rt2800: Add documentation on MCU requests
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287                                     const u8 *data, const size_t len)
288 {
289         u32 reg;
290
291         /*
292          * enable Host program ram write selection
293          */
294         reg = 0;
295         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298         /*
299          * Write firmware to device.
300          */
301         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302                                       data, len);
303
304         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310         return 0;
311 }
312
313 /*
314  * Initialization functions.
315  */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319         u32 word;
320
321         if (entry->queue->qid == QID_RX) {
322                 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325         } else {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329         }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337         u32 word;
338
339         if (entry->queue->qid == QID_RX) {
340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
341                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342                 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344                 rt2x00_desc_read(entry_priv->desc, 1, &word);
345                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346                 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348                 /*
349                  * Set RX IDX in register to inform hardware that we have
350                  * handled this entry and it is available for reuse again.
351                  */
352                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353                                       entry->entry_idx);
354         } else {
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358         }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363         struct queue_entry_priv_pci *entry_priv;
364         u32 reg;
365
366         /*
367          * Initialize registers.
368          */
369         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
371         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
372                                  rt2x00dev->tx[0].limit);
373         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
374         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375
376         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
378         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
379                                  rt2x00dev->tx[1].limit);
380         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
381         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382
383         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
385         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
386                                  rt2x00dev->tx[2].limit);
387         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
388         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389
390         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
392         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
393                                  rt2x00dev->tx[3].limit);
394         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
395         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396
397         entry_priv = rt2x00dev->rx->entries[0].priv_data;
398         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
399         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
400                                  rt2x00dev->rx[0].limit);
401         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
402                                  rt2x00dev->rx[0].limit - 1);
403         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404
405         /*
406          * Enable global DMA configuration
407          */
408         rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
410         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
411         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412         rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413
414         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415
416         return 0;
417 }
418
419 /*
420  * Device state switch handlers.
421  */
422 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
423                                  enum dev_state state)
424 {
425         u32 reg;
426         unsigned long flags;
427
428         /*
429          * When interrupts are being enabled, the interrupt registers
430          * should clear the register to assure a clean state.
431          */
432         if (state == STATE_RADIO_IRQ_ON) {
433                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
434                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435         }
436
437         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438         reg = 0;
439         if (state == STATE_RADIO_IRQ_ON) {
440                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
441                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
442                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
443                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
444                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
445         }
446         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
448
449         if (state == STATE_RADIO_IRQ_OFF) {
450                 /*
451                  * Wait for possibly running tasklets to finish.
452                  */
453                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
454                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
455                 tasklet_kill(&rt2x00dev->autowake_tasklet);
456                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
457                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458         }
459 }
460
461 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
462 {
463         u32 reg;
464
465         /*
466          * Reset DMA indexes
467          */
468         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
470         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
471         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
472         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
473         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
474         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
475         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477
478         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
479         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480
481         if (rt2x00_is_pcie(rt2x00dev) &&
482             (rt2x00_rt(rt2x00dev, RT3572) ||
483              rt2x00_rt(rt2x00dev, RT5390) ||
484              rt2x00_rt(rt2x00dev, RT5392))) {
485                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
486                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
487                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
488                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
489         }
490
491         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
492
493         reg = 0;
494         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
495         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
496         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
497
498         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
499
500         return 0;
501 }
502
503 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
504 {
505         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
506                      rt2800pci_init_queues(rt2x00dev)))
507                 return -EIO;
508
509         return rt2800_enable_radio(rt2x00dev);
510 }
511
512 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
513 {
514         if (rt2x00_is_soc(rt2x00dev)) {
515                 rt2800_disable_radio(rt2x00dev);
516                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
517                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
518         }
519 }
520
521 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
522                                enum dev_state state)
523 {
524         if (state == STATE_AWAKE) {
525                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
526                                    0, 0x02);
527                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
528         } else if (state == STATE_SLEEP) {
529                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
530                                          0xffffffff);
531                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
532                                          0xffffffff);
533                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
534                                    0xff, 0x01);
535         }
536
537         return 0;
538 }
539
540 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
541                                       enum dev_state state)
542 {
543         int retval = 0;
544
545         switch (state) {
546         case STATE_RADIO_ON:
547                 /*
548                  * Before the radio can be enabled, the device first has
549                  * to be woken up. After that it needs a bit of time
550                  * to be fully awake and then the radio can be enabled.
551                  */
552                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
553                 msleep(1);
554                 retval = rt2800pci_enable_radio(rt2x00dev);
555                 break;
556         case STATE_RADIO_OFF:
557                 /*
558                  * After the radio has been disabled, the device should
559                  * be put to sleep for powersaving.
560                  */
561                 rt2800pci_disable_radio(rt2x00dev);
562                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
563                 break;
564         case STATE_RADIO_IRQ_ON:
565         case STATE_RADIO_IRQ_OFF:
566                 rt2800pci_toggle_irq(rt2x00dev, state);
567                 break;
568         case STATE_DEEP_SLEEP:
569         case STATE_SLEEP:
570         case STATE_STANDBY:
571         case STATE_AWAKE:
572                 retval = rt2800pci_set_state(rt2x00dev, state);
573                 break;
574         default:
575                 retval = -ENOTSUPP;
576                 break;
577         }
578
579         if (unlikely(retval))
580                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
581                       state, retval);
582
583         return retval;
584 }
585
586 /*
587  * TX descriptor initialization
588  */
589 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
590 {
591         return (__le32 *) entry->skb->data;
592 }
593
594 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
595                                     struct txentry_desc *txdesc)
596 {
597         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
598         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
599         __le32 *txd = entry_priv->desc;
600         u32 word;
601
602         /*
603          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
604          * must contains a TXWI structure + 802.11 header + padding + 802.11
605          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
606          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
607          * data. It means that LAST_SEC0 is always 0.
608          */
609
610         /*
611          * Initialize TX descriptor
612          */
613         word = 0;
614         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
615         rt2x00_desc_write(txd, 0, word);
616
617         word = 0;
618         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
619         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
620                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
621         rt2x00_set_field32(&word, TXD_W1_BURST,
622                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
623         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
624         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
625         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
626         rt2x00_desc_write(txd, 1, word);
627
628         word = 0;
629         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
630                            skbdesc->skb_dma + TXWI_DESC_SIZE);
631         rt2x00_desc_write(txd, 2, word);
632
633         word = 0;
634         rt2x00_set_field32(&word, TXD_W3_WIV,
635                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
636         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
637         rt2x00_desc_write(txd, 3, word);
638
639         /*
640          * Register descriptor details in skb frame descriptor.
641          */
642         skbdesc->desc = txd;
643         skbdesc->desc_len = TXD_DESC_SIZE;
644 }
645
646 /*
647  * RX control handlers
648  */
649 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
650                                   struct rxdone_entry_desc *rxdesc)
651 {
652         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
653         __le32 *rxd = entry_priv->desc;
654         u32 word;
655
656         rt2x00_desc_read(rxd, 3, &word);
657
658         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
659                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
660
661         /*
662          * Unfortunately we don't know the cipher type used during
663          * decryption. This prevents us from correct providing
664          * correct statistics through debugfs.
665          */
666         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
667
668         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
669                 /*
670                  * Hardware has stripped IV/EIV data from 802.11 frame during
671                  * decryption. Unfortunately the descriptor doesn't contain
672                  * any fields with the EIV/IV data either, so they can't
673                  * be restored by rt2x00lib.
674                  */
675                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
676
677                 /*
678                  * The hardware has already checked the Michael Mic and has
679                  * stripped it from the frame. Signal this to mac80211.
680                  */
681                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
682
683                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
684                         rxdesc->flags |= RX_FLAG_DECRYPTED;
685                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
686                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
687         }
688
689         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
690                 rxdesc->dev_flags |= RXDONE_MY_BSS;
691
692         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
693                 rxdesc->dev_flags |= RXDONE_L2PAD;
694
695         /*
696          * Process the RXWI structure that is at the start of the buffer.
697          */
698         rt2800_process_rxwi(entry, rxdesc);
699 }
700
701 /*
702  * Interrupt functions.
703  */
704 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
705 {
706         struct ieee80211_conf conf = { .flags = 0 };
707         struct rt2x00lib_conf libconf = { .conf = &conf };
708
709         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
710 }
711
712 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
713 {
714         struct data_queue *queue;
715         struct queue_entry *entry;
716         u32 status;
717         u8 qid;
718         int max_tx_done = 16;
719
720         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
721                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
722                 if (unlikely(qid >= QID_RX)) {
723                         /*
724                          * Unknown queue, this shouldn't happen. Just drop
725                          * this tx status.
726                          */
727                         WARNING(rt2x00dev, "Got TX status report with "
728                                            "unexpected pid %u, dropping\n", qid);
729                         break;
730                 }
731
732                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
733                 if (unlikely(queue == NULL)) {
734                         /*
735                          * The queue is NULL, this shouldn't happen. Stop
736                          * processing here and drop the tx status
737                          */
738                         WARNING(rt2x00dev, "Got TX status for an unavailable "
739                                            "queue %u, dropping\n", qid);
740                         break;
741                 }
742
743                 if (unlikely(rt2x00queue_empty(queue))) {
744                         /*
745                          * The queue is empty. Stop processing here
746                          * and drop the tx status.
747                          */
748                         WARNING(rt2x00dev, "Got TX status for an empty "
749                                            "queue %u, dropping\n", qid);
750                         break;
751                 }
752
753                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
754                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
755
756                 if (--max_tx_done == 0)
757                         break;
758         }
759
760         return !max_tx_done;
761 }
762
763 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
764                                               struct rt2x00_field32 irq_field)
765 {
766         u32 reg;
767
768         /*
769          * Enable a single interrupt. The interrupt mask register
770          * access needs locking.
771          */
772         spin_lock_irq(&rt2x00dev->irqmask_lock);
773         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
774         rt2x00_set_field32(&reg, irq_field, 1);
775         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
776         spin_unlock_irq(&rt2x00dev->irqmask_lock);
777 }
778
779 static void rt2800pci_txstatus_tasklet(unsigned long data)
780 {
781         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
782         if (rt2800pci_txdone(rt2x00dev))
783                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
784
785         /*
786          * No need to enable the tx status interrupt here as we always
787          * leave it enabled to minimize the possibility of a tx status
788          * register overflow. See comment in interrupt handler.
789          */
790 }
791
792 static void rt2800pci_pretbtt_tasklet(unsigned long data)
793 {
794         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
795         rt2x00lib_pretbtt(rt2x00dev);
796         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
797                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
798 }
799
800 static void rt2800pci_tbtt_tasklet(unsigned long data)
801 {
802         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
803         rt2x00lib_beacondone(rt2x00dev);
804         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
805                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
806 }
807
808 static void rt2800pci_rxdone_tasklet(unsigned long data)
809 {
810         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
811         if (rt2x00pci_rxdone(rt2x00dev))
812                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
813         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
814                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
815 }
816
817 static void rt2800pci_autowake_tasklet(unsigned long data)
818 {
819         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
820         rt2800pci_wakeup(rt2x00dev);
821         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
822                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
823 }
824
825 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
826 {
827         u32 status;
828         int i;
829
830         /*
831          * The TX_FIFO_STATUS interrupt needs special care. We should
832          * read TX_STA_FIFO but we should do it immediately as otherwise
833          * the register can overflow and we would lose status reports.
834          *
835          * Hence, read the TX_STA_FIFO register and copy all tx status
836          * reports into a kernel FIFO which is handled in the txstatus
837          * tasklet. We use a tasklet to process the tx status reports
838          * because we can schedule the tasklet multiple times (when the
839          * interrupt fires again during tx status processing).
840          *
841          * Furthermore we don't disable the TX_FIFO_STATUS
842          * interrupt here but leave it enabled so that the TX_STA_FIFO
843          * can also be read while the tx status tasklet gets executed.
844          *
845          * Since we have only one producer and one consumer we don't
846          * need to lock the kfifo.
847          */
848         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
849                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
850
851                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
852                         break;
853
854                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
855                         WARNING(rt2x00dev, "TX status FIFO overrun,"
856                                 "drop tx status report.\n");
857                         break;
858                 }
859         }
860
861         /* Schedule the tasklet for processing the tx status. */
862         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
863 }
864
865 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
866 {
867         struct rt2x00_dev *rt2x00dev = dev_instance;
868         u32 reg, mask;
869
870         /* Read status and ACK all interrupts */
871         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
872         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
873
874         if (!reg)
875                 return IRQ_NONE;
876
877         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
878                 return IRQ_HANDLED;
879
880         /*
881          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
882          * for interrupts and interrupt masks we can just use the value of
883          * INT_SOURCE_CSR to create the interrupt mask.
884          */
885         mask = ~reg;
886
887         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
888                 rt2800pci_txstatus_interrupt(rt2x00dev);
889                 /*
890                  * Never disable the TX_FIFO_STATUS interrupt.
891                  */
892                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
893         }
894
895         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
896                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
897
898         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
899                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
900
901         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
902                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
903
904         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
905                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
906
907         /*
908          * Disable all interrupts for which a tasklet was scheduled right now,
909          * the tasklet will reenable the appropriate interrupts.
910          */
911         spin_lock(&rt2x00dev->irqmask_lock);
912         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
913         reg &= mask;
914         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
915         spin_unlock(&rt2x00dev->irqmask_lock);
916
917         return IRQ_HANDLED;
918 }
919
920 /*
921  * Device probe functions.
922  */
923 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
924 {
925         /*
926          * Read EEPROM into buffer
927          */
928         if (rt2x00_is_soc(rt2x00dev))
929                 rt2800pci_read_eeprom_soc(rt2x00dev);
930         else if (rt2800pci_efuse_detect(rt2x00dev))
931                 rt2800pci_read_eeprom_efuse(rt2x00dev);
932         else
933                 rt2800pci_read_eeprom_pci(rt2x00dev);
934
935         return rt2800_validate_eeprom(rt2x00dev);
936 }
937
938 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
939 {
940         int retval;
941
942         /*
943          * Allocate eeprom data.
944          */
945         retval = rt2800pci_validate_eeprom(rt2x00dev);
946         if (retval)
947                 return retval;
948
949         retval = rt2800_init_eeprom(rt2x00dev);
950         if (retval)
951                 return retval;
952
953         /*
954          * Initialize hw specifications.
955          */
956         retval = rt2800_probe_hw_mode(rt2x00dev);
957         if (retval)
958                 return retval;
959
960         /*
961          * This device has multiple filters for control frames
962          * and has a separate filter for PS Poll frames.
963          */
964         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
965         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
966
967         /*
968          * This device has a pre tbtt interrupt and thus fetches
969          * a new beacon directly prior to transmission.
970          */
971         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
972
973         /*
974          * This device requires firmware.
975          */
976         if (!rt2x00_is_soc(rt2x00dev))
977                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
978         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
979         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
980         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
981         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
982         if (!modparam_nohwcrypt)
983                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
984         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
985         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
986
987         /*
988          * Set the rssi offset.
989          */
990         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
991
992         return 0;
993 }
994
995 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
996         .tx                     = rt2x00mac_tx,
997         .start                  = rt2x00mac_start,
998         .stop                   = rt2x00mac_stop,
999         .add_interface          = rt2x00mac_add_interface,
1000         .remove_interface       = rt2x00mac_remove_interface,
1001         .config                 = rt2x00mac_config,
1002         .configure_filter       = rt2x00mac_configure_filter,
1003         .set_key                = rt2x00mac_set_key,
1004         .sw_scan_start          = rt2x00mac_sw_scan_start,
1005         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1006         .get_stats              = rt2x00mac_get_stats,
1007         .get_tkip_seq           = rt2800_get_tkip_seq,
1008         .set_rts_threshold      = rt2800_set_rts_threshold,
1009         .sta_add                = rt2x00mac_sta_add,
1010         .sta_remove             = rt2x00mac_sta_remove,
1011         .bss_info_changed       = rt2x00mac_bss_info_changed,
1012         .conf_tx                = rt2800_conf_tx,
1013         .get_tsf                = rt2800_get_tsf,
1014         .rfkill_poll            = rt2x00mac_rfkill_poll,
1015         .ampdu_action           = rt2800_ampdu_action,
1016         .flush                  = rt2x00mac_flush,
1017         .get_survey             = rt2800_get_survey,
1018         .get_ringparam          = rt2x00mac_get_ringparam,
1019         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1020 };
1021
1022 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1023         .register_read          = rt2x00pci_register_read,
1024         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1025         .register_write         = rt2x00pci_register_write,
1026         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1027         .register_multiread     = rt2x00pci_register_multiread,
1028         .register_multiwrite    = rt2x00pci_register_multiwrite,
1029         .regbusy_read           = rt2x00pci_regbusy_read,
1030         .drv_write_firmware     = rt2800pci_write_firmware,
1031         .drv_init_registers     = rt2800pci_init_registers,
1032         .drv_get_txwi           = rt2800pci_get_txwi,
1033 };
1034
1035 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1036         .irq_handler            = rt2800pci_interrupt,
1037         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1038         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1039         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1040         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1041         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1042         .probe_hw               = rt2800pci_probe_hw,
1043         .get_firmware_name      = rt2800pci_get_firmware_name,
1044         .check_firmware         = rt2800_check_firmware,
1045         .load_firmware          = rt2800_load_firmware,
1046         .initialize             = rt2x00pci_initialize,
1047         .uninitialize           = rt2x00pci_uninitialize,
1048         .get_entry_state        = rt2800pci_get_entry_state,
1049         .clear_entry            = rt2800pci_clear_entry,
1050         .set_device_state       = rt2800pci_set_device_state,
1051         .rfkill_poll            = rt2800_rfkill_poll,
1052         .link_stats             = rt2800_link_stats,
1053         .reset_tuner            = rt2800_reset_tuner,
1054         .link_tuner             = rt2800_link_tuner,
1055         .gain_calibration       = rt2800_gain_calibration,
1056         .vco_calibration        = rt2800_vco_calibration,
1057         .start_queue            = rt2800pci_start_queue,
1058         .kick_queue             = rt2800pci_kick_queue,
1059         .stop_queue             = rt2800pci_stop_queue,
1060         .flush_queue            = rt2x00pci_flush_queue,
1061         .write_tx_desc          = rt2800pci_write_tx_desc,
1062         .write_tx_data          = rt2800_write_tx_data,
1063         .write_beacon           = rt2800_write_beacon,
1064         .clear_beacon           = rt2800_clear_beacon,
1065         .fill_rxdone            = rt2800pci_fill_rxdone,
1066         .config_shared_key      = rt2800_config_shared_key,
1067         .config_pairwise_key    = rt2800_config_pairwise_key,
1068         .config_filter          = rt2800_config_filter,
1069         .config_intf            = rt2800_config_intf,
1070         .config_erp             = rt2800_config_erp,
1071         .config_ant             = rt2800_config_ant,
1072         .config                 = rt2800_config,
1073         .sta_add                = rt2800_sta_add,
1074         .sta_remove             = rt2800_sta_remove,
1075 };
1076
1077 static const struct data_queue_desc rt2800pci_queue_rx = {
1078         .entry_num              = 128,
1079         .data_size              = AGGREGATION_SIZE,
1080         .desc_size              = RXD_DESC_SIZE,
1081         .priv_size              = sizeof(struct queue_entry_priv_pci),
1082 };
1083
1084 static const struct data_queue_desc rt2800pci_queue_tx = {
1085         .entry_num              = 64,
1086         .data_size              = AGGREGATION_SIZE,
1087         .desc_size              = TXD_DESC_SIZE,
1088         .priv_size              = sizeof(struct queue_entry_priv_pci),
1089 };
1090
1091 static const struct data_queue_desc rt2800pci_queue_bcn = {
1092         .entry_num              = 8,
1093         .data_size              = 0, /* No DMA required for beacons */
1094         .desc_size              = TXWI_DESC_SIZE,
1095         .priv_size              = sizeof(struct queue_entry_priv_pci),
1096 };
1097
1098 static const struct rt2x00_ops rt2800pci_ops = {
1099         .name                   = KBUILD_MODNAME,
1100         .drv_data_size          = sizeof(struct rt2800_drv_data),
1101         .max_sta_intf           = 1,
1102         .max_ap_intf            = 8,
1103         .eeprom_size            = EEPROM_SIZE,
1104         .rf_size                = RF_SIZE,
1105         .tx_queues              = NUM_TX_QUEUES,
1106         .extra_tx_headroom      = TXWI_DESC_SIZE,
1107         .rx                     = &rt2800pci_queue_rx,
1108         .tx                     = &rt2800pci_queue_tx,
1109         .bcn                    = &rt2800pci_queue_bcn,
1110         .lib                    = &rt2800pci_rt2x00_ops,
1111         .drv                    = &rt2800pci_rt2800_ops,
1112         .hw                     = &rt2800pci_mac80211_ops,
1113 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1114         .debugfs                = &rt2800_rt2x00debug,
1115 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1116 };
1117
1118 /*
1119  * RT2800pci module information.
1120  */
1121 #ifdef CONFIG_PCI
1122 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1123         { PCI_DEVICE(0x1814, 0x0601) },
1124         { PCI_DEVICE(0x1814, 0x0681) },
1125         { PCI_DEVICE(0x1814, 0x0701) },
1126         { PCI_DEVICE(0x1814, 0x0781) },
1127         { PCI_DEVICE(0x1814, 0x3090) },
1128         { PCI_DEVICE(0x1814, 0x3091) },
1129         { PCI_DEVICE(0x1814, 0x3092) },
1130         { PCI_DEVICE(0x1432, 0x7708) },
1131         { PCI_DEVICE(0x1432, 0x7727) },
1132         { PCI_DEVICE(0x1432, 0x7728) },
1133         { PCI_DEVICE(0x1432, 0x7738) },
1134         { PCI_DEVICE(0x1432, 0x7748) },
1135         { PCI_DEVICE(0x1432, 0x7758) },
1136         { PCI_DEVICE(0x1432, 0x7768) },
1137         { PCI_DEVICE(0x1462, 0x891a) },
1138         { PCI_DEVICE(0x1a3b, 0x1059) },
1139 #ifdef CONFIG_RT2800PCI_RT33XX
1140         { PCI_DEVICE(0x1814, 0x3390) },
1141 #endif
1142 #ifdef CONFIG_RT2800PCI_RT35XX
1143         { PCI_DEVICE(0x1432, 0x7711) },
1144         { PCI_DEVICE(0x1432, 0x7722) },
1145         { PCI_DEVICE(0x1814, 0x3060) },
1146         { PCI_DEVICE(0x1814, 0x3062) },
1147         { PCI_DEVICE(0x1814, 0x3562) },
1148         { PCI_DEVICE(0x1814, 0x3592) },
1149         { PCI_DEVICE(0x1814, 0x3593) },
1150 #endif
1151 #ifdef CONFIG_RT2800PCI_RT53XX
1152         { PCI_DEVICE(0x1814, 0x5390) },
1153         { PCI_DEVICE(0x1814, 0x539a) },
1154         { PCI_DEVICE(0x1814, 0x539f) },
1155 #endif
1156         { 0, }
1157 };
1158 #endif /* CONFIG_PCI */
1159
1160 MODULE_AUTHOR(DRV_PROJECT);
1161 MODULE_VERSION(DRV_VERSION);
1162 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1163 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1164 #ifdef CONFIG_PCI
1165 MODULE_FIRMWARE(FIRMWARE_RT2860);
1166 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1167 #endif /* CONFIG_PCI */
1168 MODULE_LICENSE("GPL");
1169
1170 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1171 static int rt2800soc_probe(struct platform_device *pdev)
1172 {
1173         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1174 }
1175
1176 static struct platform_driver rt2800soc_driver = {
1177         .driver         = {
1178                 .name           = "rt2800_wmac",
1179                 .owner          = THIS_MODULE,
1180                 .mod_name       = KBUILD_MODNAME,
1181         },
1182         .probe          = rt2800soc_probe,
1183         .remove         = __devexit_p(rt2x00soc_remove),
1184         .suspend        = rt2x00soc_suspend,
1185         .resume         = rt2x00soc_resume,
1186 };
1187 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1188
1189 #ifdef CONFIG_PCI
1190 static int rt2800pci_probe(struct pci_dev *pci_dev,
1191                            const struct pci_device_id *id)
1192 {
1193         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1194 }
1195
1196 static struct pci_driver rt2800pci_driver = {
1197         .name           = KBUILD_MODNAME,
1198         .id_table       = rt2800pci_device_table,
1199         .probe          = rt2800pci_probe,
1200         .remove         = __devexit_p(rt2x00pci_remove),
1201         .suspend        = rt2x00pci_suspend,
1202         .resume         = rt2x00pci_resume,
1203 };
1204 #endif /* CONFIG_PCI */
1205
1206 static int __init rt2800pci_init(void)
1207 {
1208         int ret = 0;
1209
1210 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1211         ret = platform_driver_register(&rt2800soc_driver);
1212         if (ret)
1213                 return ret;
1214 #endif
1215 #ifdef CONFIG_PCI
1216         ret = pci_register_driver(&rt2800pci_driver);
1217         if (ret) {
1218 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1219                 platform_driver_unregister(&rt2800soc_driver);
1220 #endif
1221                 return ret;
1222         }
1223 #endif
1224
1225         return ret;
1226 }
1227
1228 static void __exit rt2800pci_exit(void)
1229 {
1230 #ifdef CONFIG_PCI
1231         pci_unregister_driver(&rt2800pci_driver);
1232 #endif
1233 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1234         platform_driver_unregister(&rt2800soc_driver);
1235 #endif
1236 }
1237
1238 module_init(rt2800pci_init);
1239 module_exit(rt2800pci_exit);