cc");
576 }
577
578 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
579 {
580         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
581         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
582         long orig_sp = regs->ARM_sp;
583         struct jprobe *jp = container_of(p, struct jprobe, kp);
584
585         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
586                 if (orig_sp != stack_addr) {
587                         struct pt_regs *saved_regs =
588                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
589                         printk("current sp %lx does not match saved sp %lx\n",
590                                orig_sp, stack_addr);
591                         printk("Saved registers for jprobe %p\n", jp);
592                         show_regs(saved_regs);
593                         printk("Current registers\n");
594                         show_regs(regs);
595                         BUG();
596                 }
597                 *regs = kcb->jprobe_saved_regs;
598                 memcpy((void *)stack_addr, kcb->jprobes_stack,
599                        MIN_STACK_SIZE(stack_addr));
600                 preempt_enable_no_resched();
601                 return 1;
602         }
603         return 0;
604 }
605
606 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
607 {
608         return 0;
609 }
610
611 #ifdef CONFIG_THUMB2_KERNEL
612
613 static struct undef_hook kprobes_thumb16_break_hook = {
614         .instr_mask     = 0xffff,
615         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
616         .cpsr_mask      = MODE_MASK,
617         .cpsr_val       = SVC_MODE,
618         .fn             = kprobe_trap_handler,
619 };
620
621 static struct undef_hook kprobes_thumb32_break_hook = {
622         .instr_mask     = 0xffffffff,
623         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
624         .cpsr_mask      = MODE_MASK,
625         .cpsr_val       = SVC_MODE,
626         .fn             = kprobe_trap_handler,
627 };
628
629 #else  /* !CONFIG_THUMB2_KERNEL */
630
631 static struct undef_hook kprobes_arm_break_hook = {
632         .instr_mask     = 0x0fffffff,
633         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
634         .cpsr_mask      = MODE_MASK,
635         .cpsr_val       = SVC_MODE,
636         .fn             = kprobe_trap_handler,
637 };
638
639 #endif /* !CONFIG_THUMB2_KERNEL */
640
641 int __init arch_init_kprobes()
642 {
643         arm_kprobe_decode_init();
644 #ifdef CONFIG_THUMB2_KERNEL
645         register_undef_hook(&kprobes_thumb16_break_hook);
646         register_undef_hook(&kprobes_thumb32_break_hook);
647 #else
648         register_undef_hook(&kprobes_arm_break_hook);
649 #endif
650         return 0;
651 }