percpu_counter: add @gfp to percpu_counter_init()
[pandora-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70 #else
71
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74
75 #endif
76
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)                                                       \
86         if (!(x)) {                                                     \
87                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
88                        __FILE__, __LINE__, #x);                         \
89         }
90 #endif
91
92 #define PTE_PREFETCH_NUM                8
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT64_LEVEL_BITS 9
98
99 #define PT64_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101
102 #define PT64_INDEX(address, level)\
103         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LVL_OFFSET_MASK(level) \
112         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT32_LEVEL_BITS))) - 1))
114
115 #define PT32_INDEX(address, level)\
116         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                                 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                                 * PT64_LEVEL_BITS))) - 1))
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137                         | shadow_x_mask | shadow_nx_mask)
138
139 #define ACC_EXEC_MASK    1
140 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
141 #define ACC_USER_MASK    PT_USER_MASK
142 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
144 #include <trace/events/kvm.h>
145
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148
149 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156
157 struct pte_list_desc {
158         u64 *sptes[PTE_LIST_EXT];
159         struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163         u64 addr;
164         hpa_t shadow_addr;
165         u64 *sptep;
166         int level;
167         unsigned index;
168 };
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
171         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
172              shadow_walk_okay(&(_walker));                      \
173              shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
176         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
177              shadow_walk_okay(&(_walker)) &&                            \
178                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
179              __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197         shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
201 /*
202  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
203  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
204  * number.
205  */
206 #define MMIO_SPTE_GEN_LOW_SHIFT         3
207 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
208
209 #define MMIO_GEN_SHIFT                  19
210 #define MMIO_GEN_LOW_SHIFT              9
211 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
212 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
213 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
214
215 static u64 generation_mmio_spte_mask(unsigned int gen)
216 {
217         u64 mask;
218
219         WARN_ON(gen > MMIO_MAX_GEN);
220
221         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
222         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
223         return mask;
224 }
225
226 static unsigned int get_mmio_spte_generation(u64 spte)
227 {
228         unsigned int gen;
229
230         spte &= ~shadow_mmio_mask;
231
232         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
233         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
234         return gen;
235 }
236
237 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
238 {
239         /*
240          * Init kvm generation close to MMIO_MAX_GEN to easily test the
241          * code of handling generation number wrap-around.
242          */
243         return (kvm_memslots(kvm)->generation +
244                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
245 }
246
247 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
248                            unsigned access)
249 {
250         unsigned int gen = kvm_current_mmio_generation(kvm);
251         u64 mask = generation_mmio_spte_mask(gen);
252
253         access &= ACC_WRITE_MASK | ACC_USER_MASK;
254         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
255
256         trace_mark_mmio_spte(sptep, gfn, access, gen);
257         mmu_spte_set(sptep, mask);
258 }
259
260 static bool is_mmio_spte(u64 spte)
261 {
262         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
263 }
264
265 static gfn_t get_mmio_spte_gfn(u64 spte)
266 {
267         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
268         return (spte & ~mask) >> PAGE_SHIFT;
269 }
270
271 static unsigned get_mmio_spte_access(u64 spte)
272 {
273         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
274         return (spte & ~mask) & ~PAGE_MASK;
275 }
276
277 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
278                           pfn_t pfn, unsigned access)
279 {
280         if (unlikely(is_noslot_pfn(pfn))) {
281                 mark_mmio_spte(kvm, sptep, gfn, access);
282                 return true;
283         }
284
285         return false;
286 }
287
288 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
289 {
290         unsigned int kvm_gen, spte_gen;
291
292         kvm_gen = kvm_current_mmio_generation(kvm);
293         spte_gen = get_mmio_spte_generation(spte);
294
295         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
296         return likely(kvm_gen == spte_gen);
297 }
298
299 static inline u64 rsvd_bits(int s, int e)
300 {
301         return ((1ULL << (e - s + 1)) - 1) << s;
302 }
303
304 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
305                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
306 {
307         shadow_user_mask = user_mask;
308         shadow_accessed_mask = accessed_mask;
309         shadow_dirty_mask = dirty_mask;
310         shadow_nx_mask = nx_mask;
311         shadow_x_mask = x_mask;
312 }
313 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
314
315 static int is_cpuid_PSE36(void)
316 {
317         return 1;
318 }
319
320 static int is_nx(struct kvm_vcpu *vcpu)
321 {
322         return vcpu->arch.efer & EFER_NX;
323 }
324
325 static int is_shadow_present_pte(u64 pte)
326 {
327         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
328 }
329
330 static int is_large_pte(u64 pte)
331 {
332         return pte & PT_PAGE_SIZE_MASK;
333 }
334
335 static int is_rmap_spte(u64 pte)
336 {
337         return is_shadow_present_pte(pte);
338 }
339
340 static int is_last_spte(u64 pte, int level)
341 {
342         if (level == PT_PAGE_TABLE_LEVEL)
343                 return 1;
344         if (is_large_pte(pte))
345                 return 1;
346         return 0;
347 }
348
349 static pfn_t spte_to_pfn(u64 pte)
350 {
351         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
352 }
353
354 static gfn_t pse36_gfn_delta(u32 gpte)
355 {
356         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
357
358         return (gpte & PT32_DIR_PSE36_MASK) << shift;
359 }
360
361 #ifdef CONFIG_X86_64
362 static void __set_spte(u64 *sptep, u64 spte)
363 {
364         *sptep = spte;
365 }
366
367 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368 {
369         *sptep = spte;
370 }
371
372 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
373 {
374         return xchg(sptep, spte);
375 }
376
377 static u64 __get_spte_lockless(u64 *sptep)
378 {
379         return ACCESS_ONCE(*sptep);
380 }
381
382 static bool __check_direct_spte_mmio_pf(u64 spte)
383 {
384         /* It is valid if the spte is zapped. */
385         return spte == 0ull;
386 }
387 #else
388 union split_spte {
389         struct {
390                 u32 spte_low;
391                 u32 spte_high;
392         };
393         u64 spte;
394 };
395
396 static void count_spte_clear(u64 *sptep, u64 spte)
397 {
398         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
399
400         if (is_shadow_present_pte(spte))
401                 return;
402
403         /* Ensure the spte is completely set before we increase the count */
404         smp_wmb();
405         sp->clear_spte_count++;
406 }
407
408 static void __set_spte(u64 *sptep, u64 spte)
409 {
410         union split_spte *ssptep, sspte;
411
412         ssptep = (union split_spte *)sptep;
413         sspte = (union split_spte)spte;
414
415         ssptep->spte_high = sspte.spte_high;
416
417         /*
418          * If we map the spte from nonpresent to present, We should store
419          * the high bits firstly, then set present bit, so cpu can not
420          * fetch this spte while we are setting the spte.
421          */
422         smp_wmb();
423
424         ssptep->spte_low = sspte.spte_low;
425 }
426
427 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
428 {
429         union split_spte *ssptep, sspte;
430
431         ssptep = (union split_spte *)sptep;
432         sspte = (union split_spte)spte;
433
434         ssptep->spte_low = sspte.spte_low;
435
436         /*
437          * If we map the spte from present to nonpresent, we should clear
438          * present bit firstly to avoid vcpu fetch the old high bits.
439          */
440         smp_wmb();
441
442         ssptep->spte_high = sspte.spte_high;
443         count_spte_clear(sptep, spte);
444 }
445
446 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
447 {
448         union split_spte *ssptep, sspte, orig;
449
450         ssptep = (union split_spte *)sptep;
451         sspte = (union split_spte)spte;
452
453         /* xchg acts as a barrier before the setting of the high bits */
454         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
455         orig.spte_high = ssptep->spte_high;
456         ssptep->spte_high = sspte.spte_high;
457         count_spte_clear(sptep, spte);
458
459         return orig.spte;
460 }
461
462 /*
463  * The idea using the light way get the spte on x86_32 guest is from
464  * gup_get_pte(arch/x86/mm/gup.c).
465  *
466  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
467  * coalesces them and we are running out of the MMU lock.  Therefore
468  * we need to protect against in-progress updates of the spte.
469  *
470  * Reading the spte while an update is in progress may get the old value
471  * for the high part of the spte.  The race is fine for a present->non-present
472  * change (because the high part of the spte is ignored for non-present spte),
473  * but for a present->present change we must reread the spte.
474  *
475  * All such changes are done in two steps (present->non-present and
476  * non-present->present), hence it is enough to count the number of
477  * present->non-present updates: if it changed while reading the spte,
478  * we might have hit the race.  This is done using clear_spte_count.
479  */
480 static u64 __get_spte_lockless(u64 *sptep)
481 {
482         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
483         union split_spte spte, *orig = (union split_spte *)sptep;
484         int count;
485
486 retry:
487         count = sp->clear_spte_count;
488         smp_rmb();
489
490         spte.spte_low = orig->spte_low;
491         smp_rmb();
492
493         spte.spte_high = orig->spte_high;
494         smp_rmb();
495
496         if (unlikely(spte.spte_low != orig->spte_low ||
497               count != sp->clear_spte_count))
498                 goto retry;
499
500         return spte.spte;
501 }
502
503 static bool __check_direct_spte_mmio_pf(u64 spte)
504 {
505         union split_spte sspte = (union split_spte)spte;
506         u32 high_mmio_mask = shadow_mmio_mask >> 32;
507
508         /* It is valid if the spte is zapped. */
509         if (spte == 0ull)
510                 return true;
511
512         /* It is valid if the spte is being zapped. */
513         if (sspte.spte_low == 0ull &&
514             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
515                 return true;
516
517         return false;
518 }
519 #endif
520
521 static bool spte_is_locklessly_modifiable(u64 spte)
522 {
523         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
524                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
525 }
526
527 static bool spte_has_volatile_bits(u64 spte)
528 {
529         /*
530          * Always atomicly update spte if it can be updated
531          * out of mmu-lock, it can ensure dirty bit is not lost,
532          * also, it can help us to get a stable is_writable_pte()
533          * to ensure tlb flush is not missed.
534          */
535         if (spte_is_locklessly_modifiable(spte))
536                 return true;
537
538         if (!shadow_accessed_mask)
539                 return false;
540
541         if (!is_shadow_present_pte(spte))
542                 return false;
543
544         if ((spte & shadow_accessed_mask) &&
545               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
546                 return false;
547
548         return true;
549 }
550
551 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
552 {
553         return (old_spte & bit_mask) && !(new_spte & bit_mask);
554 }
555
556 /* Rules for using mmu_spte_set:
557  * Set the sptep from nonpresent to present.
558  * Note: the sptep being assigned *must* be either not present
559  * or in a state where the hardware will not attempt to update
560  * the spte.
561  */
562 static void mmu_spte_set(u64 *sptep, u64 new_spte)
563 {
564         WARN_ON(is_shadow_present_pte(*sptep));
565         __set_spte(sptep, new_spte);
566 }
567
568 /* Rules for using mmu_spte_update:
569  * Update the state bits, it means the mapped pfn is not changged.
570  *
571  * Whenever we overwrite a writable spte with a read-only one we
572  * should flush remote TLBs. Otherwise rmap_write_protect
573  * will find a read-only spte, even though the writable spte
574  * might be cached on a CPU's TLB, the return value indicates this
575  * case.
576  */
577 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
578 {
579         u64 old_spte = *sptep;
580         bool ret = false;
581
582         WARN_ON(!is_rmap_spte(new_spte));
583
584         if (!is_shadow_present_pte(old_spte)) {
585                 mmu_spte_set(sptep, new_spte);
586                 return ret;
587         }
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, new_spte);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, new_spte);
593
594         /*
595          * For the spte updated out of mmu-lock is safe, since
596          * we always atomicly update it, see the comments in
597          * spte_has_volatile_bits().
598          */
599         if (spte_is_locklessly_modifiable(old_spte) &&
600               !is_writable_pte(new_spte))
601                 ret = true;
602
603         if (!shadow_accessed_mask)
604                 return ret;
605
606         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
607                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
608         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
609                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
610
611         return ret;
612 }
613
614 /*
615  * Rules for using mmu_spte_clear_track_bits:
616  * It sets the sptep from present to nonpresent, and track the
617  * state bits, it is used to clear the last level sptep.
618  */
619 static int mmu_spte_clear_track_bits(u64 *sptep)
620 {
621         pfn_t pfn;
622         u64 old_spte = *sptep;
623
624         if (!spte_has_volatile_bits(old_spte))
625                 __update_clear_spte_fast(sptep, 0ull);
626         else
627                 old_spte = __update_clear_spte_slow(sptep, 0ull);
628
629         if (!is_rmap_spte(old_spte))
630                 return 0;
631
632         pfn = spte_to_pfn(old_spte);
633
634         /*
635          * KVM does not hold the refcount of the page used by
636          * kvm mmu, before reclaiming the page, we should
637          * unmap it from mmu first.
638          */
639         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
640
641         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
642                 kvm_set_pfn_accessed(pfn);
643         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
644                 kvm_set_pfn_dirty(pfn);
645         return 1;
646 }
647
648 /*
649  * Rules for using mmu_spte_clear_no_track:
650  * Directly clear spte without caring the state bits of sptep,
651  * it is used to set the upper level spte.
652  */
653 static void mmu_spte_clear_no_track(u64 *sptep)
654 {
655         __update_clear_spte_fast(sptep, 0ull);
656 }
657
658 static u64 mmu_spte_get_lockless(u64 *sptep)
659 {
660         return __get_spte_lockless(sptep);
661 }
662
663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
664 {
665         /*
666          * Prevent page table teardown by making any free-er wait during
667          * kvm_flush_remote_tlbs() IPI to all active vcpus.
668          */
669         local_irq_disable();
670         vcpu->mode = READING_SHADOW_PAGE_TABLES;
671         /*
672          * Make sure a following spte read is not reordered ahead of the write
673          * to vcpu->mode.
674          */
675         smp_mb();
676 }
677
678 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
679 {
680         /*
681          * Make sure the write to vcpu->mode is not reordered in front of
682          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
683          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
684          */
685         smp_mb();
686         vcpu->mode = OUTSIDE_GUEST_MODE;
687         local_irq_enable();
688 }
689
690 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
691                                   struct kmem_cache *base_cache, int min)
692 {
693         void *obj;
694
695         if (cache->nobjs >= min)
696                 return 0;
697         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
699                 if (!obj)
700                         return -ENOMEM;
701                 cache->objects[cache->nobjs++] = obj;
702         }
703         return 0;
704 }
705
706 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
707 {
708         return cache->nobjs;
709 }
710
711 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
712                                   struct kmem_cache *cache)
713 {
714         while (mc->nobjs)
715                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
716 }
717
718 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
719                                        int min)
720 {
721         void *page;
722
723         if (cache->nobjs >= min)
724                 return 0;
725         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
726                 page = (void *)__get_free_page(GFP_KERNEL);
727                 if (!page)
728                         return -ENOMEM;
729                 cache->objects[cache->nobjs++] = page;
730         }
731         return 0;
732 }
733
734 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
735 {
736         while (mc->nobjs)
737                 free_page((unsigned long)mc->objects[--mc->nobjs]);
738 }
739
740 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
741 {
742         int r;
743
744         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
745                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
746         if (r)
747                 goto out;
748         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
749         if (r)
750                 goto out;
751         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
752                                    mmu_page_header_cache, 4);
753 out:
754         return r;
755 }
756
757 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
758 {
759         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
760                                 pte_list_desc_cache);
761         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
762         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
763                                 mmu_page_header_cache);
764 }
765
766 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
767 {
768         void *p;
769
770         BUG_ON(!mc->nobjs);
771         p = mc->objects[--mc->nobjs];
772         return p;
773 }
774
775 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
776 {
777         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
778 }
779
780 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
781 {
782         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
783 }
784
785 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
786 {
787         if (!sp->role.direct)
788                 return sp->gfns[index];
789
790         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
791 }
792
793 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
794 {
795         if (sp->role.direct)
796                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
797         else
798                 sp->gfns[index] = gfn;
799 }
800
801 /*
802  * Return the pointer to the large page information for a given gfn,
803  * handling slots that are not large page aligned.
804  */
805 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
806                                               struct kvm_memory_slot *slot,
807                                               int level)
808 {
809         unsigned long idx;
810
811         idx = gfn_to_index(gfn, slot->base_gfn, level);
812         return &slot->arch.lpage_info[level - 2][idx];
813 }
814
815 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
816 {
817         struct kvm_memory_slot *slot;
818         struct kvm_lpage_info *linfo;
819         int i;
820
821         slot = gfn_to_memslot(kvm, gfn);
822         for (i = PT_DIRECTORY_LEVEL;
823              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
824                 linfo = lpage_info_slot(gfn, slot, i);
825                 linfo->write_count += 1;
826         }
827         kvm->arch.indirect_shadow_pages++;
828 }
829
830 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
831 {
832         struct kvm_memory_slot *slot;
833         struct kvm_lpage_info *linfo;
834         int i;
835
836         slot = gfn_to_memslot(kvm, gfn);
837         for (i = PT_DIRECTORY_LEVEL;
838              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
839                 linfo = lpage_info_slot(gfn, slot, i);
840                 linfo->write_count -= 1;
841                 WARN_ON(linfo->write_count < 0);
842         }
843         kvm->arch.indirect_shadow_pages--;
844 }
845
846 static int has_wrprotected_page(struct kvm *kvm,
847                                 gfn_t gfn,
848                                 int level)
849 {
850         struct kvm_memory_slot *slot;
851         struct kvm_lpage_info *linfo;
852
853         slot = gfn_to_memslot(kvm, gfn);
854         if (slot) {
855                 linfo = lpage_info_slot(gfn, slot, level);
856                 return linfo->write_count;
857         }
858
859         return 1;
860 }
861
862 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
863 {
864         unsigned long page_size;
865         int i, ret = 0;
866
867         page_size = kvm_host_page_size(kvm, gfn);
868
869         for (i = PT_PAGE_TABLE_LEVEL;
870              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
871                 if (page_size >= KVM_HPAGE_SIZE(i))
872                         ret = i;
873                 else
874                         break;
875         }
876
877         return ret;
878 }
879
880 static struct kvm_memory_slot *
881 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
882                             bool no_dirty_log)
883 {
884         struct kvm_memory_slot *slot;
885
886         slot = gfn_to_memslot(vcpu->kvm, gfn);
887         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
888               (no_dirty_log && slot->dirty_bitmap))
889                 slot = NULL;
890
891         return slot;
892 }
893
894 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
895 {
896         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
897 }
898
899 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
900 {
901         int host_level, level, max_level;
902
903         host_level = host_mapping_level(vcpu->kvm, large_gfn);
904
905         if (host_level == PT_PAGE_TABLE_LEVEL)
906                 return host_level;
907
908         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
909
910         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
911                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
912                         break;
913
914         return level - 1;
915 }
916
917 /*
918  * Pte mapping structures:
919  *
920  * If pte_list bit zero is zero, then pte_list point to the spte.
921  *
922  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
923  * pte_list_desc containing more mappings.
924  *
925  * Returns the number of pte entries before the spte was added or zero if
926  * the spte was not added.
927  *
928  */
929 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
930                         unsigned long *pte_list)
931 {
932         struct pte_list_desc *desc;
933         int i, count = 0;
934
935         if (!*pte_list) {
936                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
937                 *pte_list = (unsigned long)spte;
938         } else if (!(*pte_list & 1)) {
939                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
940                 desc = mmu_alloc_pte_list_desc(vcpu);
941                 desc->sptes[0] = (u64 *)*pte_list;
942                 desc->sptes[1] = spte;
943                 *pte_list = (unsigned long)desc | 1;
944                 ++count;
945         } else {
946                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
947                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
948                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
949                         desc = desc->more;
950                         count += PTE_LIST_EXT;
951                 }
952                 if (desc->sptes[PTE_LIST_EXT-1]) {
953                         desc->more = mmu_alloc_pte_list_desc(vcpu);
954                         desc = desc->more;
955                 }
956                 for (i = 0; desc->sptes[i]; ++i)
957                         ++count;
958                 desc->sptes[i] = spte;
959         }
960         return count;
961 }
962
963 static void
964 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
965                            int i, struct pte_list_desc *prev_desc)
966 {
967         int j;
968
969         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
970                 ;
971         desc->sptes[i] = desc->sptes[j];
972         desc->sptes[j] = NULL;
973         if (j != 0)
974                 return;
975         if (!prev_desc && !desc->more)
976                 *pte_list = (unsigned long)desc->sptes[0];
977         else
978                 if (prev_desc)
979                         prev_desc->more = desc->more;
980                 else
981                         *pte_list = (unsigned long)desc->more | 1;
982         mmu_free_pte_list_desc(desc);
983 }
984
985 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
986 {
987         struct pte_list_desc *desc;
988         struct pte_list_desc *prev_desc;
989         int i;
990
991         if (!*pte_list) {
992                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
993                 BUG();
994         } else if (!(*pte_list & 1)) {
995                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
996                 if ((u64 *)*pte_list != spte) {
997                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
998                         BUG();
999                 }
1000                 *pte_list = 0;
1001         } else {
1002                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1003                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1004                 prev_desc = NULL;
1005                 while (desc) {
1006                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1007                                 if (desc->sptes[i] == spte) {
1008                                         pte_list_desc_remove_entry(pte_list,
1009                                                                desc, i,
1010                                                                prev_desc);
1011                                         return;
1012                                 }
1013                         prev_desc = desc;
1014                         desc = desc->more;
1015                 }
1016                 pr_err("pte_list_remove: %p many->many\n", spte);
1017                 BUG();
1018         }
1019 }
1020
1021 typedef void (*pte_list_walk_fn) (u64 *spte);
1022 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1023 {
1024         struct pte_list_desc *desc;
1025         int i;
1026
1027         if (!*pte_list)
1028                 return;
1029
1030         if (!(*pte_list & 1))
1031                 return fn((u64 *)*pte_list);
1032
1033         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1034         while (desc) {
1035                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1036                         fn(desc->sptes[i]);
1037                 desc = desc->more;
1038         }
1039 }
1040
1041 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1042                                     struct kvm_memory_slot *slot)
1043 {
1044         unsigned long idx;
1045
1046         idx = gfn_to_index(gfn, slot->base_gfn, level);
1047         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048 }
1049
1050 /*
1051  * Take gfn and return the reverse mapping to it.
1052  */
1053 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1054 {
1055         struct kvm_memory_slot *slot;
1056
1057         slot = gfn_to_memslot(kvm, gfn);
1058         return __gfn_to_rmap(gfn, level, slot);
1059 }
1060
1061 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062 {
1063         struct kvm_mmu_memory_cache *cache;
1064
1065         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066         return mmu_memory_cache_free_objects(cache);
1067 }
1068
1069 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070 {
1071         struct kvm_mmu_page *sp;
1072         unsigned long *rmapp;
1073
1074         sp = page_header(__pa(spte));
1075         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1077         return pte_list_add(vcpu, spte, rmapp);
1078 }
1079
1080 static void rmap_remove(struct kvm *kvm, u64 *spte)
1081 {
1082         struct kvm_mmu_page *sp;
1083         gfn_t gfn;
1084         unsigned long *rmapp;
1085
1086         sp = page_header(__pa(spte));
1087         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1089         pte_list_remove(spte, rmapp);
1090 }
1091
1092 /*
1093  * Used by the following functions to iterate through the sptes linked by a
1094  * rmap.  All fields are private and not assumed to be used outside.
1095  */
1096 struct rmap_iterator {
1097         /* private fields */
1098         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1099         int pos;                        /* index of the sptep */
1100 };
1101
1102 /*
1103  * Iteration must be started by this function.  This should also be used after
1104  * removing/dropping sptes from the rmap link because in such cases the
1105  * information in the itererator may not be valid.
1106  *
1107  * Returns sptep if found, NULL otherwise.
1108  */
1109 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1110 {
1111         if (!rmap)
1112                 return NULL;
1113
1114         if (!(rmap & 1)) {
1115                 iter->desc = NULL;
1116                 return (u64 *)rmap;
1117         }
1118
1119         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1120         iter->pos = 0;
1121         return iter->desc->sptes[iter->pos];
1122 }
1123
1124 /*
1125  * Must be used with a valid iterator: e.g. after rmap_get_first().
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131         if (iter->desc) {
1132                 if (iter->pos < PTE_LIST_EXT - 1) {
1133                         u64 *sptep;
1134
1135                         ++iter->pos;
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         if (sptep)
1138                                 return sptep;
1139                 }
1140
1141                 iter->desc = iter->desc->more;
1142
1143                 if (iter->desc) {
1144                         iter->pos = 0;
1145                         /* desc->sptes[0] cannot be NULL */
1146                         return iter->desc->sptes[iter->pos];
1147                 }
1148         }
1149
1150         return NULL;
1151 }
1152
1153 static void drop_spte(struct kvm *kvm, u64 *sptep)
1154 {
1155         if (mmu_spte_clear_track_bits(sptep))
1156                 rmap_remove(kvm, sptep);
1157 }
1158
1159
1160 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1161 {
1162         if (is_large_pte(*sptep)) {
1163                 WARN_ON(page_header(__pa(sptep))->role.level ==
1164                         PT_PAGE_TABLE_LEVEL);
1165                 drop_spte(kvm, sptep);
1166                 --kvm->stat.lpages;
1167                 return true;
1168         }
1169
1170         return false;
1171 }
1172
1173 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1174 {
1175         if (__drop_large_spte(vcpu->kvm, sptep))
1176                 kvm_flush_remote_tlbs(vcpu->kvm);
1177 }
1178
1179 /*
1180  * Write-protect on the specified @sptep, @pt_protect indicates whether
1181  * spte write-protection is caused by protecting shadow page table.
1182  *
1183  * Note: write protection is difference between drity logging and spte
1184  * protection:
1185  * - for dirty logging, the spte can be set to writable at anytime if
1186  *   its dirty bitmap is properly set.
1187  * - for spte protection, the spte can be writable only after unsync-ing
1188  *   shadow page.
1189  *
1190  * Return true if tlb need be flushed.
1191  */
1192 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1193 {
1194         u64 spte = *sptep;
1195
1196         if (!is_writable_pte(spte) &&
1197               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198                 return false;
1199
1200         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
1202         if (pt_protect)
1203                 spte &= ~SPTE_MMU_WRITEABLE;
1204         spte = spte & ~PT_WRITABLE_MASK;
1205
1206         return mmu_spte_update(sptep, spte);
1207 }
1208
1209 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1210                                  bool pt_protect)
1211 {
1212         u64 *sptep;
1213         struct rmap_iterator iter;
1214         bool flush = false;
1215
1216         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1217                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1218
1219                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1220                 sptep = rmap_get_next(&iter);
1221         }
1222
1223         return flush;
1224 }
1225
1226 /**
1227  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1228  * @kvm: kvm instance
1229  * @slot: slot to protect
1230  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1231  * @mask: indicates which pages we should protect
1232  *
1233  * Used when we do not need to care about huge page mappings: e.g. during dirty
1234  * logging we do not have any such mappings.
1235  */
1236 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1237                                      struct kvm_memory_slot *slot,
1238                                      gfn_t gfn_offset, unsigned long mask)
1239 {
1240         unsigned long *rmapp;
1241
1242         while (mask) {
1243                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1244                                       PT_PAGE_TABLE_LEVEL, slot);
1245                 __rmap_write_protect(kvm, rmapp, false);
1246
1247                 /* clear the first set bit */
1248                 mask &= mask - 1;
1249         }
1250 }
1251
1252 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1253 {
1254         struct kvm_memory_slot *slot;
1255         unsigned long *rmapp;
1256         int i;
1257         bool write_protected = false;
1258
1259         slot = gfn_to_memslot(kvm, gfn);
1260
1261         for (i = PT_PAGE_TABLE_LEVEL;
1262              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1263                 rmapp = __gfn_to_rmap(gfn, i, slot);
1264                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1265         }
1266
1267         return write_protected;
1268 }
1269
1270 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1271                            struct kvm_memory_slot *slot, unsigned long data)
1272 {
1273         u64 *sptep;
1274         struct rmap_iterator iter;
1275         int need_tlb_flush = 0;
1276
1277         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1278                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1279                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1280
1281                 drop_spte(kvm, sptep);
1282                 need_tlb_flush = 1;
1283         }
1284
1285         return need_tlb_flush;
1286 }
1287
1288 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1289                              struct kvm_memory_slot *slot, unsigned long data)
1290 {
1291         u64 *sptep;
1292         struct rmap_iterator iter;
1293         int need_flush = 0;
1294         u64 new_spte;
1295         pte_t *ptep = (pte_t *)data;
1296         pfn_t new_pfn;
1297
1298         WARN_ON(pte_huge(*ptep));
1299         new_pfn = pte_pfn(*ptep);
1300
1301         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1302                 BUG_ON(!is_shadow_present_pte(*sptep));
1303                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1304
1305                 need_flush = 1;
1306
1307                 if (pte_write(*ptep)) {
1308                         drop_spte(kvm, sptep);
1309                         sptep = rmap_get_first(*rmapp, &iter);
1310                 } else {
1311                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1312                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1313
1314                         new_spte &= ~PT_WRITABLE_MASK;
1315                         new_spte &= ~SPTE_HOST_WRITEABLE;
1316                         new_spte &= ~shadow_accessed_mask;
1317
1318                         mmu_spte_clear_track_bits(sptep);
1319                         mmu_spte_set(sptep, new_spte);
1320                         sptep = rmap_get_next(&iter);
1321                 }
1322         }
1323
1324         if (need_flush)
1325                 kvm_flush_remote_tlbs(kvm);
1326
1327         return 0;
1328 }
1329
1330 static int kvm_handle_hva_range(struct kvm *kvm,
1331                                 unsigned long start,
1332                                 unsigned long end,
1333                                 unsigned long data,
1334                                 int (*handler)(struct kvm *kvm,
1335                                                unsigned long *rmapp,
1336                                                struct kvm_memory_slot *slot,
1337                                                unsigned long data))
1338 {
1339         int j;
1340         int ret = 0;
1341         struct kvm_memslots *slots;
1342         struct kvm_memory_slot *memslot;
1343
1344         slots = kvm_memslots(kvm);
1345
1346         kvm_for_each_memslot(memslot, slots) {
1347                 unsigned long hva_start, hva_end;
1348                 gfn_t gfn_start, gfn_end;
1349
1350                 hva_start = max(start, memslot->userspace_addr);
1351                 hva_end = min(end, memslot->userspace_addr +
1352                                         (memslot->npages << PAGE_SHIFT));
1353                 if (hva_start >= hva_end)
1354                         continue;
1355                 /*
1356                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358                  */
1359                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361
1362                 for (j = PT_PAGE_TABLE_LEVEL;
1363                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364                         unsigned long idx, idx_end;
1365                         unsigned long *rmapp;
1366
1367                         /*
1368                          * {idx(page_j) | page_j intersects with
1369                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1370                          */
1371                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1373
1374                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1375
1376                         for (; idx <= idx_end; ++idx)
1377                                 ret |= handler(kvm, rmapp++, memslot, data);
1378                 }
1379         }
1380
1381         return ret;
1382 }
1383
1384 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1385                           unsigned long data,
1386                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1387                                          struct kvm_memory_slot *slot,
1388                                          unsigned long data))
1389 {
1390         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1391 }
1392
1393 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1394 {
1395         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1396 }
1397
1398 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1399 {
1400         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1401 }
1402
1403 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1404 {
1405         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1406 }
1407
1408 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1409                          struct kvm_memory_slot *slot, unsigned long data)
1410 {
1411         u64 *sptep;
1412         struct rmap_iterator uninitialized_var(iter);
1413         int young = 0;
1414
1415         /*
1416          * In case of absence of EPT Access and Dirty Bits supports,
1417          * emulate the accessed bit for EPT, by checking if this page has
1418          * an EPT mapping, and clearing it if it does. On the next access,
1419          * a new EPT mapping will be established.
1420          * This has some overhead, but not as much as the cost of swapping
1421          * out actively used pages or breaking up actively used hugepages.
1422          */
1423         if (!shadow_accessed_mask) {
1424                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1425                 goto out;
1426         }
1427
1428         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1429              sptep = rmap_get_next(&iter)) {
1430                 BUG_ON(!is_shadow_present_pte(*sptep));
1431
1432                 if (*sptep & shadow_accessed_mask) {
1433                         young = 1;
1434                         clear_bit((ffs(shadow_accessed_mask) - 1),
1435                                  (unsigned long *)sptep);
1436                 }
1437         }
1438 out:
1439         /* @data has hva passed to kvm_age_hva(). */
1440         trace_kvm_age_page(data, slot, young);
1441         return young;
1442 }
1443
1444 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1445                               struct kvm_memory_slot *slot, unsigned long data)
1446 {
1447         u64 *sptep;
1448         struct rmap_iterator iter;
1449         int young = 0;
1450
1451         /*
1452          * If there's no access bit in the secondary pte set by the
1453          * hardware it's up to gup-fast/gup to set the access bit in
1454          * the primary pte or in the page structure.
1455          */
1456         if (!shadow_accessed_mask)
1457                 goto out;
1458
1459         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1460              sptep = rmap_get_next(&iter)) {
1461                 BUG_ON(!is_shadow_present_pte(*sptep));
1462
1463                 if (*sptep & shadow_accessed_mask) {
1464                         young = 1;
1465                         break;
1466                 }
1467         }
1468 out:
1469         return young;
1470 }
1471
1472 #define RMAP_RECYCLE_THRESHOLD 1000
1473
1474 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1475 {
1476         unsigned long *rmapp;
1477         struct kvm_mmu_page *sp;
1478
1479         sp = page_header(__pa(spte));
1480
1481         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1482
1483         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1484         kvm_flush_remote_tlbs(vcpu->kvm);
1485 }
1486
1487 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1488 {
1489         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1490 }
1491
1492 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1493 {
1494         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1495 }
1496
1497 #ifdef MMU_DEBUG
1498 static int is_empty_shadow_page(u64 *spt)
1499 {
1500         u64 *pos;
1501         u64 *end;
1502
1503         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1504                 if (is_shadow_present_pte(*pos)) {
1505                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1506                                pos, *pos);
1507                         return 0;
1508                 }
1509         return 1;
1510 }
1511 #endif
1512
1513 /*
1514  * This value is the sum of all of the kvm instances's
1515  * kvm->arch.n_used_mmu_pages values.  We need a global,
1516  * aggregate version in order to make the slab shrinker
1517  * faster
1518  */
1519 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1520 {
1521         kvm->arch.n_used_mmu_pages += nr;
1522         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1523 }
1524
1525 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1526 {
1527         ASSERT(is_empty_shadow_page(sp->spt));
1528         hlist_del(&sp->hash_link);
1529         list_del(&sp->link);
1530         free_page((unsigned long)sp->spt);
1531         if (!sp->role.direct)
1532                 free_page((unsigned long)sp->gfns);
1533         kmem_cache_free(mmu_page_header_cache, sp);
1534 }
1535
1536 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1537 {
1538         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1539 }
1540
1541 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1542                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1543 {
1544         if (!parent_pte)
1545                 return;
1546
1547         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1548 }
1549
1550 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1551                                        u64 *parent_pte)
1552 {
1553         pte_list_remove(parent_pte, &sp->parent_ptes);
1554 }
1555
1556 static void drop_parent_pte(struct kvm_mmu_page *sp,
1557                             u64 *parent_pte)
1558 {
1559         mmu_page_remove_parent_pte(sp, parent_pte);
1560         mmu_spte_clear_no_track(parent_pte);
1561 }
1562
1563 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1564                                                u64 *parent_pte, int direct)
1565 {
1566         struct kvm_mmu_page *sp;
1567
1568         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1569         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1570         if (!direct)
1571                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1572         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1573
1574         /*
1575          * The active_mmu_pages list is the FIFO list, do not move the
1576          * page until it is zapped. kvm_zap_obsolete_pages depends on
1577          * this feature. See the comments in kvm_zap_obsolete_pages().
1578          */
1579         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1580         sp->parent_ptes = 0;
1581         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1582         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1583         return sp;
1584 }
1585
1586 static void mark_unsync(u64 *spte);
1587 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1588 {
1589         pte_list_walk(&sp->parent_ptes, mark_unsync);
1590 }
1591
1592 static void mark_unsync(u64 *spte)
1593 {
1594         struct kvm_mmu_page *sp;
1595         unsigned int index;
1596
1597         sp = page_header(__pa(spte));
1598         index = spte - sp->spt;
1599         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1600                 return;
1601         if (sp->unsync_children++)
1602                 return;
1603         kvm_mmu_mark_parents_unsync(sp);
1604 }
1605
1606 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1607                                struct kvm_mmu_page *sp)
1608 {
1609         return 1;
1610 }
1611
1612 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1613 {
1614 }
1615
1616 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1617                                  struct kvm_mmu_page *sp, u64 *spte,
1618                                  const void *pte)
1619 {
1620         WARN_ON(1);
1621 }
1622
1623 #define KVM_PAGE_ARRAY_NR 16
1624
1625 struct kvm_mmu_pages {
1626         struct mmu_page_and_offset {
1627                 struct kvm_mmu_page *sp;
1628                 unsigned int idx;
1629         } page[KVM_PAGE_ARRAY_NR];
1630         unsigned int nr;
1631 };
1632
1633 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1634                          int idx)
1635 {
1636         int i;
1637
1638         if (sp->unsync)
1639                 for (i=0; i < pvec->nr; i++)
1640                         if (pvec->page[i].sp == sp)
1641                                 return 0;
1642
1643         pvec->page[pvec->nr].sp = sp;
1644         pvec->page[pvec->nr].idx = idx;
1645         pvec->nr++;
1646         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1647 }
1648
1649 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1650                            struct kvm_mmu_pages *pvec)
1651 {
1652         int i, ret, nr_unsync_leaf = 0;
1653
1654         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1655                 struct kvm_mmu_page *child;
1656                 u64 ent = sp->spt[i];
1657
1658                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1659                         goto clear_child_bitmap;
1660
1661                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1662
1663                 if (child->unsync_children) {
1664                         if (mmu_pages_add(pvec, child, i))
1665                                 return -ENOSPC;
1666
1667                         ret = __mmu_unsync_walk(child, pvec);
1668                         if (!ret)
1669                                 goto clear_child_bitmap;
1670                         else if (ret > 0)
1671                                 nr_unsync_leaf += ret;
1672                         else
1673                                 return ret;
1674                 } else if (child->unsync) {
1675                         nr_unsync_leaf++;
1676                         if (mmu_pages_add(pvec, child, i))
1677                                 return -ENOSPC;
1678                 } else
1679                          goto clear_child_bitmap;
1680
1681                 continue;
1682
1683 clear_child_bitmap:
1684                 __clear_bit(i, sp->unsync_child_bitmap);
1685                 sp->unsync_children--;
1686                 WARN_ON((int)sp->unsync_children < 0);
1687         }
1688
1689
1690         return nr_unsync_leaf;
1691 }
1692
1693 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1694                            struct kvm_mmu_pages *pvec)
1695 {
1696         if (!sp->unsync_children)
1697                 return 0;
1698
1699         mmu_pages_add(pvec, sp, 0);
1700         return __mmu_unsync_walk(sp, pvec);
1701 }
1702
1703 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1704 {
1705         WARN_ON(!sp->unsync);
1706         trace_kvm_mmu_sync_page(sp);
1707         sp->unsync = 0;
1708         --kvm->stat.mmu_unsync;
1709 }
1710
1711 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1712                                     struct list_head *invalid_list);
1713 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1714                                     struct list_head *invalid_list);
1715
1716 /*
1717  * NOTE: we should pay more attention on the zapped-obsolete page
1718  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1719  * since it has been deleted from active_mmu_pages but still can be found
1720  * at hast list.
1721  *
1722  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1723  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1724  * all the obsolete pages.
1725  */
1726 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1727         hlist_for_each_entry(_sp,                                       \
1728           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1729                 if ((_sp)->gfn != (_gfn)) {} else
1730
1731 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1732         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1733                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1734
1735 /* @sp->gfn should be write-protected at the call site */
1736 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1737                            struct list_head *invalid_list, bool clear_unsync)
1738 {
1739         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1740                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1741                 return 1;
1742         }
1743
1744         if (clear_unsync)
1745                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1746
1747         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1748                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1749                 return 1;
1750         }
1751
1752         kvm_mmu_flush_tlb(vcpu);
1753         return 0;
1754 }
1755
1756 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1757                                    struct kvm_mmu_page *sp)
1758 {
1759         LIST_HEAD(invalid_list);
1760         int ret;
1761
1762         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1763         if (ret)
1764                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1765
1766         return ret;
1767 }
1768
1769 #ifdef CONFIG_KVM_MMU_AUDIT
1770 #include "mmu_audit.c"
1771 #else
1772 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1773 static void mmu_audit_disable(void) { }
1774 #endif
1775
1776 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1777                          struct list_head *invalid_list)
1778 {
1779         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1780 }
1781
1782 /* @gfn should be write-protected at the call site */
1783 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1784 {
1785         struct kvm_mmu_page *s;
1786         LIST_HEAD(invalid_list);
1787         bool flush = false;
1788
1789         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1790                 if (!s->unsync)
1791                         continue;
1792
1793                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1794                 kvm_unlink_unsync_page(vcpu->kvm, s);
1795                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1796                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1797                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1798                         continue;
1799                 }
1800                 flush = true;
1801         }
1802
1803         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1804         if (flush)
1805                 kvm_mmu_flush_tlb(vcpu);
1806 }
1807
1808 struct mmu_page_path {
1809         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1810         unsigned int idx[PT64_ROOT_LEVEL-1];
1811 };
1812
1813 #define for_each_sp(pvec, sp, parents, i)                       \
1814                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1815                         sp = pvec.page[i].sp;                   \
1816                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1817                         i = mmu_pages_next(&pvec, &parents, i))
1818
1819 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1820                           struct mmu_page_path *parents,
1821                           int i)
1822 {
1823         int n;
1824
1825         for (n = i+1; n < pvec->nr; n++) {
1826                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1827
1828                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1829                         parents->idx[0] = pvec->page[n].idx;
1830                         return n;
1831                 }
1832
1833                 parents->parent[sp->role.level-2] = sp;
1834                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1835         }
1836
1837         return n;
1838 }
1839
1840 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1841 {
1842         struct kvm_mmu_page *sp;
1843         unsigned int level = 0;
1844
1845         do {
1846                 unsigned int idx = parents->idx[level];
1847
1848                 sp = parents->parent[level];
1849                 if (!sp)
1850                         return;
1851
1852                 --sp->unsync_children;
1853                 WARN_ON((int)sp->unsync_children < 0);
1854                 __clear_bit(idx, sp->unsync_child_bitmap);
1855                 level++;
1856         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1857 }
1858
1859 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1860                                struct mmu_page_path *parents,
1861                                struct kvm_mmu_pages *pvec)
1862 {
1863         parents->parent[parent->role.level-1] = NULL;
1864         pvec->nr = 0;
1865 }
1866
1867 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1868                               struct kvm_mmu_page *parent)
1869 {
1870         int i;
1871         struct kvm_mmu_page *sp;
1872         struct mmu_page_path parents;
1873         struct kvm_mmu_pages pages;
1874         LIST_HEAD(invalid_list);
1875
1876         kvm_mmu_pages_init(parent, &parents, &pages);
1877         while (mmu_unsync_walk(parent, &pages)) {
1878                 bool protected = false;
1879
1880                 for_each_sp(pages, sp, parents, i)
1881                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1882
1883                 if (protected)
1884                         kvm_flush_remote_tlbs(vcpu->kvm);
1885
1886                 for_each_sp(pages, sp, parents, i) {
1887                         kvm_sync_page(vcpu, sp, &invalid_list);
1888                         mmu_pages_clear_parents(&parents);
1889                 }
1890                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1891                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1892                 kvm_mmu_pages_init(parent, &parents, &pages);
1893         }
1894 }
1895
1896 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1897 {
1898         int i;
1899
1900         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1901                 sp->spt[i] = 0ull;
1902 }
1903
1904 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1905 {
1906         sp->write_flooding_count = 0;
1907 }
1908
1909 static void clear_sp_write_flooding_count(u64 *spte)
1910 {
1911         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1912
1913         __clear_sp_write_flooding_count(sp);
1914 }
1915
1916 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1917 {
1918         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1919 }
1920
1921 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1922                                              gfn_t gfn,
1923                                              gva_t gaddr,
1924                                              unsigned level,
1925                                              int direct,
1926                                              unsigned access,
1927                                              u64 *parent_pte)
1928 {
1929         union kvm_mmu_page_role role;
1930         unsigned quadrant;
1931         struct kvm_mmu_page *sp;
1932         bool need_sync = false;
1933
1934         role = vcpu->arch.mmu.base_role;
1935         role.level = level;
1936         role.direct = direct;
1937         if (role.direct)
1938                 role.cr4_pae = 0;
1939         role.access = access;
1940         if (!vcpu->arch.mmu.direct_map
1941             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1942                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1943                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1944                 role.quadrant = quadrant;
1945         }
1946         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1947                 if (is_obsolete_sp(vcpu->kvm, sp))
1948                         continue;
1949
1950                 if (!need_sync && sp->unsync)
1951                         need_sync = true;
1952
1953                 if (sp->role.word != role.word)
1954                         continue;
1955
1956                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1957                         break;
1958
1959                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1960                 if (sp->unsync_children) {
1961                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1962                         kvm_mmu_mark_parents_unsync(sp);
1963                 } else if (sp->unsync)
1964                         kvm_mmu_mark_parents_unsync(sp);
1965
1966                 __clear_sp_write_flooding_count(sp);
1967                 trace_kvm_mmu_get_page(sp, false);
1968                 return sp;
1969         }
1970         ++vcpu->kvm->stat.mmu_cache_miss;
1971         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1972         if (!sp)
1973                 return sp;
1974         sp->gfn = gfn;
1975         sp->role = role;
1976         hlist_add_head(&sp->hash_link,
1977                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1978         if (!direct) {
1979                 if (rmap_write_protect(vcpu->kvm, gfn))
1980                         kvm_flush_remote_tlbs(vcpu->kvm);
1981                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1982                         kvm_sync_pages(vcpu, gfn);
1983
1984                 account_shadowed(vcpu->kvm, gfn);
1985         }
1986         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1987         init_shadow_page_table(sp);
1988         trace_kvm_mmu_get_page(sp, true);
1989         return sp;
1990 }
1991
1992 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1993                              struct kvm_vcpu *vcpu, u64 addr)
1994 {
1995         iterator->addr = addr;
1996         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1997         iterator->level = vcpu->arch.mmu.shadow_root_level;
1998
1999         if (iterator->level == PT64_ROOT_LEVEL &&
2000             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2001             !vcpu->arch.mmu.direct_map)
2002                 --iterator->level;
2003
2004         if (iterator->level == PT32E_ROOT_LEVEL) {
2005                 iterator->shadow_addr
2006                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2007                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2008                 --iterator->level;
2009                 if (!iterator->shadow_addr)
2010                         iterator->level = 0;
2011         }
2012 }
2013
2014 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2015 {
2016         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2017                 return false;
2018
2019         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2020         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2021         return true;
2022 }
2023
2024 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2025                                u64 spte)
2026 {
2027         if (is_last_spte(spte, iterator->level)) {
2028                 iterator->level = 0;
2029                 return;
2030         }
2031
2032         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2033         --iterator->level;
2034 }
2035
2036 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2037 {
2038         return __shadow_walk_next(iterator, *iterator->sptep);
2039 }
2040
2041 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2042 {
2043         u64 spte;
2044
2045         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2046                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2047
2048         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2049                shadow_user_mask | shadow_x_mask;
2050
2051         if (accessed)
2052                 spte |= shadow_accessed_mask;
2053
2054         mmu_spte_set(sptep, spte);
2055 }
2056
2057 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2058                                    unsigned direct_access)
2059 {
2060         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2061                 struct kvm_mmu_page *child;
2062
2063                 /*
2064                  * For the direct sp, if the guest pte's dirty bit
2065                  * changed form clean to dirty, it will corrupt the
2066                  * sp's access: allow writable in the read-only sp,
2067                  * so we should update the spte at this point to get
2068                  * a new sp with the correct access.
2069                  */
2070                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2071                 if (child->role.access == direct_access)
2072                         return;
2073
2074                 drop_parent_pte(child, sptep);
2075                 kvm_flush_remote_tlbs(vcpu->kvm);
2076         }
2077 }
2078
2079 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2080                              u64 *spte)
2081 {
2082         u64 pte;
2083         struct kvm_mmu_page *child;
2084
2085         pte = *spte;
2086         if (is_shadow_present_pte(pte)) {
2087                 if (is_last_spte(pte, sp->role.level)) {
2088                         drop_spte(kvm, spte);
2089                         if (is_large_pte(pte))
2090                                 --kvm->stat.lpages;
2091                 } else {
2092                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2093                         drop_parent_pte(child, spte);
2094                 }
2095                 return true;
2096         }
2097
2098         if (is_mmio_spte(pte))
2099                 mmu_spte_clear_no_track(spte);
2100
2101         return false;
2102 }
2103
2104 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2105                                          struct kvm_mmu_page *sp)
2106 {
2107         unsigned i;
2108
2109         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2110                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2111 }
2112
2113 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2114 {
2115         mmu_page_remove_parent_pte(sp, parent_pte);
2116 }
2117
2118 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2119 {
2120         u64 *sptep;
2121         struct rmap_iterator iter;
2122
2123         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2124                 drop_parent_pte(sp, sptep);
2125 }
2126
2127 static int mmu_zap_unsync_children(struct kvm *kvm,
2128                                    struct kvm_mmu_page *parent,
2129                                    struct list_head *invalid_list)
2130 {
2131         int i, zapped = 0;
2132         struct mmu_page_path parents;
2133         struct kvm_mmu_pages pages;
2134
2135         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2136                 return 0;
2137
2138         kvm_mmu_pages_init(parent, &parents, &pages);
2139         while (mmu_unsync_walk(parent, &pages)) {
2140                 struct kvm_mmu_page *sp;
2141
2142                 for_each_sp(pages, sp, parents, i) {
2143                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2144                         mmu_pages_clear_parents(&parents);
2145                         zapped++;
2146                 }
2147                 kvm_mmu_pages_init(parent, &parents, &pages);
2148         }
2149
2150         return zapped;
2151 }
2152
2153 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2154                                     struct list_head *invalid_list)
2155 {
2156         int ret;
2157
2158         trace_kvm_mmu_prepare_zap_page(sp);
2159         ++kvm->stat.mmu_shadow_zapped;
2160         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2161         kvm_mmu_page_unlink_children(kvm, sp);
2162         kvm_mmu_unlink_parents(kvm, sp);
2163
2164         if (!sp->role.invalid && !sp->role.direct)
2165                 unaccount_shadowed(kvm, sp->gfn);
2166
2167         if (sp->unsync)
2168                 kvm_unlink_unsync_page(kvm, sp);
2169         if (!sp->root_count) {
2170                 /* Count self */
2171                 ret++;
2172                 list_move(&sp->link, invalid_list);
2173                 kvm_mod_used_mmu_pages(kvm, -1);
2174         } else {
2175                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2176
2177                 /*
2178                  * The obsolete pages can not be used on any vcpus.
2179                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2180                  */
2181                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2182                         kvm_reload_remote_mmus(kvm);
2183         }
2184
2185         sp->role.invalid = 1;
2186         return ret;
2187 }
2188
2189 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2190                                     struct list_head *invalid_list)
2191 {
2192         struct kvm_mmu_page *sp, *nsp;
2193
2194         if (list_empty(invalid_list))
2195                 return;
2196
2197         /*
2198          * wmb: make sure everyone sees our modifications to the page tables
2199          * rmb: make sure we see changes to vcpu->mode
2200          */
2201         smp_mb();
2202
2203         /*
2204          * Wait for all vcpus to exit guest mode and/or lockless shadow
2205          * page table walks.
2206          */
2207         kvm_flush_remote_tlbs(kvm);
2208
2209         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2210                 WARN_ON(!sp->role.invalid || sp->root_count);
2211                 kvm_mmu_free_page(sp);
2212         }
2213 }
2214
2215 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2216                                         struct list_head *invalid_list)
2217 {
2218         struct kvm_mmu_page *sp;
2219
2220         if (list_empty(&kvm->arch.active_mmu_pages))
2221                 return false;
2222
2223         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2224                         struct kvm_mmu_page, link);
2225         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2226
2227         return true;
2228 }
2229
2230 /*
2231  * Changing the number of mmu pages allocated to the vm
2232  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2233  */
2234 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2235 {
2236         LIST_HEAD(invalid_list);
2237
2238         spin_lock(&kvm->mmu_lock);
2239
2240         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2241                 /* Need to free some mmu pages to achieve the goal. */
2242                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2243                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2244                                 break;
2245
2246                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2247                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2248         }
2249
2250         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2251
2252         spin_unlock(&kvm->mmu_lock);
2253 }
2254
2255 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2256 {
2257         struct kvm_mmu_page *sp;
2258         LIST_HEAD(invalid_list);
2259         int r;
2260
2261         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2262         r = 0;
2263         spin_lock(&kvm->mmu_lock);
2264         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2265                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2266                          sp->role.word);
2267                 r = 1;
2268                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2269         }
2270         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2271         spin_unlock(&kvm->mmu_lock);
2272
2273         return r;
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2276
2277 /*
2278  * The function is based on mtrr_type_lookup() in
2279  * arch/x86/kernel/cpu/mtrr/generic.c
2280  */
2281 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2282                          u64 start, u64 end)
2283 {
2284         int i;
2285         u64 base, mask;
2286         u8 prev_match, curr_match;
2287         int num_var_ranges = KVM_NR_VAR_MTRR;
2288
2289         if (!mtrr_state->enabled)
2290                 return 0xFF;
2291
2292         /* Make end inclusive end, instead of exclusive */
2293         end--;
2294
2295         /* Look in fixed ranges. Just return the type as per start */
2296         if (mtrr_state->have_fixed && (start < 0x100000)) {
2297                 int idx;
2298
2299                 if (start < 0x80000) {
2300                         idx = 0;
2301                         idx += (start >> 16);
2302                         return mtrr_state->fixed_ranges[idx];
2303                 } else if (start < 0xC0000) {
2304                         idx = 1 * 8;
2305                         idx += ((start - 0x80000) >> 14);
2306                         return mtrr_state->fixed_ranges[idx];
2307                 } else if (start < 0x1000000) {
2308                         idx = 3 * 8;
2309                         idx += ((start - 0xC0000) >> 12);
2310                         return mtrr_state->fixed_ranges[idx];
2311                 }
2312         }
2313
2314         /*
2315          * Look in variable ranges
2316          * Look of multiple ranges matching this address and pick type
2317          * as per MTRR precedence
2318          */
2319         if (!(mtrr_state->enabled & 2))
2320                 return mtrr_state->def_type;
2321
2322         prev_match = 0xFF;
2323         for (i = 0; i < num_var_ranges; ++i) {
2324                 unsigned short start_state, end_state;
2325
2326                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2327                         continue;
2328
2329                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2330                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2331                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2332                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2333
2334                 start_state = ((start & mask) == (base & mask));
2335                 end_state = ((end & mask) == (base & mask));
2336                 if (start_state != end_state)
2337                         return 0xFE;
2338
2339                 if ((start & mask) != (base & mask))
2340                         continue;
2341
2342                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2343                 if (prev_match == 0xFF) {
2344                         prev_match = curr_match;
2345                         continue;
2346                 }
2347
2348                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2349                     curr_match == MTRR_TYPE_UNCACHABLE)
2350                         return MTRR_TYPE_UNCACHABLE;
2351
2352                 if ((prev_match == MTRR_TYPE_WRBACK &&
2353                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2354                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2355                      curr_match == MTRR_TYPE_WRBACK)) {
2356                         prev_match = MTRR_TYPE_WRTHROUGH;
2357                         curr_match = MTRR_TYPE_WRTHROUGH;
2358                 }
2359
2360                 if (prev_match != curr_match)
2361                         return MTRR_TYPE_UNCACHABLE;
2362         }
2363
2364         if (prev_match != 0xFF)
2365                 return prev_match;
2366
2367         return mtrr_state->def_type;
2368 }
2369
2370 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2371 {
2372         u8 mtrr;
2373
2374         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2375                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2376         if (mtrr == 0xfe || mtrr == 0xff)
2377                 mtrr = MTRR_TYPE_WRBACK;
2378         return mtrr;
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2381
2382 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2383 {
2384         trace_kvm_mmu_unsync_page(sp);
2385         ++vcpu->kvm->stat.mmu_unsync;
2386         sp->unsync = 1;
2387
2388         kvm_mmu_mark_parents_unsync(sp);
2389 }
2390
2391 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2392 {
2393         struct kvm_mmu_page *s;
2394
2395         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2396                 if (s->unsync)
2397                         continue;
2398                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2399                 __kvm_unsync_page(vcpu, s);
2400         }
2401 }
2402
2403 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2404                                   bool can_unsync)
2405 {
2406         struct kvm_mmu_page *s;
2407         bool need_unsync = false;
2408
2409         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2410                 if (!can_unsync)
2411                         return 1;
2412
2413                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2414                         return 1;
2415
2416                 if (!s->unsync)
2417                         need_unsync = true;
2418         }
2419         if (need_unsync)
2420                 kvm_unsync_pages(vcpu, gfn);
2421         return 0;
2422 }
2423
2424 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2425                     unsigned pte_access, int level,
2426                     gfn_t gfn, pfn_t pfn, bool speculative,
2427                     bool can_unsync, bool host_writable)
2428 {
2429         u64 spte;
2430         int ret = 0;
2431
2432         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2433                 return 0;
2434
2435         spte = PT_PRESENT_MASK;
2436         if (!speculative)
2437                 spte |= shadow_accessed_mask;
2438
2439         if (pte_access & ACC_EXEC_MASK)
2440                 spte |= shadow_x_mask;
2441         else
2442                 spte |= shadow_nx_mask;
2443
2444         if (pte_access & ACC_USER_MASK)
2445                 spte |= shadow_user_mask;
2446
2447         if (level > PT_PAGE_TABLE_LEVEL)
2448                 spte |= PT_PAGE_SIZE_MASK;
2449         if (tdp_enabled)
2450                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2451                         kvm_is_mmio_pfn(pfn));
2452
2453         if (host_writable)
2454                 spte |= SPTE_HOST_WRITEABLE;
2455         else
2456                 pte_access &= ~ACC_WRITE_MASK;
2457
2458         spte |= (u64)pfn << PAGE_SHIFT;
2459
2460         if (pte_access & ACC_WRITE_MASK) {
2461
2462                 /*
2463                  * Other vcpu creates new sp in the window between
2464                  * mapping_level() and acquiring mmu-lock. We can
2465                  * allow guest to retry the access, the mapping can
2466                  * be fixed if guest refault.
2467                  */
2468                 if (level > PT_PAGE_TABLE_LEVEL &&
2469                     has_wrprotected_page(vcpu->kvm, gfn, level))
2470                         goto done;
2471
2472                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2473
2474                 /*
2475                  * Optimization: for pte sync, if spte was writable the hash
2476                  * lookup is unnecessary (and expensive). Write protection
2477                  * is responsibility of mmu_get_page / kvm_sync_page.
2478                  * Same reasoning can be applied to dirty page accounting.
2479                  */
2480                 if (!can_unsync && is_writable_pte(*sptep))
2481                         goto set_pte;
2482
2483                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2484                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2485                                  __func__, gfn);
2486                         ret = 1;
2487                         pte_access &= ~ACC_WRITE_MASK;
2488                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2489                 }
2490         }
2491
2492         if (pte_access & ACC_WRITE_MASK)
2493                 mark_page_dirty(vcpu->kvm, gfn);
2494
2495 set_pte:
2496         if (mmu_spte_update(sptep, spte))
2497                 kvm_flush_remote_tlbs(vcpu->kvm);
2498 done:
2499         return ret;
2500 }
2501
2502 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2503                          unsigned pte_access, int write_fault, int *emulate,
2504                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2505                          bool host_writable)
2506 {
2507         int was_rmapped = 0;
2508         int rmap_count;
2509
2510         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2511                  *sptep, write_fault, gfn);
2512
2513         if (is_rmap_spte(*sptep)) {
2514                 /*
2515                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2516                  * the parent of the now unreachable PTE.
2517                  */
2518                 if (level > PT_PAGE_TABLE_LEVEL &&
2519                     !is_large_pte(*sptep)) {
2520                         struct kvm_mmu_page *child;
2521                         u64 pte = *sptep;
2522
2523                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2524                         drop_parent_pte(child, sptep);
2525                         kvm_flush_remote_tlbs(vcpu->kvm);
2526                 } else if (pfn != spte_to_pfn(*sptep)) {
2527                         pgprintk("hfn old %llx new %llx\n",
2528                                  spte_to_pfn(*sptep), pfn);
2529                         drop_spte(vcpu->kvm, sptep);
2530                         kvm_flush_remote_tlbs(vcpu->kvm);
2531                 } else
2532                         was_rmapped = 1;
2533         }
2534
2535         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2536               true, host_writable)) {
2537                 if (write_fault)
2538                         *emulate = 1;
2539                 kvm_mmu_flush_tlb(vcpu);
2540         }
2541
2542         if (unlikely(is_mmio_spte(*sptep) && emulate))
2543                 *emulate = 1;
2544
2545         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2546         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2547                  is_large_pte(*sptep)? "2MB" : "4kB",
2548                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2549                  *sptep, sptep);
2550         if (!was_rmapped && is_large_pte(*sptep))
2551                 ++vcpu->kvm->stat.lpages;
2552
2553         if (is_shadow_present_pte(*sptep)) {
2554                 if (!was_rmapped) {
2555                         rmap_count = rmap_add(vcpu, sptep, gfn);
2556                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2557                                 rmap_recycle(vcpu, sptep, gfn);
2558                 }
2559         }
2560
2561         kvm_release_pfn_clean(pfn);
2562 }
2563
2564 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2565                                      bool no_dirty_log)
2566 {
2567         struct kvm_memory_slot *slot;
2568
2569         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2570         if (!slot)
2571                 return KVM_PFN_ERR_FAULT;
2572
2573         return gfn_to_pfn_memslot_atomic(slot, gfn);
2574 }
2575
2576 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2577                                     struct kvm_mmu_page *sp,
2578                                     u64 *start, u64 *end)
2579 {
2580         struct page *pages[PTE_PREFETCH_NUM];
2581         unsigned access = sp->role.access;
2582         int i, ret;
2583         gfn_t gfn;
2584
2585         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2586         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2587                 return -1;
2588
2589         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2590         if (ret <= 0)
2591                 return -1;
2592
2593         for (i = 0; i < ret; i++, gfn++, start++)
2594                 mmu_set_spte(vcpu, start, access, 0, NULL,
2595                              sp->role.level, gfn, page_to_pfn(pages[i]),
2596                              true, true);
2597
2598         return 0;
2599 }
2600
2601 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2602                                   struct kvm_mmu_page *sp, u64 *sptep)
2603 {
2604         u64 *spte, *start = NULL;
2605         int i;
2606
2607         WARN_ON(!sp->role.direct);
2608
2609         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2610         spte = sp->spt + i;
2611
2612         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2613                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2614                         if (!start)
2615                                 continue;
2616                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2617                                 break;
2618                         start = NULL;
2619                 } else if (!start)
2620                         start = spte;
2621         }
2622 }
2623
2624 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2625 {
2626         struct kvm_mmu_page *sp;
2627
2628         /*
2629          * Since it's no accessed bit on EPT, it's no way to
2630          * distinguish between actually accessed translations
2631          * and prefetched, so disable pte prefetch if EPT is
2632          * enabled.
2633          */
2634         if (!shadow_accessed_mask)
2635                 return;
2636
2637         sp = page_header(__pa(sptep));
2638         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2639                 return;
2640
2641         __direct_pte_prefetch(vcpu, sp, sptep);
2642 }
2643
2644 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2645                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2646                         bool prefault)
2647 {
2648         struct kvm_shadow_walk_iterator iterator;
2649         struct kvm_mmu_page *sp;
2650         int emulate = 0;
2651         gfn_t pseudo_gfn;
2652
2653         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2654                 return 0;
2655
2656         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2657                 if (iterator.level == level) {
2658                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2659                                      write, &emulate, level, gfn, pfn,
2660                                      prefault, map_writable);
2661                         direct_pte_prefetch(vcpu, iterator.sptep);
2662                         ++vcpu->stat.pf_fixed;
2663                         break;
2664                 }
2665
2666                 drop_large_spte(vcpu, iterator.sptep);
2667                 if (!is_shadow_present_pte(*iterator.sptep)) {
2668                         u64 base_addr = iterator.addr;
2669
2670                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2671                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2672                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2673                                               iterator.level - 1,
2674                                               1, ACC_ALL, iterator.sptep);
2675
2676                         link_shadow_page(iterator.sptep, sp, true);
2677                 }
2678         }
2679         return emulate;
2680 }
2681
2682 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2683 {
2684         siginfo_t info;
2685
2686         info.si_signo   = SIGBUS;
2687         info.si_errno   = 0;
2688         info.si_code    = BUS_MCEERR_AR;
2689         info.si_addr    = (void __user *)address;
2690         info.si_addr_lsb = PAGE_SHIFT;
2691
2692         send_sig_info(SIGBUS, &info, tsk);
2693 }
2694
2695 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2696 {
2697         /*
2698          * Do not cache the mmio info caused by writing the readonly gfn
2699          * into the spte otherwise read access on readonly gfn also can
2700          * caused mmio page fault and treat it as mmio access.
2701          * Return 1 to tell kvm to emulate it.
2702          */
2703         if (pfn == KVM_PFN_ERR_RO_FAULT)
2704                 return 1;
2705
2706         if (pfn == KVM_PFN_ERR_HWPOISON) {
2707                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2708                 return 0;
2709         }
2710
2711         return -EFAULT;
2712 }
2713
2714 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2715                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2716 {
2717         pfn_t pfn = *pfnp;
2718         gfn_t gfn = *gfnp;
2719         int level = *levelp;
2720
2721         /*
2722          * Check if it's a transparent hugepage. If this would be an
2723          * hugetlbfs page, level wouldn't be set to
2724          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2725          * here.
2726          */
2727         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2728             level == PT_PAGE_TABLE_LEVEL &&
2729             PageTransCompound(pfn_to_page(pfn)) &&
2730             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2731                 unsigned long mask;
2732                 /*
2733                  * mmu_notifier_retry was successful and we hold the
2734                  * mmu_lock here, so the pmd can't become splitting
2735                  * from under us, and in turn
2736                  * __split_huge_page_refcount() can't run from under
2737                  * us and we can safely transfer the refcount from
2738                  * PG_tail to PG_head as we switch the pfn to tail to
2739                  * head.
2740                  */
2741                 *levelp = level = PT_DIRECTORY_LEVEL;
2742                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2743                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2744                 if (pfn & mask) {
2745                         gfn &= ~mask;
2746                         *gfnp = gfn;
2747                         kvm_release_pfn_clean(pfn);
2748                         pfn &= ~mask;
2749                         kvm_get_pfn(pfn);
2750                         *pfnp = pfn;
2751                 }
2752         }
2753 }
2754
2755 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2756                                 pfn_t pfn, unsigned access, int *ret_val)
2757 {
2758         bool ret = true;
2759
2760         /* The pfn is invalid, report the error! */
2761         if (unlikely(is_error_pfn(pfn))) {
2762                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2763                 goto exit;
2764         }
2765
2766         if (unlikely(is_noslot_pfn(pfn)))
2767                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2768
2769         ret = false;
2770 exit:
2771         return ret;
2772 }
2773
2774 static bool page_fault_can_be_fast(u32 error_code)
2775 {
2776         /*
2777          * Do not fix the mmio spte with invalid generation number which
2778          * need to be updated by slow page fault path.
2779          */
2780         if (unlikely(error_code & PFERR_RSVD_MASK))
2781                 return false;
2782
2783         /*
2784          * #PF can be fast only if the shadow page table is present and it
2785          * is caused by write-protect, that means we just need change the
2786          * W bit of the spte which can be done out of mmu-lock.
2787          */
2788         if (!(error_code & PFERR_PRESENT_MASK) ||
2789               !(error_code & PFERR_WRITE_MASK))
2790                 return false;
2791
2792         return true;
2793 }
2794
2795 static bool
2796 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2797                         u64 *sptep, u64 spte)
2798 {
2799         gfn_t gfn;
2800
2801         WARN_ON(!sp->role.direct);
2802
2803         /*
2804          * The gfn of direct spte is stable since it is calculated
2805          * by sp->gfn.
2806          */
2807         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2808
2809         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2810                 mark_page_dirty(vcpu->kvm, gfn);
2811
2812         return true;
2813 }
2814
2815 /*
2816  * Return value:
2817  * - true: let the vcpu to access on the same address again.
2818  * - false: let the real page fault path to fix it.
2819  */
2820 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2821                             u32 error_code)
2822 {
2823         struct kvm_shadow_walk_iterator iterator;
2824         struct kvm_mmu_page *sp;
2825         bool ret = false;
2826         u64 spte = 0ull;
2827
2828         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2829                 return false;
2830
2831         if (!page_fault_can_be_fast(error_code))
2832                 return false;
2833
2834         walk_shadow_page_lockless_begin(vcpu);
2835         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2836                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2837                         break;
2838
2839         /*
2840          * If the mapping has been changed, let the vcpu fault on the
2841          * same address again.
2842          */
2843         if (!is_rmap_spte(spte)) {
2844                 ret = true;
2845                 goto exit;
2846         }
2847
2848         sp = page_header(__pa(iterator.sptep));
2849         if (!is_last_spte(spte, sp->role.level))
2850                 goto exit;
2851
2852         /*
2853          * Check if it is a spurious fault caused by TLB lazily flushed.
2854          *
2855          * Need not check the access of upper level table entries since
2856          * they are always ACC_ALL.
2857          */
2858          if (is_writable_pte(spte)) {
2859                 ret = true;
2860                 goto exit;
2861         }
2862
2863         /*
2864          * Currently, to simplify the code, only the spte write-protected
2865          * by dirty-log can be fast fixed.
2866          */
2867         if (!spte_is_locklessly_modifiable(spte))
2868                 goto exit;
2869
2870         /*
2871          * Do not fix write-permission on the large spte since we only dirty
2872          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2873          * that means other pages are missed if its slot is dirty-logged.
2874          *
2875          * Instead, we let the slow page fault path create a normal spte to
2876          * fix the access.
2877          *
2878          * See the comments in kvm_arch_commit_memory_region().
2879          */
2880         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2881                 goto exit;
2882
2883         /*
2884          * Currently, fast page fault only works for direct mapping since
2885          * the gfn is not stable for indirect shadow page.
2886          * See Documentation/virtual/kvm/locking.txt to get more detail.
2887          */
2888         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2889 exit:
2890         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2891                               spte, ret);
2892         walk_shadow_page_lockless_end(vcpu);
2893
2894         return ret;
2895 }
2896
2897 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2898                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2899 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2900
2901 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2902                          gfn_t gfn, bool prefault)
2903 {
2904         int r;
2905         int level;
2906         int force_pt_level;
2907         pfn_t pfn;
2908         unsigned long mmu_seq;
2909         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2910
2911         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2912         if (likely(!force_pt_level)) {
2913                 level = mapping_level(vcpu, gfn);
2914                 /*
2915                  * This path builds a PAE pagetable - so we can map
2916                  * 2mb pages at maximum. Therefore check if the level
2917                  * is larger than that.
2918                  */
2919                 if (level > PT_DIRECTORY_LEVEL)
2920                         level = PT_DIRECTORY_LEVEL;
2921
2922                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2923         } else
2924                 level = PT_PAGE_TABLE_LEVEL;
2925
2926         if (fast_page_fault(vcpu, v, level, error_code))
2927                 return 0;
2928
2929         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2930         smp_rmb();
2931
2932         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2933                 return 0;
2934
2935         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2936                 return r;
2937
2938         spin_lock(&vcpu->kvm->mmu_lock);
2939         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2940                 goto out_unlock;
2941         make_mmu_pages_available(vcpu);
2942         if (likely(!force_pt_level))
2943                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2944         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2945                          prefault);
2946         spin_unlock(&vcpu->kvm->mmu_lock);
2947
2948
2949         return r;
2950
2951 out_unlock:
2952         spin_unlock(&vcpu->kvm->mmu_lock);
2953         kvm_release_pfn_clean(pfn);
2954         return 0;
2955 }
2956
2957
2958 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2959 {
2960         int i;
2961         struct kvm_mmu_page *sp;
2962         LIST_HEAD(invalid_list);
2963
2964         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2965                 return;
2966
2967         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2968             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2969              vcpu->arch.mmu.direct_map)) {
2970                 hpa_t root = vcpu->arch.mmu.root_hpa;
2971
2972                 spin_lock(&vcpu->kvm->mmu_lock);
2973                 sp = page_header(root);
2974                 --sp->root_count;
2975                 if (!sp->root_count && sp->role.invalid) {
2976                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2977                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2978                 }
2979                 spin_unlock(&vcpu->kvm->mmu_lock);
2980                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2981                 return;
2982         }
2983
2984         spin_lock(&vcpu->kvm->mmu_lock);
2985         for (i = 0; i < 4; ++i) {
2986                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2987
2988                 if (root) {
2989                         root &= PT64_BASE_ADDR_MASK;
2990                         sp = page_header(root);
2991                         --sp->root_count;
2992                         if (!sp->root_count && sp->role.invalid)
2993                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2994                                                          &invalid_list);
2995                 }
2996                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2997         }
2998         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2999         spin_unlock(&vcpu->kvm->mmu_lock);
3000         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3001 }
3002
3003 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3004 {
3005         int ret = 0;
3006
3007         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3008                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3009                 ret = 1;
3010         }
3011
3012         return ret;
3013 }
3014
3015 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3016 {
3017         struct kvm_mmu_page *sp;
3018         unsigned i;
3019
3020         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3021                 spin_lock(&vcpu->kvm->mmu_lock);
3022                 make_mmu_pages_available(vcpu);
3023                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3024                                       1, ACC_ALL, NULL);
3025                 ++sp->root_count;
3026                 spin_unlock(&vcpu->kvm->mmu_lock);
3027                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3028         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3029                 for (i = 0; i < 4; ++i) {
3030                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3031
3032                         ASSERT(!VALID_PAGE(root));
3033                         spin_lock(&vcpu->kvm->mmu_lock);
3034                         make_mmu_pages_available(vcpu);
3035                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3036                                               i << 30,
3037                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3038                                               NULL);
3039                         root = __pa(sp->spt);
3040                         ++sp->root_count;
3041                         spin_unlock(&vcpu->kvm->mmu_lock);
3042                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3043                 }
3044                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3045         } else
3046                 BUG();
3047
3048         return 0;
3049 }
3050
3051 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3052 {
3053         struct kvm_mmu_page *sp;
3054         u64 pdptr, pm_mask;
3055         gfn_t root_gfn;
3056         int i;
3057
3058         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3059
3060         if (mmu_check_root(vcpu, root_gfn))
3061                 return 1;
3062
3063         /*
3064          * Do we shadow a long mode page table? If so we need to
3065          * write-protect the guests page table root.
3066          */
3067         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3068                 hpa_t root = vcpu->arch.mmu.root_hpa;
3069
3070                 ASSERT(!VALID_PAGE(root));
3071
3072                 spin_lock(&vcpu->kvm->mmu_lock);
3073                 make_mmu_pages_available(vcpu);
3074                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3075                                       0, ACC_ALL, NULL);
3076                 root = __pa(sp->spt);
3077                 ++sp->root_count;
3078                 spin_unlock(&vcpu->kvm->mmu_lock);
3079                 vcpu->arch.mmu.root_hpa = root;
3080                 return 0;
3081         }
3082
3083         /*
3084          * We shadow a 32 bit page table. This may be a legacy 2-level
3085          * or a PAE 3-level page table. In either case we need to be aware that
3086          * the shadow page table may be a PAE or a long mode page table.
3087          */
3088         pm_mask = PT_PRESENT_MASK;
3089         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3090                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3091
3092         for (i = 0; i < 4; ++i) {
3093                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3094
3095                 ASSERT(!VALID_PAGE(root));
3096                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3097                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3098                         if (!is_present_gpte(pdptr)) {
3099                                 vcpu->arch.mmu.pae_root[i] = 0;
3100                                 continue;
3101                         }
3102                         root_gfn = pdptr >> PAGE_SHIFT;
3103                         if (mmu_check_root(vcpu, root_gfn))
3104                                 return 1;
3105                 }
3106                 spin_lock(&vcpu->kvm->mmu_lock);
3107                 make_mmu_pages_available(vcpu);
3108                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3109                                       PT32_ROOT_LEVEL, 0,
3110                                       ACC_ALL, NULL);
3111                 root = __pa(sp->spt);
3112                 ++sp->root_count;
3113                 spin_unlock(&vcpu->kvm->mmu_lock);
3114
3115                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3116         }
3117         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3118
3119         /*
3120          * If we shadow a 32 bit page table with a long mode page
3121          * table we enter this path.
3122          */
3123         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3124                 if (vcpu->arch.mmu.lm_root == NULL) {
3125                         /*
3126                          * The additional page necessary for this is only
3127                          * allocated on demand.
3128                          */
3129
3130                         u64 *lm_root;
3131
3132                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3133                         if (lm_root == NULL)
3134                                 return 1;
3135
3136                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3137
3138                         vcpu->arch.mmu.lm_root = lm_root;
3139                 }
3140
3141                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3142         }
3143
3144         return 0;
3145 }
3146
3147 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3148 {
3149         if (vcpu->arch.mmu.direct_map)
3150                 return mmu_alloc_direct_roots(vcpu);
3151         else
3152                 return mmu_alloc_shadow_roots(vcpu);
3153 }
3154
3155 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3156 {
3157         int i;
3158         struct kvm_mmu_page *sp;
3159
3160         if (vcpu->arch.mmu.direct_map)
3161                 return;
3162
3163         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3164                 return;
3165
3166         vcpu_clear_mmio_info(vcpu, ~0ul);
3167         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3168         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3169                 hpa_t root = vcpu->arch.mmu.root_hpa;
3170                 sp = page_header(root);
3171                 mmu_sync_children(vcpu, sp);
3172                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3173                 return;
3174         }
3175         for (i = 0; i < 4; ++i) {
3176                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3177
3178                 if (root && VALID_PAGE(root)) {
3179                         root &= PT64_BASE_ADDR_MASK;
3180                         sp = page_header(root);
3181                         mmu_sync_children(vcpu, sp);
3182                 }
3183         }
3184         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185 }
3186
3187 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3188 {
3189         spin_lock(&vcpu->kvm->mmu_lock);
3190         mmu_sync_roots(vcpu);
3191         spin_unlock(&vcpu->kvm->mmu_lock);
3192 }
3193 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3194
3195 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3196                                   u32 access, struct x86_exception *exception)
3197 {
3198         if (exception)
3199                 exception->error_code = 0;
3200         return vaddr;
3201 }
3202
3203 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3204                                          u32 access,
3205                                          struct x86_exception *exception)
3206 {
3207         if (exception)
3208                 exception->error_code = 0;
3209         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3210 }
3211
3212 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3213 {
3214         if (direct)
3215                 return vcpu_match_mmio_gpa(vcpu, addr);
3216
3217         return vcpu_match_mmio_gva(vcpu, addr);
3218 }
3219
3220
3221 /*
3222  * On direct hosts, the last spte is only allows two states
3223  * for mmio page fault:
3224  *   - It is the mmio spte
3225  *   - It is zapped or it is being zapped.
3226  *
3227  * This function completely checks the spte when the last spte
3228  * is not the mmio spte.
3229  */
3230 static bool check_direct_spte_mmio_pf(u64 spte)
3231 {
3232         return __check_direct_spte_mmio_pf(spte);
3233 }
3234
3235 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3236 {
3237         struct kvm_shadow_walk_iterator iterator;
3238         u64 spte = 0ull;
3239
3240         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241                 return spte;
3242
3243         walk_shadow_page_lockless_begin(vcpu);
3244         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3245                 if (!is_shadow_present_pte(spte))
3246                         break;
3247         walk_shadow_page_lockless_end(vcpu);
3248
3249         return spte;
3250 }
3251
3252 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3253 {
3254         u64 spte;
3255
3256         if (quickly_check_mmio_pf(vcpu, addr, direct))
3257                 return RET_MMIO_PF_EMULATE;
3258
3259         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3260
3261         if (is_mmio_spte(spte)) {
3262                 gfn_t gfn = get_mmio_spte_gfn(spte);
3263                 unsigned access = get_mmio_spte_access(spte);
3264
3265                 if (!check_mmio_spte(vcpu->kvm, spte))
3266                         return RET_MMIO_PF_INVALID;
3267
3268                 if (direct)
3269                         addr = 0;
3270
3271                 trace_handle_mmio_page_fault(addr, gfn, access);
3272                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3273                 return RET_MMIO_PF_EMULATE;
3274         }
3275
3276         /*
3277          * It's ok if the gva is remapped by other cpus on shadow guest,
3278          * it's a BUG if the gfn is not a mmio page.
3279          */
3280         if (direct && !check_direct_spte_mmio_pf(spte))
3281                 return RET_MMIO_PF_BUG;
3282
3283         /*
3284          * If the page table is zapped by other cpus, let CPU fault again on
3285          * the address.
3286          */
3287         return RET_MMIO_PF_RETRY;
3288 }
3289 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3290
3291 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3292                                   u32 error_code, bool direct)
3293 {
3294         int ret;
3295
3296         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3297         WARN_ON(ret == RET_MMIO_PF_BUG);
3298         return ret;
3299 }
3300
3301 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3302                                 u32 error_code, bool prefault)
3303 {
3304         gfn_t gfn;
3305         int r;
3306
3307         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3308
3309         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3310                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3311
3312                 if (likely(r != RET_MMIO_PF_INVALID))
3313                         return r;
3314         }
3315
3316         r = mmu_topup_memory_caches(vcpu);
3317         if (r)
3318                 return r;
3319
3320         ASSERT(vcpu);
3321         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3322
3323         gfn = gva >> PAGE_SHIFT;
3324
3325         return nonpaging_map(vcpu, gva & PAGE_MASK,
3326                              error_code, gfn, prefault);
3327 }
3328
3329 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3330 {
3331         struct kvm_arch_async_pf arch;
3332
3333         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3334         arch.gfn = gfn;
3335         arch.direct_map = vcpu->arch.mmu.direct_map;
3336         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3337
3338         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3339 }
3340
3341 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3342 {
3343         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3344                      kvm_event_needs_reinjection(vcpu)))
3345                 return false;
3346
3347         return kvm_x86_ops->interrupt_allowed(vcpu);
3348 }
3349
3350 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3351                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3352 {
3353         bool async;
3354
3355         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3356
3357         if (!async)
3358                 return false; /* *pfn has correct page already */
3359
3360         if (!prefault && can_do_async_pf(vcpu)) {
3361                 trace_kvm_try_async_get_page(gva, gfn);
3362                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3363                         trace_kvm_async_pf_doublefault(gva, gfn);
3364                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3365                         return true;
3366                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3367                         return true;
3368         }
3369
3370         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3371
3372         return false;
3373 }
3374
3375 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3376                           bool prefault)
3377 {
3378         pfn_t pfn;
3379         int r;
3380         int level;
3381         int force_pt_level;
3382         gfn_t gfn = gpa >> PAGE_SHIFT;
3383         unsigned long mmu_seq;
3384         int write = error_code & PFERR_WRITE_MASK;
3385         bool map_writable;
3386
3387         ASSERT(vcpu);
3388         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3389
3390         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3391                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3392
3393                 if (likely(r != RET_MMIO_PF_INVALID))
3394                         return r;
3395         }
3396
3397         r = mmu_topup_memory_caches(vcpu);
3398         if (r)
3399                 return r;
3400
3401         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3402         if (likely(!force_pt_level)) {
3403                 level = mapping_level(vcpu, gfn);
3404                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3405         } else
3406                 level = PT_PAGE_TABLE_LEVEL;
3407
3408         if (fast_page_fault(vcpu, gpa, level, error_code))
3409                 return 0;
3410
3411         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3412         smp_rmb();
3413
3414         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3415                 return 0;
3416
3417         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3418                 return r;
3419
3420         spin_lock(&vcpu->kvm->mmu_lock);
3421         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3422                 goto out_unlock;
3423         make_mmu_pages_available(vcpu);
3424         if (likely(!force_pt_level))
3425                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3426         r = __direct_map(vcpu, gpa, write, map_writable,
3427                          level, gfn, pfn, prefault);
3428         spin_unlock(&vcpu->kvm->mmu_lock);
3429
3430         return r;
3431
3432 out_unlock:
3433         spin_unlock(&vcpu->kvm->mmu_lock);
3434         kvm_release_pfn_clean(pfn);
3435         return 0;
3436 }
3437
3438 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3439                                    struct kvm_mmu *context)
3440 {
3441         context->page_fault = nonpaging_page_fault;
3442         context->gva_to_gpa = nonpaging_gva_to_gpa;
3443         context->sync_page = nonpaging_sync_page;
3444         context->invlpg = nonpaging_invlpg;
3445         context->update_pte = nonpaging_update_pte;
3446         context->root_level = 0;
3447         context->shadow_root_level = PT32E_ROOT_LEVEL;
3448         context->root_hpa = INVALID_PAGE;
3449         context->direct_map = true;
3450         context->nx = false;
3451 }
3452
3453 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3454 {
3455         ++vcpu->stat.tlb_flush;
3456         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3459
3460 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3461 {
3462         mmu_free_roots(vcpu);
3463 }
3464
3465 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3466 {
3467         return kvm_read_cr3(vcpu);
3468 }
3469
3470 static void inject_page_fault(struct kvm_vcpu *vcpu,
3471                               struct x86_exception *fault)
3472 {
3473         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3474 }
3475
3476 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3477                            unsigned access, int *nr_present)
3478 {
3479         if (unlikely(is_mmio_spte(*sptep))) {
3480                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3481                         mmu_spte_clear_no_track(sptep);
3482                         return true;
3483                 }
3484
3485                 (*nr_present)++;
3486                 mark_mmio_spte(kvm, sptep, gfn, access);
3487                 return true;
3488         }
3489
3490         return false;
3491 }
3492
3493 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3494 {
3495         unsigned index;
3496
3497         index = level - 1;
3498         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3499         return mmu->last_pte_bitmap & (1 << index);
3500 }
3501
3502 #define PTTYPE_EPT 18 /* arbitrary */
3503 #define PTTYPE PTTYPE_EPT
3504 #include "paging_tmpl.h"
3505 #undef PTTYPE
3506
3507 #define PTTYPE 64
3508 #include "paging_tmpl.h"
3509 #undef PTTYPE
3510
3511 #define PTTYPE 32
3512 #include "paging_tmpl.h"
3513 #undef PTTYPE
3514
3515 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3516                                   struct kvm_mmu *context)
3517 {
3518         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3519         u64 exb_bit_rsvd = 0;
3520         u64 gbpages_bit_rsvd = 0;
3521
3522         context->bad_mt_xwr = 0;
3523
3524         if (!context->nx)
3525                 exb_bit_rsvd = rsvd_bits(63, 63);
3526         if (!guest_cpuid_has_gbpages(vcpu))
3527                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3528         switch (context->root_level) {
3529         case PT32_ROOT_LEVEL:
3530                 /* no rsvd bits for 2 level 4K page table entries */
3531                 context->rsvd_bits_mask[0][1] = 0;
3532                 context->rsvd_bits_mask[0][0] = 0;
3533                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3534
3535                 if (!is_pse(vcpu)) {
3536                         context->rsvd_bits_mask[1][1] = 0;
3537                         break;
3538                 }
3539
3540                 if (is_cpuid_PSE36())
3541                         /* 36bits PSE 4MB page */
3542                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3543                 else
3544                         /* 32 bits PSE 4MB page */
3545                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3546                 break;
3547         case PT32E_ROOT_LEVEL:
3548                 context->rsvd_bits_mask[0][2] =
3549                         rsvd_bits(maxphyaddr, 63) |
3550                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3551                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3552                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3553                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3554                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3555                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3556                         rsvd_bits(maxphyaddr, 62) |
3557                         rsvd_bits(13, 20);              /* large page */
3558                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3559                 break;
3560         case PT64_ROOT_LEVEL:
3561                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3562                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3563                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3564                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3565                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566                         rsvd_bits(maxphyaddr, 51);
3567                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568                         rsvd_bits(maxphyaddr, 51);
3569                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3570                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3571                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3572                         rsvd_bits(13, 29);
3573                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3574                         rsvd_bits(maxphyaddr, 51) |
3575                         rsvd_bits(13, 20);              /* large page */
3576                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3577                 break;
3578         }
3579 }
3580
3581 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3582                 struct kvm_mmu *context, bool execonly)
3583 {
3584         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3585         int pte;
3586
3587         context->rsvd_bits_mask[0][3] =
3588                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3589         context->rsvd_bits_mask[0][2] =
3590                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3591         context->rsvd_bits_mask[0][1] =
3592                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3593         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3594
3595         /* large page */
3596         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3597         context->rsvd_bits_mask[1][2] =
3598                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3599         context->rsvd_bits_mask[1][1] =
3600                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3601         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3602
3603         for (pte = 0; pte < 64; pte++) {
3604                 int rwx_bits = pte & 7;
3605                 int mt = pte >> 3;
3606                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3607                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3608                                 (rwx_bits == 0x4 && !execonly))
3609                         context->bad_mt_xwr |= (1ull << pte);
3610         }
3611 }
3612
3613 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3614                 struct kvm_mmu *mmu, bool ept)
3615 {
3616         unsigned bit, byte, pfec;
3617         u8 map;
3618         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3619
3620         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3621         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3622         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3623                 pfec = byte << 1;
3624                 map = 0;
3625                 wf = pfec & PFERR_WRITE_MASK;
3626                 uf = pfec & PFERR_USER_MASK;
3627                 ff = pfec & PFERR_FETCH_MASK;
3628                 /*
3629                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3630                  * subject to SMAP restrictions, and cleared otherwise. The
3631                  * bit is only meaningful if the SMAP bit is set in CR4.
3632                  */
3633                 smapf = !(pfec & PFERR_RSVD_MASK);
3634                 for (bit = 0; bit < 8; ++bit) {
3635                         x = bit & ACC_EXEC_MASK;
3636                         w = bit & ACC_WRITE_MASK;
3637                         u = bit & ACC_USER_MASK;
3638
3639                         if (!ept) {
3640                                 /* Not really needed: !nx will cause pte.nx to fault */
3641                                 x |= !mmu->nx;
3642                                 /* Allow supervisor writes if !cr0.wp */
3643                                 w |= !is_write_protection(vcpu) && !uf;
3644                                 /* Disallow supervisor fetches of user code if cr4.smep */
3645                                 x &= !(cr4_smep && u && !uf);
3646
3647                                 /*
3648                                  * SMAP:kernel-mode data accesses from user-mode
3649                                  * mappings should fault. A fault is considered
3650                                  * as a SMAP violation if all of the following
3651                                  * conditions are ture:
3652                                  *   - X86_CR4_SMAP is set in CR4
3653                                  *   - An user page is accessed
3654                                  *   - Page fault in kernel mode
3655                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3656                                  *
3657                                  *   Here, we cover the first three conditions.
3658                                  *   The fourth is computed dynamically in
3659                                  *   permission_fault() and is in smapf.
3660                                  *
3661                                  *   Also, SMAP does not affect instruction
3662                                  *   fetches, add the !ff check here to make it
3663                                  *   clearer.
3664                                  */
3665                                 smap = cr4_smap && u && !uf && !ff;
3666                         } else
3667                                 /* Not really needed: no U/S accesses on ept  */
3668                                 u = 1;
3669
3670                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3671                                 (smapf && smap);
3672                         map |= fault << bit;
3673                 }
3674                 mmu->permissions[byte] = map;
3675         }
3676 }
3677
3678 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3679 {
3680         u8 map;
3681         unsigned level, root_level = mmu->root_level;
3682         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3683
3684         if (root_level == PT32E_ROOT_LEVEL)
3685                 --root_level;
3686         /* PT_PAGE_TABLE_LEVEL always terminates */
3687         map = 1 | (1 << ps_set_index);
3688         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3689                 if (level <= PT_PDPE_LEVEL
3690                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3691                         map |= 1 << (ps_set_index | (level - 1));
3692         }
3693         mmu->last_pte_bitmap = map;
3694 }
3695
3696 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3697                                          struct kvm_mmu *context,
3698                                          int level)
3699 {
3700         context->nx = is_nx(vcpu);
3701         context->root_level = level;
3702
3703         reset_rsvds_bits_mask(vcpu, context);
3704         update_permission_bitmask(vcpu, context, false);
3705         update_last_pte_bitmap(vcpu, context);
3706
3707         ASSERT(is_pae(vcpu));
3708         context->page_fault = paging64_page_fault;
3709         context->gva_to_gpa = paging64_gva_to_gpa;
3710         context->sync_page = paging64_sync_page;
3711         context->invlpg = paging64_invlpg;
3712         context->update_pte = paging64_update_pte;
3713         context->shadow_root_level = level;
3714         context->root_hpa = INVALID_PAGE;
3715         context->direct_map = false;
3716 }
3717
3718 static void paging64_init_context(struct kvm_vcpu *vcpu,
3719                                   struct kvm_mmu *context)
3720 {
3721         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3722 }
3723
3724 static void paging32_init_context(struct kvm_vcpu *vcpu,
3725                                   struct kvm_mmu *context)
3726 {
3727         context->nx = false;
3728         context->root_level = PT32_ROOT_LEVEL;
3729
3730         reset_rsvds_bits_mask(vcpu, context);
3731         update_permission_bitmask(vcpu, context, false);
3732         update_last_pte_bitmap(vcpu, context);
3733
3734         context->page_fault = paging32_page_fault;
3735         context->gva_to_gpa = paging32_gva_to_gpa;
3736         context->sync_page = paging32_sync_page;
3737         context->invlpg = paging32_invlpg;
3738         context->update_pte = paging32_update_pte;
3739         context->shadow_root_level = PT32E_ROOT_LEVEL;
3740         context->root_hpa = INVALID_PAGE;
3741         context->direct_map = false;
3742 }
3743
3744 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3745                                    struct kvm_mmu *context)
3746 {
3747         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3748 }
3749
3750 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3751 {
3752         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3753
3754         context->base_role.word = 0;
3755         context->page_fault = tdp_page_fault;
3756         context->sync_page = nonpaging_sync_page;
3757         context->invlpg = nonpaging_invlpg;
3758         context->update_pte = nonpaging_update_pte;
3759         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3760         context->root_hpa = INVALID_PAGE;
3761         context->direct_map = true;
3762         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3763         context->get_cr3 = get_cr3;
3764         context->get_pdptr = kvm_pdptr_read;
3765         context->inject_page_fault = kvm_inject_page_fault;
3766
3767         if (!is_paging(vcpu)) {
3768                 context->nx = false;
3769                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3770                 context->root_level = 0;
3771         } else if (is_long_mode(vcpu)) {
3772                 context->nx = is_nx(vcpu);
3773                 context->root_level = PT64_ROOT_LEVEL;
3774                 reset_rsvds_bits_mask(vcpu, context);
3775                 context->gva_to_gpa = paging64_gva_to_gpa;
3776         } else if (is_pae(vcpu)) {
3777                 context->nx = is_nx(vcpu);
3778                 context->root_level = PT32E_ROOT_LEVEL;
3779                 reset_rsvds_bits_mask(vcpu, context);
3780                 context->gva_to_gpa = paging64_gva_to_gpa;
3781         } else {
3782                 context->nx = false;
3783                 context->root_level = PT32_ROOT_LEVEL;
3784                 reset_rsvds_bits_mask(vcpu, context);
3785                 context->gva_to_gpa = paging32_gva_to_gpa;
3786         }
3787
3788         update_permission_bitmask(vcpu, context, false);
3789         update_last_pte_bitmap(vcpu, context);
3790 }
3791
3792 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3793 {
3794         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3795         ASSERT(vcpu);
3796         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3797
3798         if (!is_paging(vcpu))
3799                 nonpaging_init_context(vcpu, context);
3800         else if (is_long_mode(vcpu))
3801                 paging64_init_context(vcpu, context);
3802         else if (is_pae(vcpu))
3803                 paging32E_init_context(vcpu, context);
3804         else
3805                 paging32_init_context(vcpu, context);
3806
3807         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3808         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3809         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3810         vcpu->arch.mmu.base_role.smep_andnot_wp
3811                 = smep && !is_write_protection(vcpu);
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3814
3815 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3816                 bool execonly)
3817 {
3818         ASSERT(vcpu);
3819         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3820
3821         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3822
3823         context->nx = true;
3824         context->page_fault = ept_page_fault;
3825         context->gva_to_gpa = ept_gva_to_gpa;
3826         context->sync_page = ept_sync_page;
3827         context->invlpg = ept_invlpg;
3828         context->update_pte = ept_update_pte;
3829         context->root_level = context->shadow_root_level;
3830         context->root_hpa = INVALID_PAGE;
3831         context->direct_map = false;
3832
3833         update_permission_bitmask(vcpu, context, true);
3834         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3835 }
3836 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3837
3838 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3839 {
3840         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3841         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3842         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3843         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3844         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3845 }
3846
3847 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3848 {
3849         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3850
3851         g_context->get_cr3           = get_cr3;
3852         g_context->get_pdptr         = kvm_pdptr_read;
3853         g_context->inject_page_fault = kvm_inject_page_fault;
3854
3855         /*
3856          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3857          * translation of l2_gpa to l1_gpa addresses is done using the
3858          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3859          * functions between mmu and nested_mmu are swapped.
3860          */
3861         if (!is_paging(vcpu)) {
3862                 g_context->nx = false;
3863                 g_context->root_level = 0;
3864                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3865         } else if (is_long_mode(vcpu)) {
3866                 g_context->nx = is_nx(vcpu);
3867                 g_context->root_level = PT64_ROOT_LEVEL;
3868                 reset_rsvds_bits_mask(vcpu, g_context);
3869                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3870         } else if (is_pae(vcpu)) {
3871                 g_context->nx = is_nx(vcpu);
3872                 g_context->root_level = PT32E_ROOT_LEVEL;
3873                 reset_rsvds_bits_mask(vcpu, g_context);
3874                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3875         } else {
3876                 g_context->nx = false;
3877                 g_context->root_level = PT32_ROOT_LEVEL;
3878                 reset_rsvds_bits_mask(vcpu, g_context);
3879                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3880         }
3881
3882         update_permission_bitmask(vcpu, g_context, false);
3883         update_last_pte_bitmap(vcpu, g_context);
3884 }
3885
3886 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3887 {
3888         if (mmu_is_nested(vcpu))
3889                 return init_kvm_nested_mmu(vcpu);
3890         else if (tdp_enabled)
3891                 return init_kvm_tdp_mmu(vcpu);
3892         else
3893                 return init_kvm_softmmu(vcpu);
3894 }
3895
3896 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3897 {
3898         ASSERT(vcpu);
3899
3900         kvm_mmu_unload(vcpu);
3901         init_kvm_mmu(vcpu);
3902 }
3903 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3904
3905 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3906 {
3907         int r;
3908
3909         r = mmu_topup_memory_caches(vcpu);
3910         if (r)
3911                 goto out;
3912         r = mmu_alloc_roots(vcpu);
3913         kvm_mmu_sync_roots(vcpu);
3914         if (r)
3915                 goto out;
3916         /* set_cr3() should ensure TLB has been flushed */
3917         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3918 out:
3919         return r;
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3922
3923 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3924 {
3925         mmu_free_roots(vcpu);
3926         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3927 }
3928 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3929
3930 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3931                                   struct kvm_mmu_page *sp, u64 *spte,
3932                                   const void *new)
3933 {
3934         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3935                 ++vcpu->kvm->stat.mmu_pde_zapped;
3936                 return;
3937         }
3938
3939         ++vcpu->kvm->stat.mmu_pte_updated;
3940         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3941 }
3942
3943 static bool need_remote_flush(u64 old, u64 new)
3944 {
3945         if (!is_shadow_present_pte(old))
3946                 return false;
3947         if (!is_shadow_present_pte(new))
3948                 return true;
3949         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3950                 return true;
3951         old ^= shadow_nx_mask;
3952         new ^= shadow_nx_mask;
3953         return (old & ~new & PT64_PERM_MASK) != 0;
3954 }
3955
3956 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3957                                     bool remote_flush, bool local_flush)
3958 {
3959         if (zap_page)
3960                 return;
3961
3962         if (remote_flush)
3963                 kvm_flush_remote_tlbs(vcpu->kvm);
3964         else if (local_flush)
3965                 kvm_mmu_flush_tlb(vcpu);
3966 }
3967
3968 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3969                                     const u8 *new, int *bytes)
3970 {
3971         u64 gentry;
3972         int r;
3973
3974         /*
3975          * Assume that the pte write on a page table of the same type
3976          * as the current vcpu paging mode since we update the sptes only
3977          * when they have the same mode.
3978          */
3979         if (is_pae(vcpu) && *bytes == 4) {
3980                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3981                 *gpa &= ~(gpa_t)7;
3982                 *bytes = 8;
3983                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3984                 if (r)
3985                         gentry = 0;
3986                 new = (const u8 *)&gentry;
3987         }
3988
3989         switch (*bytes) {
3990         case 4:
3991                 gentry = *(const u32 *)new;
3992                 break;
3993         case 8:
3994                 gentry = *(const u64 *)new;
3995                 break;
3996         default:
3997                 gentry = 0;
3998                 break;
3999         }
4000
4001         return gentry;
4002 }
4003
4004 /*
4005  * If we're seeing too many writes to a page, it may no longer be a page table,
4006  * or we may be forking, in which case it is better to unmap the page.
4007  */
4008 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4009 {
4010         /*
4011          * Skip write-flooding detected for the sp whose level is 1, because
4012          * it can become unsync, then the guest page is not write-protected.
4013          */
4014         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4015                 return false;
4016
4017         return ++sp->write_flooding_count >= 3;
4018 }
4019
4020 /*
4021  * Misaligned accesses are too much trouble to fix up; also, they usually
4022  * indicate a page is not used as a page table.
4023  */
4024 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4025                                     int bytes)
4026 {
4027         unsigned offset, pte_size, misaligned;
4028
4029         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4030                  gpa, bytes, sp->role.word);
4031
4032         offset = offset_in_page(gpa);
4033         pte_size = sp->role.cr4_pae ? 8 : 4;
4034
4035         /*
4036          * Sometimes, the OS only writes the last one bytes to update status
4037          * bits, for example, in linux, andb instruction is used in clear_bit().
4038          */
4039         if (!(offset & (pte_size - 1)) && bytes == 1)
4040                 return false;
4041
4042         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4043         misaligned |= bytes < 4;
4044
4045         return misaligned;
4046 }
4047
4048 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4049 {
4050         unsigned page_offset, quadrant;
4051         u64 *spte;
4052         int level;
4053
4054         page_offset = offset_in_page(gpa);
4055         level = sp->role.level;
4056         *nspte = 1;
4057         if (!sp->role.cr4_pae) {
4058                 page_offset <<= 1;      /* 32->64 */
4059                 /*
4060                  * A 32-bit pde maps 4MB while the shadow pdes map
4061                  * only 2MB.  So we need to double the offset again
4062                  * and zap two pdes instead of one.
4063                  */
4064                 if (level == PT32_ROOT_LEVEL) {
4065                         page_offset &= ~7; /* kill rounding error */
4066                         page_offset <<= 1;
4067                         *nspte = 2;
4068                 }
4069                 quadrant = page_offset >> PAGE_SHIFT;
4070                 page_offset &= ~PAGE_MASK;
4071                 if (quadrant != sp->role.quadrant)
4072                         return NULL;
4073         }
4074
4075         spte = &sp->spt[page_offset / sizeof(*spte)];
4076         return spte;
4077 }
4078
4079 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4080                        const u8 *new, int bytes)
4081 {
4082         gfn_t gfn = gpa >> PAGE_SHIFT;
4083         union kvm_mmu_page_role mask = { .word = 0 };
4084         struct kvm_mmu_page *sp;
4085         LIST_HEAD(invalid_list);
4086         u64 entry, gentry, *spte;
4087         int npte;
4088         bool remote_flush, local_flush, zap_page;
4089
4090         /*
4091          * If we don't have indirect shadow pages, it means no page is
4092          * write-protected, so we can exit simply.
4093          */
4094         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4095                 return;
4096
4097         zap_page = remote_flush = local_flush = false;
4098
4099         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4100
4101         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4102
4103         /*
4104          * No need to care whether allocation memory is successful
4105          * or not since pte prefetch is skiped if it does not have
4106          * enough objects in the cache.
4107          */
4108         mmu_topup_memory_caches(vcpu);
4109
4110         spin_lock(&vcpu->kvm->mmu_lock);
4111         ++vcpu->kvm->stat.mmu_pte_write;
4112         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4113
4114         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4115         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4116                 if (detect_write_misaligned(sp, gpa, bytes) ||
4117                       detect_write_flooding(sp)) {
4118                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4119                                                      &invalid_list);
4120                         ++vcpu->kvm->stat.mmu_flooded;
4121                         continue;
4122                 }
4123
4124                 spte = get_written_sptes(sp, gpa, &npte);
4125                 if (!spte)
4126                         continue;
4127
4128                 local_flush = true;
4129                 while (npte--) {
4130                         entry = *spte;
4131                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4132                         if (gentry &&
4133                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4134                               & mask.word) && rmap_can_add(vcpu))
4135                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4136                         if (need_remote_flush(entry, *spte))
4137                                 remote_flush = true;
4138                         ++spte;
4139                 }
4140         }
4141         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4142         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4143         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4144         spin_unlock(&vcpu->kvm->mmu_lock);
4145 }
4146
4147 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4148 {
4149         gpa_t gpa;
4150         int r;
4151
4152         if (vcpu->arch.mmu.direct_map)
4153                 return 0;
4154
4155         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4156
4157         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4158
4159         return r;
4160 }
4161 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4162
4163 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4164 {
4165         LIST_HEAD(invalid_list);
4166
4167         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4168                 return;
4169
4170         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4171                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4172                         break;
4173
4174                 ++vcpu->kvm->stat.mmu_recycled;
4175         }
4176         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4177 }
4178
4179 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4180 {
4181         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4182                 return vcpu_match_mmio_gpa(vcpu, addr);
4183
4184         return vcpu_match_mmio_gva(vcpu, addr);
4185 }
4186
4187 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4188                        void *insn, int insn_len)
4189 {
4190         int r, emulation_type = EMULTYPE_RETRY;
4191         enum emulation_result er;
4192
4193         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4194         if (r < 0)
4195                 goto out;
4196
4197         if (!r) {
4198                 r = 1;
4199                 goto out;
4200         }
4201
4202         if (is_mmio_page_fault(vcpu, cr2))
4203                 emulation_type = 0;
4204
4205         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4206
4207         switch (er) {
4208         case EMULATE_DONE:
4209                 return 1;
4210         case EMULATE_USER_EXIT:
4211                 ++vcpu->stat.mmio_exits;
4212                 /* fall through */
4213         case EMULATE_FAIL:
4214                 return 0;
4215         default:
4216                 BUG();
4217         }
4218 out:
4219         return r;
4220 }
4221 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4222
4223 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4224 {
4225         vcpu->arch.mmu.invlpg(vcpu, gva);
4226         kvm_mmu_flush_tlb(vcpu);
4227         ++vcpu->stat.invlpg;
4228 }
4229 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4230
4231 void kvm_enable_tdp(void)
4232 {
4233         tdp_enabled = true;
4234 }
4235 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4236
4237 void kvm_disable_tdp(void)
4238 {
4239         tdp_enabled = false;
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4242
4243 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4244 {
4245         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4246         if (vcpu->arch.mmu.lm_root != NULL)
4247                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4248 }
4249
4250 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4251 {
4252         struct page *page;
4253         int i;
4254
4255         ASSERT(vcpu);
4256
4257         /*
4258          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4259          * Therefore we need to allocate shadow page tables in the first
4260          * 4GB of memory, which happens to fit the DMA32 zone.
4261          */
4262         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4263         if (!page)
4264                 return -ENOMEM;
4265
4266         vcpu->arch.mmu.pae_root = page_address(page);
4267         for (i = 0; i < 4; ++i)
4268                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4269
4270         return 0;
4271 }
4272
4273 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4274 {
4275         ASSERT(vcpu);
4276
4277         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4278         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4279         vcpu->arch.mmu.translate_gpa = translate_gpa;
4280         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4281
4282         return alloc_mmu_pages(vcpu);
4283 }
4284
4285 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4286 {
4287         ASSERT(vcpu);
4288         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4289
4290         init_kvm_mmu(vcpu);
4291 }
4292
4293 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4294 {
4295         struct kvm_memory_slot *memslot;
4296         gfn_t last_gfn;
4297         int i;
4298
4299         memslot = id_to_memslot(kvm->memslots, slot);
4300         last_gfn = memslot->base_gfn + memslot->npages - 1;
4301
4302         spin_lock(&kvm->mmu_lock);
4303
4304         for (i = PT_PAGE_TABLE_LEVEL;
4305              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4306                 unsigned long *rmapp;
4307                 unsigned long last_index, index;
4308
4309                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4310                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4311
4312                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4313                         if (*rmapp)
4314                                 __rmap_write_protect(kvm, rmapp, false);
4315
4316                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4317                                 cond_resched_lock(&kvm->mmu_lock);
4318                 }
4319         }
4320
4321         spin_unlock(&kvm->mmu_lock);
4322
4323         /*
4324          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4325          * which do tlb flush out of mmu-lock should be serialized by
4326          * kvm->slots_lock otherwise tlb flush would be missed.
4327          */
4328         lockdep_assert_held(&kvm->slots_lock);
4329
4330         /*
4331          * We can flush all the TLBs out of the mmu lock without TLB
4332          * corruption since we just change the spte from writable to
4333          * readonly so that we only need to care the case of changing
4334          * spte from present to present (changing the spte from present
4335          * to nonpresent will flush all the TLBs immediately), in other
4336          * words, the only case we care is mmu_spte_update() where we
4337          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4338          * instead of PT_WRITABLE_MASK, that means it does not depend
4339          * on PT_WRITABLE_MASK anymore.
4340          */
4341         kvm_flush_remote_tlbs(kvm);
4342 }
4343
4344 #define BATCH_ZAP_PAGES 10
4345 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4346 {
4347         struct kvm_mmu_page *sp, *node;
4348         int batch = 0;
4349
4350 restart:
4351         list_for_each_entry_safe_reverse(sp, node,
4352               &kvm->arch.active_mmu_pages, link) {
4353                 int ret;
4354
4355                 /*
4356                  * No obsolete page exists before new created page since
4357                  * active_mmu_pages is the FIFO list.
4358                  */
4359                 if (!is_obsolete_sp(kvm, sp))
4360                         break;
4361
4362                 /*
4363                  * Since we are reversely walking the list and the invalid
4364                  * list will be moved to the head, skip the invalid page
4365                  * can help us to avoid the infinity list walking.
4366                  */
4367                 if (sp->role.invalid)
4368                         continue;
4369
4370                 /*
4371                  * Need not flush tlb since we only zap the sp with invalid
4372                  * generation number.
4373                  */
4374                 if (batch >= BATCH_ZAP_PAGES &&
4375                       cond_resched_lock(&kvm->mmu_lock)) {
4376                         batch = 0;
4377                         goto restart;
4378                 }
4379
4380                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4381                                 &kvm->arch.zapped_obsolete_pages);
4382                 batch += ret;
4383
4384                 if (ret)
4385                         goto restart;
4386         }
4387
4388         /*
4389          * Should flush tlb before free page tables since lockless-walking
4390          * may use the pages.
4391          */
4392         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4393 }
4394
4395 /*
4396  * Fast invalidate all shadow pages and use lock-break technique
4397  * to zap obsolete pages.
4398  *
4399  * It's required when memslot is being deleted or VM is being
4400  * destroyed, in these cases, we should ensure that KVM MMU does
4401  * not use any resource of the being-deleted slot or all slots
4402  * after calling the function.
4403  */
4404 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4405 {
4406         spin_lock(&kvm->mmu_lock);
4407         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4408         kvm->arch.mmu_valid_gen++;
4409
4410         /*
4411          * Notify all vcpus to reload its shadow page table
4412          * and flush TLB. Then all vcpus will switch to new
4413          * shadow page table with the new mmu_valid_gen.
4414          *
4415          * Note: we should do this under the protection of
4416          * mmu-lock, otherwise, vcpu would purge shadow page
4417          * but miss tlb flush.
4418          */
4419         kvm_reload_remote_mmus(kvm);
4420
4421         kvm_zap_obsolete_pages(kvm);
4422         spin_unlock(&kvm->mmu_lock);
4423 }
4424
4425 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4426 {
4427         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4428 }
4429
4430 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4431 {
4432         /*
4433          * The very rare case: if the generation-number is round,
4434          * zap all shadow pages.
4435          */
4436         if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4437                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4438                 kvm_mmu_invalidate_zap_all_pages(kvm);
4439         }
4440 }
4441
4442 static unsigned long
4443 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4444 {
4445         struct kvm *kvm;
4446         int nr_to_scan = sc->nr_to_scan;
4447         unsigned long freed = 0;
4448
4449         spin_lock(&kvm_lock);
4450
4451         list_for_each_entry(kvm, &vm_list, vm_list) {
4452                 int idx;
4453                 LIST_HEAD(invalid_list);
4454
4455                 /*
4456                  * Never scan more than sc->nr_to_scan VM instances.
4457                  * Will not hit this condition practically since we do not try
4458                  * to shrink more than one VM and it is very unlikely to see
4459                  * !n_used_mmu_pages so many times.
4460                  */
4461                 if (!nr_to_scan--)
4462                         break;
4463                 /*
4464                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4465                  * here. We may skip a VM instance errorneosly, but we do not
4466                  * want to shrink a VM that only started to populate its MMU
4467                  * anyway.
4468                  */
4469                 if (!kvm->arch.n_used_mmu_pages &&
4470                       !kvm_has_zapped_obsolete_pages(kvm))
4471                         continue;
4472
4473                 idx = srcu_read_lock(&kvm->srcu);
4474                 spin_lock(&kvm->mmu_lock);
4475
4476                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4477                         kvm_mmu_commit_zap_page(kvm,
4478                               &kvm->arch.zapped_obsolete_pages);
4479                         goto unlock;
4480                 }
4481
4482                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4483                         freed++;
4484                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4485
4486 unlock:
4487                 spin_unlock(&kvm->mmu_lock);
4488                 srcu_read_unlock(&kvm->srcu, idx);
4489
4490                 /*
4491                  * unfair on small ones
4492                  * per-vm shrinkers cry out
4493                  * sadness comes quickly
4494                  */
4495                 list_move_tail(&kvm->vm_list, &vm_list);
4496                 break;
4497         }
4498
4499         spin_unlock(&kvm_lock);
4500         return freed;
4501 }
4502
4503 static unsigned long
4504 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4505 {
4506         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4507 }
4508
4509 static struct shrinker mmu_shrinker = {
4510         .count_objects = mmu_shrink_count,
4511         .scan_objects = mmu_shrink_scan,
4512         .seeks = DEFAULT_SEEKS * 10,
4513 };
4514
4515 static void mmu_destroy_caches(void)
4516 {
4517         if (pte_list_desc_cache)
4518                 kmem_cache_destroy(pte_list_desc_cache);
4519         if (mmu_page_header_cache)
4520                 kmem_cache_destroy(mmu_page_header_cache);
4521 }
4522
4523 int kvm_mmu_module_init(void)
4524 {
4525         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4526                                             sizeof(struct pte_list_desc),
4527                                             0, 0, NULL);
4528         if (!pte_list_desc_cache)
4529                 goto nomem;
4530
4531         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4532                                                   sizeof(struct kvm_mmu_page),
4533                                                   0, 0, NULL);
4534         if (!mmu_page_header_cache)
4535                 goto nomem;
4536
4537         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4538                 goto nomem;
4539
4540         register_shrinker(&mmu_shrinker);
4541
4542         return 0;
4543
4544 nomem:
4545         mmu_destroy_caches();
4546         return -ENOMEM;
4547 }
4548
4549 /*
4550  * Caculate mmu pages needed for kvm.
4551  */
4552 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4553 {
4554         unsigned int nr_mmu_pages;
4555         unsigned int  nr_pages = 0;
4556         struct kvm_memslots *slots;
4557         struct kvm_memory_slot *memslot;
4558
4559         slots = kvm_memslots(kvm);
4560
4561         kvm_for_each_memslot(memslot, slots)
4562                 nr_pages += memslot->npages;
4563
4564         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4565         nr_mmu_pages = max(nr_mmu_pages,
4566                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4567
4568         return nr_mmu_pages;
4569 }
4570
4571 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4572 {
4573         struct kvm_shadow_walk_iterator iterator;
4574         u64 spte;
4575         int nr_sptes = 0;
4576
4577         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4578                 return nr_sptes;
4579
4580         walk_shadow_page_lockless_begin(vcpu);
4581         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4582                 sptes[iterator.level-1] = spte;
4583                 nr_sptes++;
4584                 if (!is_shadow_present_pte(spte))
4585                         break;
4586         }
4587         walk_shadow_page_lockless_end(vcpu);
4588
4589         return nr_sptes;
4590 }
4591 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4592
4593 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4594 {
4595         ASSERT(vcpu);
4596
4597         kvm_mmu_unload(vcpu);
4598         free_mmu_pages(vcpu);
4599         mmu_free_memory_caches(vcpu);
4600 }
4601
4602 void kvm_mmu_module_exit(void)
4603 {
4604         mmu_destroy_caches();
4605         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4606         unregister_shrinker(&mmu_shrinker);
4607         mmu_audit_disable();
4608 }