rt2800: introduce wpdma_disable function
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287                                     const u8 *data, const size_t len)
288 {
289         u32 reg;
290
291         /*
292          * enable Host program ram write selection
293          */
294         reg = 0;
295         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298         /*
299          * Write firmware to device.
300          */
301         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302                                       data, len);
303
304         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310         return 0;
311 }
312
313 /*
314  * Initialization functions.
315  */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319         u32 word;
320
321         if (entry->queue->qid == QID_RX) {
322                 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325         } else {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329         }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337         u32 word;
338
339         if (entry->queue->qid == QID_RX) {
340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
341                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342                 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344                 rt2x00_desc_read(entry_priv->desc, 1, &word);
345                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346                 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348                 /*
349                  * Set RX IDX in register to inform hardware that we have
350                  * handled this entry and it is available for reuse again.
351                  */
352                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353                                       entry->entry_idx);
354         } else {
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358         }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363         struct queue_entry_priv_pci *entry_priv;
364
365         /*
366          * Initialize registers.
367          */
368         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
369         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
370         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
371                                  rt2x00dev->tx[0].limit);
372         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
373         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
374
375         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
376         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
377         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
378                                  rt2x00dev->tx[1].limit);
379         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
380         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
381
382         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
383         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
384         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
385                                  rt2x00dev->tx[2].limit);
386         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
387         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
388
389         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
390         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
391         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
392                                  rt2x00dev->tx[3].limit);
393         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
394         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
395
396         entry_priv = rt2x00dev->rx->entries[0].priv_data;
397         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
398         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
399                                  rt2x00dev->rx[0].limit);
400         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
401                                  rt2x00dev->rx[0].limit - 1);
402         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
403
404         rt2800_disable_wpdma(rt2x00dev);
405
406         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
407
408         return 0;
409 }
410
411 /*
412  * Device state switch handlers.
413  */
414 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
415                                  enum dev_state state)
416 {
417         u32 reg;
418         unsigned long flags;
419
420         /*
421          * When interrupts are being enabled, the interrupt registers
422          * should clear the register to assure a clean state.
423          */
424         if (state == STATE_RADIO_IRQ_ON) {
425                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
426                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
427         }
428
429         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
430         reg = 0;
431         if (state == STATE_RADIO_IRQ_ON) {
432                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
433                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
434                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
435                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
436                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
437         }
438         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
439         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
440
441         if (state == STATE_RADIO_IRQ_OFF) {
442                 /*
443                  * Wait for possibly running tasklets to finish.
444                  */
445                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
446                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
447                 tasklet_kill(&rt2x00dev->autowake_tasklet);
448                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
449                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
450         }
451 }
452
453 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
454 {
455         u32 reg;
456
457         /*
458          * Reset DMA indexes
459          */
460         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
461         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
462         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
463         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
464         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
465         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
466         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
467         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
468         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
469
470         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
471         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
472
473         if (rt2x00_is_pcie(rt2x00dev) &&
474             (rt2x00_rt(rt2x00dev, RT3572) ||
475              rt2x00_rt(rt2x00dev, RT5390) ||
476              rt2x00_rt(rt2x00dev, RT5392))) {
477                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
478                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
479                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
480                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
481         }
482
483         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
484
485         reg = 0;
486         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
487         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
488         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
489
490         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
491
492         return 0;
493 }
494
495 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
496 {
497         int retval;
498
499         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
500                      rt2800pci_init_queues(rt2x00dev)))
501                 return -EIO;
502
503         retval = rt2800_enable_radio(rt2x00dev);
504         if (retval)
505                 return retval;
506
507         /* After resume MCU_BOOT_SIGNAL will trash these. */
508         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
509         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
510
511         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
512         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
513
514         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
515         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
516
517         return retval;
518 }
519
520 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
521 {
522         if (rt2x00_is_soc(rt2x00dev)) {
523                 rt2800_disable_radio(rt2x00dev);
524                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
525                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
526         }
527 }
528
529 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
530                                enum dev_state state)
531 {
532         if (state == STATE_AWAKE) {
533                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
534                                    0, 0x02);
535                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
536         } else if (state == STATE_SLEEP) {
537                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
538                                          0xffffffff);
539                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
540                                          0xffffffff);
541                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
542                                    0xff, 0x01);
543         }
544
545         return 0;
546 }
547
548 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
549                                       enum dev_state state)
550 {
551         int retval = 0;
552
553         switch (state) {
554         case STATE_RADIO_ON:
555                 retval = rt2800pci_enable_radio(rt2x00dev);
556                 break;
557         case STATE_RADIO_OFF:
558                 /*
559                  * After the radio has been disabled, the device should
560                  * be put to sleep for powersaving.
561                  */
562                 rt2800pci_disable_radio(rt2x00dev);
563                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
564                 break;
565         case STATE_RADIO_IRQ_ON:
566         case STATE_RADIO_IRQ_OFF:
567                 rt2800pci_toggle_irq(rt2x00dev, state);
568                 break;
569         case STATE_DEEP_SLEEP:
570         case STATE_SLEEP:
571         case STATE_STANDBY:
572         case STATE_AWAKE:
573                 retval = rt2800pci_set_state(rt2x00dev, state);
574                 break;
575         default:
576                 retval = -ENOTSUPP;
577                 break;
578         }
579
580         if (unlikely(retval))
581                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
582                       state, retval);
583
584         return retval;
585 }
586
587 /*
588  * TX descriptor initialization
589  */
590 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
591 {
592         return (__le32 *) entry->skb->data;
593 }
594
595 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
596                                     struct txentry_desc *txdesc)
597 {
598         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
599         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
600         __le32 *txd = entry_priv->desc;
601         u32 word;
602
603         /*
604          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
605          * must contains a TXWI structure + 802.11 header + padding + 802.11
606          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
607          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
608          * data. It means that LAST_SEC0 is always 0.
609          */
610
611         /*
612          * Initialize TX descriptor
613          */
614         word = 0;
615         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
616         rt2x00_desc_write(txd, 0, word);
617
618         word = 0;
619         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
620         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
621                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
622         rt2x00_set_field32(&word, TXD_W1_BURST,
623                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
624         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
625         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
626         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
627         rt2x00_desc_write(txd, 1, word);
628
629         word = 0;
630         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
631                            skbdesc->skb_dma + TXWI_DESC_SIZE);
632         rt2x00_desc_write(txd, 2, word);
633
634         word = 0;
635         rt2x00_set_field32(&word, TXD_W3_WIV,
636                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
637         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
638         rt2x00_desc_write(txd, 3, word);
639
640         /*
641          * Register descriptor details in skb frame descriptor.
642          */
643         skbdesc->desc = txd;
644         skbdesc->desc_len = TXD_DESC_SIZE;
645 }
646
647 /*
648  * RX control handlers
649  */
650 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
651                                   struct rxdone_entry_desc *rxdesc)
652 {
653         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
654         __le32 *rxd = entry_priv->desc;
655         u32 word;
656
657         rt2x00_desc_read(rxd, 3, &word);
658
659         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
660                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
661
662         /*
663          * Unfortunately we don't know the cipher type used during
664          * decryption. This prevents us from correct providing
665          * correct statistics through debugfs.
666          */
667         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
668
669         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
670                 /*
671                  * Hardware has stripped IV/EIV data from 802.11 frame during
672                  * decryption. Unfortunately the descriptor doesn't contain
673                  * any fields with the EIV/IV data either, so they can't
674                  * be restored by rt2x00lib.
675                  */
676                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
677
678                 /*
679                  * The hardware has already checked the Michael Mic and has
680                  * stripped it from the frame. Signal this to mac80211.
681                  */
682                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
683
684                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
685                         rxdesc->flags |= RX_FLAG_DECRYPTED;
686                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
687                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
688         }
689
690         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
691                 rxdesc->dev_flags |= RXDONE_MY_BSS;
692
693         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
694                 rxdesc->dev_flags |= RXDONE_L2PAD;
695
696         /*
697          * Process the RXWI structure that is at the start of the buffer.
698          */
699         rt2800_process_rxwi(entry, rxdesc);
700 }
701
702 /*
703  * Interrupt functions.
704  */
705 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
706 {
707         struct ieee80211_conf conf = { .flags = 0 };
708         struct rt2x00lib_conf libconf = { .conf = &conf };
709
710         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
711 }
712
713 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
714 {
715         struct data_queue *queue;
716         struct queue_entry *entry;
717         u32 status;
718         u8 qid;
719         int max_tx_done = 16;
720
721         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
722                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
723                 if (unlikely(qid >= QID_RX)) {
724                         /*
725                          * Unknown queue, this shouldn't happen. Just drop
726                          * this tx status.
727                          */
728                         WARNING(rt2x00dev, "Got TX status report with "
729                                            "unexpected pid %u, dropping\n", qid);
730                         break;
731                 }
732
733                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
734                 if (unlikely(queue == NULL)) {
735                         /*
736                          * The queue is NULL, this shouldn't happen. Stop
737                          * processing here and drop the tx status
738                          */
739                         WARNING(rt2x00dev, "Got TX status for an unavailable "
740                                            "queue %u, dropping\n", qid);
741                         break;
742                 }
743
744                 if (unlikely(rt2x00queue_empty(queue))) {
745                         /*
746                          * The queue is empty. Stop processing here
747                          * and drop the tx status.
748                          */
749                         WARNING(rt2x00dev, "Got TX status for an empty "
750                                            "queue %u, dropping\n", qid);
751                         break;
752                 }
753
754                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
755                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
756
757                 if (--max_tx_done == 0)
758                         break;
759         }
760
761         return !max_tx_done;
762 }
763
764 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
765                                               struct rt2x00_field32 irq_field)
766 {
767         u32 reg;
768
769         /*
770          * Enable a single interrupt. The interrupt mask register
771          * access needs locking.
772          */
773         spin_lock_irq(&rt2x00dev->irqmask_lock);
774         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
775         rt2x00_set_field32(&reg, irq_field, 1);
776         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
777         spin_unlock_irq(&rt2x00dev->irqmask_lock);
778 }
779
780 static void rt2800pci_txstatus_tasklet(unsigned long data)
781 {
782         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
783         if (rt2800pci_txdone(rt2x00dev))
784                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
785
786         /*
787          * No need to enable the tx status interrupt here as we always
788          * leave it enabled to minimize the possibility of a tx status
789          * register overflow. See comment in interrupt handler.
790          */
791 }
792
793 static void rt2800pci_pretbtt_tasklet(unsigned long data)
794 {
795         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
796         rt2x00lib_pretbtt(rt2x00dev);
797         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
798                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
799 }
800
801 static void rt2800pci_tbtt_tasklet(unsigned long data)
802 {
803         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
804         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
805         u32 reg;
806
807         rt2x00lib_beacondone(rt2x00dev);
808
809         if (rt2x00dev->intf_ap_count) {
810                 /*
811                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
812                  * causing beacon skew and as a result causing problems with
813                  * some powersaving clients over time. Shorten the beacon
814                  * interval every 64 beacons by 64us to mitigate this effect.
815                  */
816                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
817                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
818                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
819                                            (rt2x00dev->beacon_int * 16) - 1);
820                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
821                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
822                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
823                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
824                                            (rt2x00dev->beacon_int * 16));
825                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
826                 }
827                 drv_data->tbtt_tick++;
828                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
829         }
830
831         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
832                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
833 }
834
835 static void rt2800pci_rxdone_tasklet(unsigned long data)
836 {
837         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
838         if (rt2x00pci_rxdone(rt2x00dev))
839                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
840         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
841                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
842 }
843
844 static void rt2800pci_autowake_tasklet(unsigned long data)
845 {
846         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
847         rt2800pci_wakeup(rt2x00dev);
848         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
849                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
850 }
851
852 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
853 {
854         u32 status;
855         int i;
856
857         /*
858          * The TX_FIFO_STATUS interrupt needs special care. We should
859          * read TX_STA_FIFO but we should do it immediately as otherwise
860          * the register can overflow and we would lose status reports.
861          *
862          * Hence, read the TX_STA_FIFO register and copy all tx status
863          * reports into a kernel FIFO which is handled in the txstatus
864          * tasklet. We use a tasklet to process the tx status reports
865          * because we can schedule the tasklet multiple times (when the
866          * interrupt fires again during tx status processing).
867          *
868          * Furthermore we don't disable the TX_FIFO_STATUS
869          * interrupt here but leave it enabled so that the TX_STA_FIFO
870          * can also be read while the tx status tasklet gets executed.
871          *
872          * Since we have only one producer and one consumer we don't
873          * need to lock the kfifo.
874          */
875         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
876                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
877
878                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
879                         break;
880
881                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
882                         WARNING(rt2x00dev, "TX status FIFO overrun,"
883                                 "drop tx status report.\n");
884                         break;
885                 }
886         }
887
888         /* Schedule the tasklet for processing the tx status. */
889         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
890 }
891
892 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
893 {
894         struct rt2x00_dev *rt2x00dev = dev_instance;
895         u32 reg, mask;
896
897         /* Read status and ACK all interrupts */
898         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
899         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
900
901         if (!reg)
902                 return IRQ_NONE;
903
904         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
905                 return IRQ_HANDLED;
906
907         /*
908          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
909          * for interrupts and interrupt masks we can just use the value of
910          * INT_SOURCE_CSR to create the interrupt mask.
911          */
912         mask = ~reg;
913
914         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
915                 rt2800pci_txstatus_interrupt(rt2x00dev);
916                 /*
917                  * Never disable the TX_FIFO_STATUS interrupt.
918                  */
919                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
920         }
921
922         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
923                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
924
925         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
926                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
927
928         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
929                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
930
931         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
932                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
933
934         /*
935          * Disable all interrupts for which a tasklet was scheduled right now,
936          * the tasklet will reenable the appropriate interrupts.
937          */
938         spin_lock(&rt2x00dev->irqmask_lock);
939         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
940         reg &= mask;
941         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
942         spin_unlock(&rt2x00dev->irqmask_lock);
943
944         return IRQ_HANDLED;
945 }
946
947 /*
948  * Device probe functions.
949  */
950 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
951 {
952         /*
953          * Read EEPROM into buffer
954          */
955         if (rt2x00_is_soc(rt2x00dev))
956                 rt2800pci_read_eeprom_soc(rt2x00dev);
957         else if (rt2800pci_efuse_detect(rt2x00dev))
958                 rt2800pci_read_eeprom_efuse(rt2x00dev);
959         else
960                 rt2800pci_read_eeprom_pci(rt2x00dev);
961
962         return rt2800_validate_eeprom(rt2x00dev);
963 }
964
965 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
966 {
967         int retval;
968
969         /*
970          * Allocate eeprom data.
971          */
972         retval = rt2800pci_validate_eeprom(rt2x00dev);
973         if (retval)
974                 return retval;
975
976         retval = rt2800_init_eeprom(rt2x00dev);
977         if (retval)
978                 return retval;
979
980         /*
981          * Initialize hw specifications.
982          */
983         retval = rt2800_probe_hw_mode(rt2x00dev);
984         if (retval)
985                 return retval;
986
987         /*
988          * This device has multiple filters for control frames
989          * and has a separate filter for PS Poll frames.
990          */
991         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
992         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
993
994         /*
995          * This device has a pre tbtt interrupt and thus fetches
996          * a new beacon directly prior to transmission.
997          */
998         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
999
1000         /*
1001          * This device requires firmware.
1002          */
1003         if (!rt2x00_is_soc(rt2x00dev))
1004                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1005         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1006         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1007         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1008         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1009         if (!modparam_nohwcrypt)
1010                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1011         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1012         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1013
1014         /*
1015          * Set the rssi offset.
1016          */
1017         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1018
1019         return 0;
1020 }
1021
1022 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1023         .tx                     = rt2x00mac_tx,
1024         .start                  = rt2x00mac_start,
1025         .stop                   = rt2x00mac_stop,
1026         .add_interface          = rt2x00mac_add_interface,
1027         .remove_interface       = rt2x00mac_remove_interface,
1028         .config                 = rt2x00mac_config,
1029         .configure_filter       = rt2x00mac_configure_filter,
1030         .set_key                = rt2x00mac_set_key,
1031         .sw_scan_start          = rt2x00mac_sw_scan_start,
1032         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1033         .get_stats              = rt2x00mac_get_stats,
1034         .get_tkip_seq           = rt2800_get_tkip_seq,
1035         .set_rts_threshold      = rt2800_set_rts_threshold,
1036         .sta_add                = rt2x00mac_sta_add,
1037         .sta_remove             = rt2x00mac_sta_remove,
1038         .bss_info_changed       = rt2x00mac_bss_info_changed,
1039         .conf_tx                = rt2800_conf_tx,
1040         .get_tsf                = rt2800_get_tsf,
1041         .rfkill_poll            = rt2x00mac_rfkill_poll,
1042         .ampdu_action           = rt2800_ampdu_action,
1043         .flush                  = rt2x00mac_flush,
1044         .get_survey             = rt2800_get_survey,
1045         .get_ringparam          = rt2x00mac_get_ringparam,
1046         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1047 };
1048
1049 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1050         .register_read          = rt2x00pci_register_read,
1051         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1052         .register_write         = rt2x00pci_register_write,
1053         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1054         .register_multiread     = rt2x00pci_register_multiread,
1055         .register_multiwrite    = rt2x00pci_register_multiwrite,
1056         .regbusy_read           = rt2x00pci_regbusy_read,
1057         .drv_write_firmware     = rt2800pci_write_firmware,
1058         .drv_init_registers     = rt2800pci_init_registers,
1059         .drv_get_txwi           = rt2800pci_get_txwi,
1060 };
1061
1062 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1063         .irq_handler            = rt2800pci_interrupt,
1064         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1065         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1066         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1067         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1068         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1069         .probe_hw               = rt2800pci_probe_hw,
1070         .get_firmware_name      = rt2800pci_get_firmware_name,
1071         .check_firmware         = rt2800_check_firmware,
1072         .load_firmware          = rt2800_load_firmware,
1073         .initialize             = rt2x00pci_initialize,
1074         .uninitialize           = rt2x00pci_uninitialize,
1075         .get_entry_state        = rt2800pci_get_entry_state,
1076         .clear_entry            = rt2800pci_clear_entry,
1077         .set_device_state       = rt2800pci_set_device_state,
1078         .rfkill_poll            = rt2800_rfkill_poll,
1079         .link_stats             = rt2800_link_stats,
1080         .reset_tuner            = rt2800_reset_tuner,
1081         .link_tuner             = rt2800_link_tuner,
1082         .gain_calibration       = rt2800_gain_calibration,
1083         .vco_calibration        = rt2800_vco_calibration,
1084         .start_queue            = rt2800pci_start_queue,
1085         .kick_queue             = rt2800pci_kick_queue,
1086         .stop_queue             = rt2800pci_stop_queue,
1087         .flush_queue            = rt2x00pci_flush_queue,
1088         .write_tx_desc          = rt2800pci_write_tx_desc,
1089         .write_tx_data          = rt2800_write_tx_data,
1090         .write_beacon           = rt2800_write_beacon,
1091         .clear_beacon           = rt2800_clear_beacon,
1092         .fill_rxdone            = rt2800pci_fill_rxdone,
1093         .config_shared_key      = rt2800_config_shared_key,
1094         .config_pairwise_key    = rt2800_config_pairwise_key,
1095         .config_filter          = rt2800_config_filter,
1096         .config_intf            = rt2800_config_intf,
1097         .config_erp             = rt2800_config_erp,
1098         .config_ant             = rt2800_config_ant,
1099         .config                 = rt2800_config,
1100         .sta_add                = rt2800_sta_add,
1101         .sta_remove             = rt2800_sta_remove,
1102 };
1103
1104 static const struct data_queue_desc rt2800pci_queue_rx = {
1105         .entry_num              = 128,
1106         .data_size              = AGGREGATION_SIZE,
1107         .desc_size              = RXD_DESC_SIZE,
1108         .priv_size              = sizeof(struct queue_entry_priv_pci),
1109 };
1110
1111 static const struct data_queue_desc rt2800pci_queue_tx = {
1112         .entry_num              = 64,
1113         .data_size              = AGGREGATION_SIZE,
1114         .desc_size              = TXD_DESC_SIZE,
1115         .priv_size              = sizeof(struct queue_entry_priv_pci),
1116 };
1117
1118 static const struct data_queue_desc rt2800pci_queue_bcn = {
1119         .entry_num              = 8,
1120         .data_size              = 0, /* No DMA required for beacons */
1121         .desc_size              = TXWI_DESC_SIZE,
1122         .priv_size              = sizeof(struct queue_entry_priv_pci),
1123 };
1124
1125 static const struct rt2x00_ops rt2800pci_ops = {
1126         .name                   = KBUILD_MODNAME,
1127         .drv_data_size          = sizeof(struct rt2800_drv_data),
1128         .max_sta_intf           = 1,
1129         .max_ap_intf            = 8,
1130         .eeprom_size            = EEPROM_SIZE,
1131         .rf_size                = RF_SIZE,
1132         .tx_queues              = NUM_TX_QUEUES,
1133         .extra_tx_headroom      = TXWI_DESC_SIZE,
1134         .rx                     = &rt2800pci_queue_rx,
1135         .tx                     = &rt2800pci_queue_tx,
1136         .bcn                    = &rt2800pci_queue_bcn,
1137         .lib                    = &rt2800pci_rt2x00_ops,
1138         .drv                    = &rt2800pci_rt2800_ops,
1139         .hw                     = &rt2800pci_mac80211_ops,
1140 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1141         .debugfs                = &rt2800_rt2x00debug,
1142 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1143 };
1144
1145 /*
1146  * RT2800pci module information.
1147  */
1148 #ifdef CONFIG_PCI
1149 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1150         { PCI_DEVICE(0x1814, 0x0601) },
1151         { PCI_DEVICE(0x1814, 0x0681) },
1152         { PCI_DEVICE(0x1814, 0x0701) },
1153         { PCI_DEVICE(0x1814, 0x0781) },
1154         { PCI_DEVICE(0x1814, 0x3090) },
1155         { PCI_DEVICE(0x1814, 0x3091) },
1156         { PCI_DEVICE(0x1814, 0x3092) },
1157         { PCI_DEVICE(0x1432, 0x7708) },
1158         { PCI_DEVICE(0x1432, 0x7727) },
1159         { PCI_DEVICE(0x1432, 0x7728) },
1160         { PCI_DEVICE(0x1432, 0x7738) },
1161         { PCI_DEVICE(0x1432, 0x7748) },
1162         { PCI_DEVICE(0x1432, 0x7758) },
1163         { PCI_DEVICE(0x1432, 0x7768) },
1164         { PCI_DEVICE(0x1462, 0x891a) },
1165         { PCI_DEVICE(0x1a3b, 0x1059) },
1166 #ifdef CONFIG_RT2800PCI_RT33XX
1167         { PCI_DEVICE(0x1814, 0x3390) },
1168 #endif
1169 #ifdef CONFIG_RT2800PCI_RT35XX
1170         { PCI_DEVICE(0x1432, 0x7711) },
1171         { PCI_DEVICE(0x1432, 0x7722) },
1172         { PCI_DEVICE(0x1814, 0x3060) },
1173         { PCI_DEVICE(0x1814, 0x3062) },
1174         { PCI_DEVICE(0x1814, 0x3562) },
1175         { PCI_DEVICE(0x1814, 0x3592) },
1176         { PCI_DEVICE(0x1814, 0x3593) },
1177 #endif
1178 #ifdef CONFIG_RT2800PCI_RT53XX
1179         { PCI_DEVICE(0x1814, 0x5390) },
1180         { PCI_DEVICE(0x1814, 0x539a) },
1181         { PCI_DEVICE(0x1814, 0x539f) },
1182 #endif
1183         { 0, }
1184 };
1185 #endif /* CONFIG_PCI */
1186
1187 MODULE_AUTHOR(DRV_PROJECT);
1188 MODULE_VERSION(DRV_VERSION);
1189 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1190 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1191 #ifdef CONFIG_PCI
1192 MODULE_FIRMWARE(FIRMWARE_RT2860);
1193 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1194 #endif /* CONFIG_PCI */
1195 MODULE_LICENSE("GPL");
1196
1197 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1198 static int rt2800soc_probe(struct platform_device *pdev)
1199 {
1200         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1201 }
1202
1203 static struct platform_driver rt2800soc_driver = {
1204         .driver         = {
1205                 .name           = "rt2800_wmac",
1206                 .owner          = THIS_MODULE,
1207                 .mod_name       = KBUILD_MODNAME,
1208         },
1209         .probe          = rt2800soc_probe,
1210         .remove         = __devexit_p(rt2x00soc_remove),
1211         .suspend        = rt2x00soc_suspend,
1212         .resume         = rt2x00soc_resume,
1213 };
1214 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1215
1216 #ifdef CONFIG_PCI
1217 static int rt2800pci_probe(struct pci_dev *pci_dev,
1218                            const struct pci_device_id *id)
1219 {
1220         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1221 }
1222
1223 static struct pci_driver rt2800pci_driver = {
1224         .name           = KBUILD_MODNAME,
1225         .id_table       = rt2800pci_device_table,
1226         .probe          = rt2800pci_probe,
1227         .remove         = __devexit_p(rt2x00pci_remove),
1228         .suspend        = rt2x00pci_suspend,
1229         .resume         = rt2x00pci_resume,
1230 };
1231 #endif /* CONFIG_PCI */
1232
1233 static int __init rt2800pci_init(void)
1234 {
1235         int ret = 0;
1236
1237 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1238         ret = platform_driver_register(&rt2800soc_driver);
1239         if (ret)
1240                 return ret;
1241 #endif
1242 #ifdef CONFIG_PCI
1243         ret = pci_register_driver(&rt2800pci_driver);
1244         if (ret) {
1245 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1246                 platform_driver_unregister(&rt2800soc_driver);
1247 #endif
1248                 return ret;
1249         }
1250 #endif
1251
1252         return ret;
1253 }
1254
1255 static void __exit rt2800pci_exit(void)
1256 {
1257 #ifdef CONFIG_PCI
1258         pci_unregister_driver(&rt2800pci_driver);
1259 #endif
1260 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1261         platform_driver_unregister(&rt2800soc_driver);
1262 #endif
1263 }
1264
1265 module_init(rt2800pci_init);
1266 module_exit(rt2800pci_exit);